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CHAPTER 1

INTRODUCTION

The objective of this research is the development of circuit sizing and statistical

design-for-manufacturability methodologies for embedded, passive radio-frequency

(RF) circuits.

With the revolutionary development in wireless communications technology, the

need is continuously increasing for RF front-end modules that combine low cost,

small size and high performance. At the same time, with the convergence of mul-

tiple wireless communications standards, the design constraints and manufacturing

issues for RF modules are greater than ever. Two factors account for most of these

difficulties. The first is the increased complexity of current cellular/wireless devices

because of the increase in circuit functionality. Moreover, RF designers must deal si-

multaneously with multiple design constraints while also meeting several performance

specifications across multiple frequency bands. Manual iterations in circuit solvers

and field solvers are typically used in design flows to meet such design goals. These

design iterations, however, can become computationally prohibitive. Consequently,

time-efficient design closure is becoming increasingly difficult in the design of modern

communications systems.

Secondly, system on package (SOP)-based technologies have emerged as strong

candidates for the integration platform of next-generation, multi-functional commu-

nications devices [1], [2], [3]. Unlike a system on chip (SOC) in which the package

exists solely for the thermal and mechanical protection of the ICs, SOP provides for

an increase in the functionality of the integrated circuit (IC) package by supporting

multiple dice and embedded passives. SOP can be viewed as a multichip module

(MCM) [4], [5] that has more than one IC but has a better system-level perspective

and hence is a more sophisticated packaging technique. A conceptual representation
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Figure 1. Illustration of an SOP test bed that combines: an optical circuitwith waveg-
uide and detector just beneath the surface; RF thin-film components embedded within
the package; and digital thin-film components at the bottom.

of a SOP test-bed is shown in Figure 1 [6].

However, the current design flow for the SOP-based systems is not as

efficiently modularized into multiple levels of physical and logical abstrac-

tion as its SOC counterpart [7]. In addition, the new technologies have not been

well-characterized because of the absence of adequate technological data. As a result,

design optimization does not translate into manufacturing yield optimization.

The design of wireless components/modules, operating at very high frequencies

and narrow bandwidths, is challenging [8], [9]. For example, high performance RF

filters should exhibit low insertion loss, sharp roll-offs for filtering and channel selec-

tion, and preferably have low cost [10]. If RF circuit design is to be cost efficient, the

design-cycle time must be reduced. The need for fast design closure for SOP-based

RF circuits is best explained with the help of a flow chart, shown in Figure 2, of the

stages in RF circuit design.

The flow is applied to the design of an RF bandpass filter with quasi-lumped

embedded inductors and capacitors in multi-layer substrate. The layout of the filter

(including probe-pads, signal vias and thruholes) is shown in Figure 3.
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Figure 2. Typical design flow for RF circuits; grey represents time/memory bottleneck
in the design flow.

Figure 3. Layout of a bandpass filter in SONNET EM solver.
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In Figure 2, the design flow begins with an ideal schematic in a circuit simulator.

Design values derived from firsthand calculations are used to quickly arrive at rough

estimates of the performance specifications. The optimized design values are then

used to extract the layouts of the corresponding circuit components (Ls,Cs,Rs).

Typically, the layouts of the components are chosen from predesigned libraries.

In many cases, the design values of the circuit components and library components

are not exact matches. In such cases, the component with the closet value is chosen

and its geometries are varied so that the required component specs are met. Full-

wave electromagnetic (EM) solvers are typically used to tune layouts. EM solvers are

computationally expensive but accurate. They capture the physical effects of layout,

e.g. the parasitics and the EM coupling. However, multiple iterations are required to

obtain the convergence necessary for accurate component values. Furthermore, when

the layout components are connected via interconnects at a later stage of the design

flow, these interconnects add to the inductance, resistance and parasitic capacitance

of the overall circuit [9]. Consequently, the circuit response is modified and manual

EM iterations are required again to restore the design specifications for the overall

layout.

After fabrication of the design, measurements are performed to verify whether the

specifications are met. For designs that deviate significantly from the specifications,

the corresponding layouts are manually perturbed via EM simulations to meet the

specifications. Clearly, as shown in Figure 2, the iterative cycle continues till the

specifications are met and the design is ready to be delivered to the market. In the

absence of a robust computer-aided design(CAD) framework, the amount

of manual intervention required for design tuning increases exponentially

with design size, thereby increasing design cost and time.

The limitations/challenges in this flow are as follows:

(a) EM simulations of complete layouts (which are time and memory intensive) are
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a part of the iterative cycle instead of being a part of final verification.

(b) Design optimization does not ensure high volume manufacturability.

(c) Design flow lacks diagnosis. Diagnosis is the process of efficiently detecting

and correcting faults in design (due to process variations). Commercial circuit

simulator (e.g. Agilent’s Advanced Design System (ADS) [11]) does circuit-

level design of experiments (DOE) for statistical analysis, but it does not have

diagnostic capability that can reduce the test time.

The statistical analyses of RF circuits that are solely based on circuit simulators

provide fast but inaccurate results. The conventional method used to study the effect

of component variations on system performance is to perform Monte Carlo (MC)

analysis [12]. The MC analysis with full layout EM simulations is accurate but can

be prohibitively time and/or memory-intensive.

1.1 The SOP paradigm for RF circuits

Developments in packaging technology have led to potentially cost-effective alterna-

tives for systems integration, namely the system-on-package (SOP) approach [6],[13],[14].

A SOP module permits high levels of functional density by incorporating combinations

of wirebond, flip-chip, stacked devices, embedded devices, MEMS, and package-on-

package [15]. Moreover, SOP technology requires less power and generates less noise

at the interconnect level, allows flexibility in mixing IC technologies, and reduction

of board size and cost through inclusion of passive components [9]. Furthermore,

compared with existing solutions based on SOC, SOP modules can be developed

quicker.

From a designer’s perspective, the use of SOP technology provides for design

flexibility as well. For example, the noise figure of a low-noise amplifier is strongly

dependent on the base/gate inductance of the active device [16]. On-chip solutions are
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limited by the low quality factors (Qs) of the passives due to the high substrate losses

[17], [18], [19]. In an SOP platform, the critical base inductance can be moved to the

package, thereby increasing its Q, while the amplifier transistor can be integrated as

a silicon die [16]. Therefore, a co-design approach can be achieved in an SOP design

environment, thereby leading to better performance.

Despite the advantages, the use of embedded passive components for the design

of RF circuits in SOP is considered bulky and risky. This can be attributed to

the low tolerance for variations, the lower yield of the embedded components, and

the increased cost of the substrate. The new SOP-based technologies are not yet

optimized and well-characterized due to the absence of adequate technology data.

Problematically, reference flows are lacking, concept feasibility is time-consuming and

often inaccurate, and collaboration across the design chain is poor.

To improve time-to-market via design cycle reduction, SOP design has to move

from an expert methodology to a mainstream design methodology - one that

is automated, integrated, reliable, and repeatable.

For example, the return loss (S11) variations for a measured set of 50 samples of

an embedded RF bandpass filter are shown in Figure 91. The bandpass filters were

implemented using organic substrate with multi-layer LCP technology. The filter

circuit was designed for a center frequency of 2.4 GHz,and 1 dB bandwidth of 100

MHz. From the figure, it can be seen that the narrow passband varies significantly in

different samples due to manufacturing variations. Therefore, in volume manufactur-

ing, it is critical to estimate and optimize the statistical metrics of the performance

measures.

The aforementioned discussion summarizes the need for layout scaling techniques

and statistical manufacturability analysis for fast design closure and high-volume

manufacturability on emerging SOP-based packaging technologies. The focus of this

dissertation is depicted by the shaded boxes in the Figure 5.
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Figure 4. Return loss (S11) variations of an embedded RF bandpass filter.

Figure 5. Design stages of an RF circuit; the focus areas of the dissertation have been
shown by shaded boxes.
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1.2 Need for Layout Scaling Methods in RF Design

Layout-level circuit scaling is the process of extracting network/layout-level parame-

ters for a component/circuit from an existing set of different design specifications. It

is common in digital designs and is being used increasingly in low-frequency analog

circuits. Clearly, the key to fast design closure of digital ICs lies, partially, in the mod-

ular framework of the SoC CAD tools. A typical digital IC design flow proceeds from

concept to cell-based logic design, cell-based logic synthesis, clock insertion, floor-

planning, routing, design-for-manufacturability checking, design-rule checking and

final tape-out [20]. Design changes in such a cell-based modular framework are time-

efficient. The designer needs to specify the changes at a high/behavioral level of

abstraction. The corresponding modifications in the low-level circuit blocks are real-

ized through parameterized functional links between different design levels.

Current RF design tools, however, lack the capability of parametric cell approach

implemented in a CAD framework. This can be attributed of the complexity of

physical effects that needs to be considered while simulating a SOP-based RF module

[9]. A few such critical parameters can be substrate coupling, near-field coupling, far-

field coupling, component parasitics, large process tolerances and board warpage [9],

[21]. Most of the aforementioned parameters are not encountered in silicon-based

digital technologies, thereby facilitating a cell-based design flow.

The design emphasis of most wireless products is to provide the smallest form

factor solution (hence, the cheapest solution) with the maximum functionality. SOP-

based RF modules have emerged as a high-performance solution for designing multi-

band wireless systems. Clearly, design cycle time must be reduced if cost-effective

fabrication of RF modules on such technologies is to be achieved.

1.2.1 Simulation/optimization using circuit solvers

Standard circuit simulators use the description of a circuit in terms of lumped circuit

elements and coupled (transmission) lines to account for distributed effects and/or
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directly rely on S-parameter (or, equivalently Y or Z-parameter) descriptions of the

different parts of the circuit. The circuit simulator approach, in general, relies on a

divide-and-conquer technique in which the circuit is subdivided into separate parts

for which models exist or can be calculated [22], [23], [24]. Kirchoff’s current and/or

voltage laws are then applied to obtain the overall circuit equations and solutions.

The advantages of the circuit simulator approach is clear; this approach is fast and,

therefore, can be easily integrated with advanced network optimization techniques.

However, for proper design of microwave, RF, and high-speed digital circuits, it is

necessary to take into account the electromagnetic effects of the actual layout. When

considering the more general class of microwave circuits, there is even less evidence

of the need to distinguish between the circuit description and EM behavior because

physical effects are often an integrated part of the desired circuit performance [25].

1.2.2 Simulation/optimization using EM solvers

Based on the reasoning in Section 1.2.1, more reliance on EM solvers for RF circuit

design and optimization purposes would seem natural. This straightforward thought,

however, has multiple disadvantages. Despite phenomenal progress in the develop-

ment of field solvers and the availability of powerful computing systems, field solvers

nevertheless continue to be slow in comparison with circuit solvers. This slowness is

detrimental to their use for optimization, tuning, yield analysis, etc., which require

a large number of circuit evaluations. Additionally, lumped-element values derived

from EM analysis turn out to be quite sensitive to the parameters that control the

EM simulation, in particular, the size of mesh cells [9]. For example, the layout of

a second order bandpass filter with via pads and thruholes in SONNET is shown in

Figure 3. To accurately capture the effects of the vias, the maximum size of the mesh

cells can, at best, be a fraction of the via features. In case of uniform size of mesh

cells in the layout, this can lead to a large number of mesh cells, and therefore, long

simulation time.
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EM solvers are based on different numerical approximation techniques for solving

the Maxwell’s equations to solve for fields, voltages and/or currents. Quite expectedly,

such spatial/temporal discretization-based solution techniques are time and memory

intensive. Unlike SoC design flows, SOP-based RF design involves significant amounts

of EM simulations to analyze the physical effects of the layout. A full factorial MC

analysis in a full-wave EM solver can, therefore, require impractical amounts of CPU

time and memory resources for even simple structures.

In summary, the EM/circuit analysis and optimization tradeoff problem can be

viewed as follows; EM field simulators offer highly accurate results, but this accuracy

most often comes with high memory requirements and slow performance in terms of

CPU time. On the other hand, conventional circuit simulators are fast and highly

flexible but do not account for all the field effects, and their accuracy hinges strongly

on the availability of models. The question naturally arises as to how we can

properly combine field analysis and circuit analysis in such a way that their

respective advantages are optimally utilized in terms of reduced design

cycle time in combination with acceptable performance and manufacturing

yield.

1.2.3 EM-circuit co-simulation

A wide array of literature exists on the combination of field and circuit analysis for

optimization purposes [26], [27], [28]. An early contribution to the combination of

field and circuit analysis can be found in [29]. Here, a time-domain simulator is

based on a spatial network method (SNM). This work emphasizes on the inclusion

on nonlinear elements but the focus is not design scaling of circuit layouts.

Optimization of silicon-based RF inductors based on geometric programming has

been described by[30]. However, this method is limited by the use of analytical

expressions for inductor parameters. This is because it is difficult to extract accurate,

closed-form expressions for inductor parameters in multi-layer substrates. Mapping
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Figure 6. Illustration of the concept of space mapping.

of electrical parameters of inductors to layout parameters using polynomial functions

have been shown in [31], [32]. The technique provides good interpolation for single

or multiple parameter variations for weakly non-linear data. However, this method

does not provide convergence to a unique solution in a multi-variable optimization

environment.

Efficient EM optimization using space mapping (SM) is described in [33]. The SM-

based algorithm is shown in Figure 6, where a linear mapping is developed between

the parameter space of the coarse model and that of the fine model. The coarse

model is obtained from extensive, circuit-based simulation data while the fine model is

obtained from limited, time-consuming, but accurate EM simulation data. However,

these methods are ideally suited for optimizing structures once it has been generated.

Artificial neural network (ANN) based modeling techniques have also been applied

for the optimization of linear and nonlinear circuits [34], [35], [36]. Recent work

has reported the application of ANN-based coarse models for design optimization

of compact RF passive circuits on multi-layer substrates like low temperature co-

fired ceramic (LTCC) technology [37], [38]. However, the focus of these works is on

time-efficient layout optimization and not layout-level scaling.
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Figure 7. SONNET model of a spiral inductor in multi-layer substrate.

1.2.4 Circuit augmentation for broadband modeling and circuit tuning

As the RF system design complexity increases, it is imperative that the designer have

access to accurate models for passive components and interconnects based on network

analyzer measurement data or electromagnetic field solver results. Traditionally, an

electrical model is created out of ideal circuit elements to fit the data [39].

Each element of the simple circuit model, if properly constructed, can represent

meaningful electrical characteristics of the parameter being modeled. In other words,

a “physics-based” model provides the designer with valuable insight into the object

being modeled. However, this method has its set of disadvantages. It is very difficult

and time-consuming to develop a physical model [40]; the task becomes increasingly

difficult with frequency. Also, most of the physics-based modeling approaches provide

“nominal” values for the model parameters, i.e. around the frequency where the

model is extracted, and therefore, is unsuitable for accurate and broadband circuit-

level optimization.

To illustrate the need for broadband modeling, a microstrip spiral inductor, shown

in Figure 7, was simulated in SONNET EM solver. The values of the lumped circuit

model parameters were extracted at a particular frequency. The circuit model for

the inductor is shown in Figure 8. The difference in the frequency responses from
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Figure 8. Multi-section lumped element model of a spiral inductor embedded in LCP
substrate.

Figure 9. S-parameters from the EM model(black triangles) and the circuit model (red
circles).

the EM simulation and that from the circuit model is shown in Figure 9. Clearly,

the difference in the S-parameters needs to be minimized. Using ad-hoc modeling

approaches, a large amount of trial and error may be required to find the location

and value of the additional elements, rendering the procedure intractable for large

(n > 20) number of components.

Over the last decade, there has been great interest in macromodeling techniques

to fit frequency-domain data. The conceptual representation of the macromodeling

approach is shown in Figure 10. The macromodeling technique aims to only match

the terminal characteristics of the device. In common macromodeling approaches,

the data is typically fit to a set of basis functions in the frequency domain [41],

[42]. The methods vary as to how the locations of the basis functions are chosen

and how their coefficients are determined. Usually, the methods implement some
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Figure 10. Black-box macromodel for an N-port device.

form of least-squares fitting of the coefficients of the data. From the perspective of

broadband modeling for design optimization, these approaches have a number of dis-

advantages. Firstly, the non-physical nature of these models relegates the use of these

approaches to applications that only require the terminal characteristics of the de-

vices being modeled. In addition, the presence of controlled sources and non-physical

values of passives in the macromodeled data cannot be utilized to correlate the model

parameters with the layout parameters. Also, there are a number of constraints these

“black-box” models must satisfy: passivity, stability and causality. Of these, passivity

is most difficult to guarantee [43], [44], [45].

Clearly, it is necessary to develop an algorithm that can retain the physical nature

of the circuit model while providing some augmenting network to minimize the error

at higher frequencies. The algorithm in [46] considers such an approach where the

circuit model is augmented with a black-box (or purely mathematical) model so as

to match the y-parameters of the circuit model with the given measured parameters.

It is based on finding a modified network by curve-fitting the difference between the

measured parameters and that of an initial circuit model. One of the drawbacks of

this approach is that the augmented network is restricted in its placement, only to the

terminals of the circuit model. From the perspective of high-frequency/broadband

matching, this may not necessarily be the optimum solution. Also, as with any black-

box type model, it can become a challenge to ensure passivity. A modification of this

approach has been proposed in [47]. However, this approach stills requires the use of
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synthesis methods, such as vector-fitting, or other network generation techniques to

develop SPICE-equivalent circuits for the augmented elements from their impedance

profiles.

Therefore, an automated broadband circuit modeling technique without the draw-

backs of “macromodeling” approaches is critical to the development of an efficient

SOP-based RF CAD framework.

1.3 Need for DFM (Design-for-Manufacturability) methods
in RF design

During manufacturing, process variations will inevitably cause design parameters,

such as component values, to waver from their nominal values. As a result, the

manufactured circuits may no longer meet some performance specifications, such the

group delay, gain and bandwidth (in case of a filter, for e.g.), that it was designed to

satisfy.

The procedure of design-for-manufacturability (DFM) attempts to select the nom-

inal values of design parameters so as to ensure that the behavior of the circuit remains

within specifications, with the greatest probability. In other words, the aim of design

centering is to ensure that the manufacturing yield is maximized. This problem has

been extensively researched in the domain of digital IC technology. For IC design

flows, successful design verification translates to optimum design yield. This can be

attributed to the presence of a mature design and manufacturing infrastructure for

digital IC/SOC manufacturers. The IC design infrastructure consists of pre-

dictive device models, complete digital CMOS characterization, statistical

and scalable compact models that are hardware-verified, and a robust,

parametric, and hierarchical design automation environment [48],[49].

Previous approaches to solving the design centering problem have traditionally

taken two routes:
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1.3.1 The statistical approach

In electrical engineering, the drive for high yield and high performance have prompted

researchers to develop many statistical methodologies. These studies were predom-

inantly aimed for chip or component level yield estimation, and statistical circuit

optimization. Although relevant contributions will be referred in the subsequent sec-

tions, it is suitable to categorize this effort into three main areas. In this section

worst-case, Monte Carlo, and design of experiments (DOE) principles are discussed.

Almost all statistical methods can be considered as improvements upon the combi-

nations of these principles.

1.3.1.1 Worst case Analysis

The classical approach to account for process and functional uncertainties in a cir-

cuit/module is the worst-case analysis. After the worst-case combinations of the

design parameters are verified, all products are expected to meet the specifications

[50]. However, this conservative design approach has major limitations [51]. First,

it requires an initial guess of the worst-case scenario. Full factorial simulations to

find the worst-case point is inefficient. Furthermore, with a large number of perfor-

mance measures, finding the worst-case parameter combination for each performance

measure becomes very difficult. Also, the worst-case combination, where all design

parameters are at their extremes, has very low probability of occurrence. Therefore,

designs that are based on the worst-case analysis may underestimate the performance

and increase the design effort.

1.3.1.2 Monte Carlo Analysis

The most prevalent methodology in the manufacturing community to estimate the

parametric yield of a design is the Monte Carlo (MC) analysis [12]. This technique de-

pends on simulating a large number of design parameter combinations for generating

the performance statistics. The values of the design parameters are generated from

random variables with associated probability distributions and correlations. Then,
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the yield is approximated as the ratio of the number of acceptable instances to the

total number of Monte Carlo runs. This can be mathematically formulated as

Y =

∫ ∞
−∞

z(x)f(x)dx, (1)

where z(x)=1 if all design values (x) satisfy the specifications, and z(x)=0 otherwise.

In Equation 1, f(x) is the joint probability density function of design parameters.

Then the yield can be estimated as:

Ŷ =
1

N

N∑
i=1

z(xi), (2)

and

Ŷ =
1

N

N∑
i=1

z(xi)
f(xi)

h(xi)
, (3)

Depending on the complexity of the simulation model, and the number of process and

operational variables, the “simulation space” of the the Monte Carlo method may

become prohibitively large. This has led to the development of different sampling

methods in the field of statistical analysis to optimize the error without exponentially

increasing the number of simulations [52], [53], [54], [55]. An excellent survey of these

sampling algorithms is provided in [56].

MC being a brute force method, is advantageous when the statistical parameter

distributions and correlations between them are too complicated to represent as an-

alytic functions [57]. This is the case in IC manufacturing, where the prime circuit

parameters are highly correlated[58]. However, such simulations based on random

parameter variations cannot reveal the methods for increasing yield. This disserta-

tion focuses on optimizing the a set of design parameters and the yield for embedded

RF passive circuits. Since the process parameters have been shown to be indepen-

dent [56], more systematic design of experiment principles are used for the statistical

analysis.
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1.3.1.3 Design of experiments

Design of experiments method is a sequence of tests, where input parameters are

varied in a planned manner [57], [59].

Using DOE, the circuit performance can be represented as empirical functions

of the design parameters. To obtain the empirical functions, a series of planned

experiments (simulations) can be performed with different levels of the input design

parameters. Then, Monte Carlo instances can be applied to these surrogate functions

to generate the performance statistics [54], [60].

In summary, DOE principles have emerged as a powerful alternative to worst case

analysis and MC Analysis. Hence, the statistical analysis for embedded RF circuits

are based on planned DOE arrays without resorting to MC type of simulations.

1.3.2 The geometrical approach

The procedure of design centering attempts to select the nominal values of design

parameters so as to ensure, with the greatest probability, that the behavior of a

manufactured circuit remains within the desired specifications. In this regards, the

geometric approach aims at approximating the feasible region (where the specifica-

tions are satisfied) with the largest inscribed geometrical hypershape. The dimensions

of the hypershape determines the nominal values of the design parameters. For ex-

ample, the feasible region in the space of design parameters, can be approximated

by a known geometrical body, such as a polytope or an ellipsoid. The center of this

body is then approximated, and is taken to be the design center. Such approaches

frequently assume that the feasible region is convex and bounded. For example, the

ellipsoidal approximation of feasible design constraint region has been illustrated in

Figure 11.

These methods commonly suffer from the following drawbacks:

(a) Limitations associated with the types of geometric bodies that are typically
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Figure 11. Ellipsoidal approximation of feasible design constraint region.

used to approximate the feasible region:

- In the case of ellipsoidal approximation as in [61], [62], certain nonsym-

metric convex bodies cannot be approximated accurately. This is because

an ellipsoid is symmetric about any hyperplane passing through its center,

and is inherently incapable of producing a good approximation to a body

that has a less symmetric structure.

- A polytope can provide a better approximation to a convex body than

an ellipsoid, regardless of its symmetry. However, finding the center of a

polytope is computationally complex [63], [64] and cannot be carried out

in a reasonable time.

The simplicial approximation algorithm [65] attempts to inscribe the largest hy-

persphere in the polytope, and takes its center as the design center. However,

as pointed out in [65] itself, in the case of elongated bodies, such as a rectangle

with a highly skewed aspect ratio, it would be more appropriate to inscribe a

ellipsoid rather than a hypersphere [65]. In any case, the simplicial approxima-

tion procedure essentially amounts to approximating the feasible region by a

polytope, and then approximating the polytope by a hypersphere or ellipsoid.

Hence, it suffers from the drawbacks of ellipsoidal approximation listed above.
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(b) As pointed out above, the methods in [63],[65] essentially approximate the fea-

sible region by means of an ellipsoid, and take the center of that ellipsoid to

be the design center, regardless of the probability distributions that define the

variations in the design parameters.

(c) Real feasible regions are seldom convex. While in many cases, they are “nearly

convex”, there are documented cases where the feasible region is not very well-

behaved [66], [67],[68], leading to nonrealistic and poor yield numbers [69], [70].

1.3.3 Other conventional methods

Studies based on parametric sampling have been shown in [71]. This method permits

the incorporation of realistic manufacturing constraints such as tuning, correlation,

and end-of-life specifications. In this methodology, a database containing the results

of a few hundred network analyses is first constructed. However, the method is

limited by its initial requirement of this large database, which can be computationally

prohibitive for RF designs on emerging technologies. Further, generation of large

datasets of electromagnetic data (crucial for analysis of complex RF designs) can be

time and memory-intensive, thereby relegating the use of this methodology to final

verification.

Parasitic-aware, post-optimization design centering for RF integrated circuits based

on simulated annealing (SA)[72] reduces iterations in design optimization. However,

this work does not focus on diagnosis. In addition, SA has the limitation of local min-

ima traps and numerous iterations are required to find a set of acceptable solutions.

Clearly, the focus of most of the prior work has been design centering using circuit

parameters and not layout-level statistical analysis and diagnosis of RF designs.
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1.4 Emerging technologies for SOP applications

Multi-layer packaging technologies have emerged as high performance alternatives to

conventional substrate and surface-mount technologies for system integration of fu-

ture multi-band wireless systems. A step towards reducing design cycle time

and improving design yields on such technologies would require efficient

algorithms for the circuit scaling, diagnosis and yield optimization of em-

bedded RF passive and active modules/components.

In this dissertation, the researched layout sizing and DFM methodologies are

validated on passive RF circuits with embedded inductors and capacitors in LCP

dielectric material which is a laminate type, low-temperature, large-area and organic

process. It should be noted, however, that the proposed methodology is generic to any

mainstream packaging/manufacturing technology (capable of batch manufacturing

RF circuits). LCP has been used in this work due to its excellent characteristics

in terms of (a) circuit performance and (b) packaging cost/reliability, the two key

requirements for cost-effective, high-performance SOP applications.

1.4.1 LCP-based organic substrate

In the recent past, laminate type organic processes have demonstrated LC passives

with high Qs (30 ∼ 300) that remain constant over a broad range of frequencies [9],

[10]. High performance RF modules have been designed by selectively embedding

high Q passives in the organic substrate, while using IC technologies for the design of

active devices and biasing circuitry. In this thesis, LCP-based dielectric substrate has

been used to validate the proposed layout scaling and DFM methodologies. LCP is a

low-loss (tanδ = 0.002), low temperature (< 200◦C), laminate type organic thermo-

plastic that is compatible with PWB infrastructure. The advantages of using LCP

substrate for radio frequency (RF) functionalities are as follows:

(1) The process technology allows the integration of high Q ( 100), high-density
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Figure 12. Copper cladded flexible sheet of LCP material.

lumped and distributed passive components [9].

(2) The material has low loss tangent (tanδ = 0.02), enabling the design of passives

with high quality factors [10].

(3) The quality factor of the passives can be scaled over a bandwidth of DC to 100

GHz thereby enabling broadband, low loss module designs [42], [45].

(4) LCP provides for large volume manufacturability, leading to low cost per com-

ponent. This can be attributed to the large-area processing capability of LCP-

based substrate panels (can be as large as 18 in X 24 in) [1], [73].

(5) In the absence of supporting package layers, LCP material, inherently, is a

flexible material, making it ideally suited for conformal and/or flex circuit ap-

plications [74], [2].

(6) The organo-polymeric composition of the LCP material makes it suitable for

low-temperature processing. In particular, the temperature cyles of LCP-based

processing is compatible with printed wiring board (PWB) infrastructure.

(7) LCP has low coefficient of thermal expansion (CTE) that can be engineered to

match metals or semiconductors.
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1.5 Completed Research

The objective of this dissertation is the development of accurate and efficient meth-

ods for automated layout-level sizing/tuning, statistical modeling for parametric yield

optimization, and layout-level diagnosis of RF passive circuits. Different methodolo-

gies have been developed to size RF circuits at the layout level without resorting

to exhaustive iterations of EM simulations. A broadband modeling technique, and

nonlinear mapping based on artificial neural networks (ANNs) for the generation of

passive libraries have been demonstrated. In addition, a multi-domain design-for-

manufacturability for embedded RF passive circuits have been developed. Broadly,

the DFM methodology is based on design of experiments, statistical circuit modeling,

parametric yield optimization and probabilistic diagnosis techniques. The methodolo-

gies have been correlated and verified with full-wave EM simulations and measurement

results.

The following research has been completed in this dissertation:

(a) Circuit augmentation for broadband modeling and tuning

A circuit augmentation technique for broadband modeling of component li-

braries, consisting of embedded passive circuits has been demonstrated. The

circuit augmentation technique is based on a previously developed circuit parti-

tioning technique, a modified nodal analysis formulation and a linear optimiza-

tion framework. The augmentation technique has been verified for broadband

modeling of spiral inductors and planar capacitors.

(b) Library development of RF components:

A layout-level library developement technique for embedded inductors/capacitors

in multi-layer substrate has been proposed. The methodology employs artifi-

cial neural networks to develop a neuro-model for the embedded passives. In

addition, an adaptive sampling algorithm is implemented to reduce the size of
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design library that is required for neural network training and validation. The

results from the proposed methodology have been validated on measured and

simulated frequency response data.

(c) Layout-level scaling of RF circuits:

A layout-level circuit scaling technique for RF passive circuits with quasi-

lumped embedded inductors and capacitors has been proposed. The proposed

approach is based on a combination of layout segmentation, augmentation,

broadband lumped circuit modeling, nonlinear mapping, artificial neural net-

work (ANN)-based methods, and circuit-level optimization. The methodology

has been validated on measured and simulated frequency response data of RF

bandpass filters. The circuit augmentation technique has also been applied for

the tuning of bandpass filters. Comparisons have been performed with tun-

ing using commercial circuit simulators, employing nonlinear optimization, to

demonstrate the advantages of the proposed technique, that is based on a linear

optimization framework.

(d) A scaling-based approach for fault diagnosis:

An extension of the circuit sizing technique to layout-level diagnosis of pro-

totype circuits has been proposed. The fabricated designs require diagnosis

of variations in performance metrics such as center frequency, bandwidth and

transmission zeros that occurs due to process variations. The design scaling

methodology was applied to map the variations in electrical parameters to com-

ponent geometries. The results predict the possible variations in physical pa-

rameters that have been confirmed with measurements of the fabricated devices.

(e) DFM methodology for RF passive circuits

This dissertation presents a layout-level, multi-domain DFM methodology and

yield optimization technique for embedded RF circuits for SOP-based wireless
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applications. The passive portion of RF circuits is composed of quasi-lumped

embedded inductors and capacitors in low loss, multi-layer substrate. The pro-

posed methodology consists of stochastic circuit/EM modeling, layout-level sta-

tistical diagnosis and parametric yield optimization.

The proposed statistical diagnosis technique is based on layout segmenta-

tion, lumped element modeling, sensitivity analysis and extraction of probabil-

ity density function using convolution methods. The statistical analysis takes

into account the effect of the thermo-mechanical stress/warpage effects and the

process variations that are incurred in batch fabrication. Yield enhancement

methods based on joint probability distribution and constraint-based convex

programming have also been presented. The results show good correlation with

measurement and EM simulation data.

1.6 Dissertation Outline

The focus areas of this dissertation, in the perspective of an “yield-aware” efficient RF

CAD framework has been shown in Figure 5. The rest of the dissertation is organized

as follows. In Chapter 2, a circuit augmentation technique for broadband modeling of

design libraries has been presented. Layout-level circuit sizing techniques for RF pas-

sive components and circuits with quasi-lumped embedded inductors and capacitors

have been presented in Chapter 3. The augmentation methodology is extended to

develop layout-level component sizing/tuning based on a linear optimization scheme.

A multi-domain statistical analysis methodology to develop a stochastic DFM frame-

work has been presented in Chapter 4. In Chapter 5, the DFM methodology with

constraint-based yield optimization have been detailed. Finally, the conclusions and

the scope of future work have been discussed in Chapter 6.
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CHAPTER 2

BROADBAND MODEL DEVELOPMENT FOR
EMBEDDED RF PASSIVES

As the design complexity of the RF system enhances, it is imperative that the designer

have access to accurate models for passive components and interconnects based on

network analyzer measurement data or EM simulations. As explained in Chapter

1, simplistic lumped element models matches measurement/EM data only across a

narrow band of frequencies. Therefore, design optimizations depends on multiple

iterations of EM simulations, as the simplistic circuit models do not take into account,

the effect of parasitics and EM coupling. Fast design closure, therefore, is difficult to

meet. The focus of this chapter, as shown in Figure 13 is the efficient and automatic

generation of broadband models to aid in the development of passive models for

component library development and circuit-level design scaling methodologies.

Current RF design flows undergo extensive manual interventions and multiple it-

erations of EM/circuit simulations to meet the design specifications. Such a design

approach will satisfy realistic time-lines for small designs (for example, less than 10

passive components). However, with the advent of multi-band architectures,

manual RF front-end design is getting time-consuming, emphasizing the

need for an automated CAD framework for broadband model generation,

parameterized library development, and “performance-aware” layout op-

timization. The reasons for such requirements for the CAD framework has been

explained as follows.

Firstly, for example, the current approach to optimize an RF layout is to perform

multiple EM simulations with multiple incremental modifications in the physical pa-

rameters to meet the specifications. Each of these simulations is expensive, both in

time and memory. Furthermore, the designer cannot rely on simplistic circuit models
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Figure 13. RF Design flow; the shaded box represents the focus of this chapter.

on this purpose, the former being inherently narrow-band in nature. Clearly, there is

a need for a modeling technique that should meet two objectives:

(a) Broad-band accuracy of circuit-based models for parametric library develop-

ment

(b) Optimization at user-defined frequencies for circuit-based component tuning

Secondly, the designer needs to tune the physical parameters of the individual passive

components so that the S/Y/Z parameters of the components meet the specifications

at the design frequencies. A hit-and-trial approach to this problem can lead to pro-

hibitively large time for multi-band designs (for example, with more than 25 compo-

nents). A parametric design library can help extract the layout parameters based on

the S/Y/Z parameters of the components.

Thirdly, when a designer connects multiple Rs, Ls and Cs to form an entire layout,

substantial deviation is seen in the response from the design specifications. This is

due to the additional inductance and parasitic capacitance of the transmission lines

used to connect the circuit components. Unlike the broadband modeling requirement
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Figure 14. Comparison with recent approaches to broad-band curve-fitting and param-
eterization.

for library development, the layout of the complete circuit needs to meet specifica-

tions, only at certain discrete and/or narrow band(s) of frequencies. An efficient,

circuit-based tuning technique to optimize the response of the design at the desired

frequencies will lead to fast design closure, prior to final EM simulation(s) for the pur-

pose of verification. This chapter focusses on the development of circuit augmentation

techniques for broadband modeling required for component library development and

layout-lvele circuit scaling and sizing.

An efficient and automated algorithm has been presented in this chapter to identify

an augmenting equivalent circuit for improving the accuracy of the simple circuit

model at higher frequencies. Unlike the work presented in [47], this algorithm is not

restricted in its placement of new circuit elements at the ports of the circuit model.

On the other hand, it is possible to identify and insert frequency-dependent elements

of both types, series and shunt, at any arbitrary location in the circuit model, based

on the requirements of the data being modeled. To match the model’s response to a

measured set of y-parameters, a linear least-squares formulation was used to extract

the values of the augmented elements. The algorithm, presented in this work does
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not resort to nonlinear optimization. In addition, different augmentation elements

that are tested for convergence with the EM/measurement data are chosen from a

pre-designed SPICE circuit library. This is different from the approach presented in

[47], where SPICE-equivalent circuits were synthesized from the frequency-dependent

impedance profiles of the augmented elements. Therefore, in this work, passivity and

causality check on the final circuit model is not required. The method is very fast

as the optimum circuit elements are chosen using a linear least-squares optimization

technique.

2.1 Experiment with BEMP macromodeling

The objective in this part of the dissertation is to develop a circuit model that captures

the difference between the simple lumped circuit model and the measurement data

over a wide frequency range. A straightforward approach is to use the macromdeling

methodology to find the rational function approximations (which can be converted

to SPICE-compatible netlists) of the augmented elements so that the overall model

matches the measurement data. Mathematically, this problem can be formulated

(with reference to Figure 16) as follows:

Some of the possible types of connections to the augmented network have been

shown in Figure 15. To keep the test-case simple in topology, a parallel-only aug-

mentation was chosen. To extract the difference in the Y -parameters (i.e. EM and

circuit model), a macromodeling technique has been applied to the test case in this

section, and the vector-fitting methodology in the following section. Let us consider

the circuit model (CM) in Figure 16, and let an augmented model (AM) be connected

in parallel, as shown in the figure.

The goal is to find the network representation of the AM such that the overall

circuit in Figure 16 accurately matches the EM/measurement data. Mathematically,
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Figure 15. Different topologies for circuit augmentation.

Figure 16. Shunt augmentation and its equivalent Π-model connection.

30



for the shunt topology, it is known that, for a particular frequency ωn,

Y model(ωn) + Y aug(ωn) = Y meas(ωn). (4)

In addition, from the theory of network analysis, it is known that Y aug can be rep-

resented as a Π-model shown in Figure 16. The corresponding Y-parameters of the

Π-model is related to the Y aug as shown

Y aug(ωn) =

 Ya(ωn) + Yc(ωn) − Yc(ωn)

−Yc(ωn) Yb(ωn) + Yc(ωn)

 . (5)

Equation 4 can, therefore, be rewritten as Y mod
11 Y mod

12

Y mod
21 Y mod

22


ωk

+

 Ya + Yc − Yc

− Yc Yb + Yc


ωk

=

 Y meas
11 Y meas

12

Y meas
21 Y meas

22


ωk

. (6)

Here the relation has been shown for a discrete frequency point ωk. The same relation

holds at other frequencies as well. Equating (6), element-by-element, it can be shown

that Ya, Yb, and Yc can be solved, for each frequency point ωk, as

Ya(ωn) = [Y meas
11 (ωn)− Y mod

11 (ωn)] + [Y meas
12 (ωn)− Y mod

12 (ωn)], (7)

Yb(ωn) = [Y meas
22 (ωn)− Y mod

22 (ωn)] + [Y meas
12 (ωn)− Y mod

12 (ωn)], (8)

Yc(ωn) = [Y mod
12 (ωn)− Y meas

12 (ωn)]. (9)

An efficient, broadband macromodeling tool BEMP [43] that was developed at Geor-

gia Tech was used to macromodel the difference between the Y -parameters of the EM

data and the model data, for the inductor test-case shown in Figure 17. The results

of the macromodeling has been shown in Figure 18. A part of the synthesized SPICE

netlist that accurately macromodels the difference between the EM data and the cir-

cuit data has been shown in Figure 19. It can be seen in Figure 19, that the total

number of circuit elements is 82, that includes 52 RLGC-type elements, 20 controlled

sources and 10 dummy elements. The initial, lumped-element, physical model, there-

fore, degenerates to a non-physical macromodel. Such a macromodel is not suitable
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Figure 17. (Left):Layout of a spiral inductor in SONNET; (Right): Two-port lumped
element model for the inductor.

Figure 18. Results obtained from the BEMP macromodeling tool.
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Figure 19. A portion of the SPICE netlist, generated by the BEMP macromodeling
tool.
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Figure 20. Real portion of the eigenvalues of the augmentation matrix.

for circuit-based component sizing. In addition, such a “black-box” approach has to

deal with the problem of passivity. Passivity is one of the most difficult conditions

to enforce, as its definition translates into complicated mathematical operations. By

definition, a passive network cannot generate more energy than it absorbs, and thus,

will be stable regardless of its terminations. In contrast, a stable but non-passive

network may become unstable given particular terminations [41]. Using Y (or other

immittance) parameters, a network is passive at a specific frequency s = jω if [43]

eig

(
Y (s) + Y H(s)

2

)
≥ 0, (10)

where Y H is the hermitian of Y . To illustrate the passivity problem, the eigenvalues

of the macromodeled Y-parameters have been shown in Figure 20. For 2×2 matrices,

passivity is guaranteed if Re(eigenvalues) ≥ 0, where Re represents the real part.

For the test-case in Figure 20, the violation of passivity around 50 MHz can be

emphasized in Figure 21.

Therefore, an augmentation approach with purely physical components, will au-

tomatically guarantee passivity, with some possible tradeoff in accuracy. In addition,
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Figure 21. Violation of passivity (due to the positive eigenvalues) at near-DC frequen-
cies, by the augmentation network.

stability and causality will also be satisfied with passive elements.

2.2 Experiment with vector fitting

Vector fitting is a powerful methodology for the fitting of measured or calculated

frequency domain parameters [75]. The technique consists of replacing a set of starting

poles with an improved set of poles via a scaling procedure [75]. To provide with a brief

overview of the vector fitting technique, consider the rational function approximation

f(s) ≈
N∑
n=1

cn
s− an

+ d+ sh, (11)

where the residues cn, and the poles an are either real quantities or come in complex

conjugate pairs, while d and h are real numbers. The underlying problem is to

estimate all the coefficients in Equation 11 so that a least-squares estimation of f(s)

is obtained over a given frequency interval. It is to be noted that Equation 11 is a

nonlinear equation in terms of the unknowns, because the unknowns an appear in

the denominator. Vector fitting solves the problem in 11 sequentially, as a linear
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Figure 22. Magnitude correlation for Ya, Yb, and Yc, between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 6).

problem in two stages, both times with known poles. The details of the pole and

residue identification methodology have been detailed in Appendix C.

Vector-fitting technique was applied to each of Ya, Yb and Yc, for the test case,

discussed in the previous section. The purpose, as explained before, is to efficiently

develop rational function approximation (and hence SPICE-equivalent circuits) for

the augmented elements represent by the Π-network. The vector-fitting application

is available as a free software [76]. The source code was appropriately modified and

used in this work. The results (both magnitude and phase) of vector fitting for Ya, Yb

and Yc for different model orders (N=6,15,30) have been shown in Figures 22 through

27.

Clearly, it can be seen from the figures that with the increase in the model order,

there is an increase in the accuracy of the vector fitting technique. This can be

inferred from the improved correlation between the results of vector-fitting, and the

difference between the EM and modeled data. However, such large values (N=15,

30) of the order of rational function translate to large number of residues and poles,
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Figure 23. Phase correlation for Ya, Yb, and Yc between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 6).

Figure 24. Magnitude correlation for Ya, Yb, and Yc between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 15).
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Figure 25. Phase correlation for Ya, Yb, and Yc between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 15).

Figure 26. Magnitude correlation for Ya, Yb, and Yc between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 30).
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Figure 27. Phase correlation for Ya, Yb, and Yc between the difference of circuit-EM
parameters, and that obtained from vector fitting (model order = 30).

which, in turn, leads to the addition of large SPICE-equivalent circuits. Such an

approach is not, therefore, suitable for physical model development and component

sizing, since the physical intuition of the lumped element model is lost in the “black-

box” curve-fitting process.

The disadvantages of BEMP-based macromodeling and vector-fitting, in the con-

text of RF design, can be listed as follows:

(a) Lack of “physical intuition” into the circuit/component being modeled.

(b) Generation of large (greater than 50 elements) non-physical netlists, making

mapping intractable.

(c) Strong dependence of accuracy on the model order.

(d) Requirement of additional processing for the conservation of passivity.

Clearly, there is a need for an efficient and accurate broadband modeling methodology

for fast design closure of RF modules. The mathematical approach to the broadband
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modeling methodology has been detailed in the following sections.

2.3 Mathematical formulation of the augmentation approach

The mathematical framework for the augmentation methodology has been presented

in this section. The basic approach to circuit augmentation is similar to that shown in

[47], [77]. However, the proposed method differs in the way the augmented elements

are synthesized. To describe the methodology, it is important to recollect that simple

lumped circuit models (S-LCMs) are generally available to approximate the multi-

port behavior of a device or a network. The model parameters are extracted at a

specified frequency. Therefore, quite expectedly, good correlation is shown by the

S-LCM with the EM data over a certain range around the nominal frequency(the

nominal frequency being the one where the parameter extraction was performed).

However, in most cases, the frequency response of the S-LCM is not acceptable over

broad ranges of frequencies. To improve the S-LCM, a set of frequency dependent

impedances zaug(ω), were added at arbitrary locations of the S-LCM. Here, there was

no initial knowledge of the locations where these impedances need to be added. For

an electrical network, the modified nodal analysis (MNA) relation, in its simplest

form, is given by

Ax = Bv, (12)

where AεCN×N is the MNA matrix, BεRN×m is a binary selector matrix which maps

the port voltages into the MNA space, vεCN×1 contains the voltage sources connected

to the terminals, and xεCN×1 is a vector containing the unknown variables of the MNA

space. From this, the Y -parameters of the m-port equivalent circuit can be written

as

Y = BtA−1B. (13)

Let the measured y-parameters of the actual device be represented by Ymeas. The

goal is to modify the S-LCM such that it the matches the measurement/EM data.
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The augmenting elements are chosen from a predesigned library of shunt and series

elements. Different elements are added in turn till the desired response is met. Even

though, compared to [47], the iterations can be larger (but of the same order, stability

and passivity of the final circuit is enforced by the use of constraint-based calcula-

tion of the values of the augmented elements. Such a constraint-driven calculation of

impedances/admittances may, in principle, lead to slight inaccuracies in the network

responses, due to additional conditions on the element values for overall error conver-

gence of the updated network. But the focus in this work is the efficient development

of first-cut broadband models in minimum computational steps that are encountered

in traditional macromodeling techniques. Let an augmented element be represented

by zmnaug, where m and n represent the nodes between which zaug is connected. Let the

corresponding new MNA matrix be Â and the new y-parameters be Ŷ . The objective

here is to find zmnaug so as to minimize the following error function

ε =
∥∥∥Ymeas − Ŷ ∥∥∥ =

∥∥∥Ymeas −BT ÂB
∥∥∥ (14)

It is to be noted that the straightforward evaluation of Equation 14 leads to a nonlin-

ear optimization problem. To overcome the nonlinearity of the optimization problem,

a direct relation between the error ε and zmnaug is obtained [47]. The following sec-

tions describe the addition of series elements, shunt elements, and finally both type

of elements.

2.3.1 Shunt augmentation

Let ∆x be the change in the MNA space due to the addition of zaug. For the rest

of the discussion, the superscript mn will be omitted for the sake of simplicity of

expression. Let ξ be an N × 1 vector that maps the connecting nodes to the MNA

space. In other words, if zaug is added the nodes m and n, then the mth and the

nth entries of ξ are set to ‘+1’ and ‘-1’,respectively and zeros everywhere else. The ξ
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vector has been shown in Equation 15 as

ξkl ≡ [0 ...0 + 1 0...0 − 1 0...0]T . (15)

In the case, where the shunt augmentation is between the kth node and ground,

only of the kth entry is set to ‘+1’ and zeros everywhere else. Let voc represent the

open-circuit voltage and zTH be the Thevenin equivalent impedance seen between

the connecting nodes. As shown in [77], the effect of adding an arbitrary impedance

between two nodes of a circuit is given by

∆x = −A−1ξ
ξTA−1Bv

zaug + ξTA−1ξ
. (16)

Consequently, the updated variable space of x is given by

x̂ = x+ ∆x. (17)

Using Equations 12,13 and 16, Equation 17 can be rewritten as

x̂ = A−1Bv − A−1ξ
ξTA−1Bv

zaug + ξTA−1ξ
. (18)

After a few mathematical manipulations, it is straightforward to show that

∆Y = BTA−1ξ(ξTA−1B)γaug, (19)

where γaug is defined to be

γaug = (zaug + ξTA−1ξ)
−1

(20)

Subsequently, the zaug for a shunt connection is given by

zaug = γ−1
aug − ξTA−1ξ (21)

It is to be noted that the evaluation of (21) leads to a value of zaug that minimizes

the error function ε. In this work, we will be dealing with two-port networks. The

number of simultaneous augmentations is limited by the rank of the system. For a
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two-port system, the number of simultaneous augmentation is usually three. More

can be added, but iterations become necessary. For example, the y-parameters of a

two-port network is given by

Y =

 Y11 Y12

Y21 Y22

 (22)

By the reciprocal property of passive networks, Y21 = Y12. Therefore, theoretically,

three unknown augmented elements can be solved, at a time, with the Y-parameters of

a two-port network. For multiple simultaneous shunt augmentations, three variables

are solved at one time. The linear matrix equation for three augmented variables is

∆Y = BTA−1ξ1(ξT1 A
−1B)γ1

aug + BTA−1ξ2(ξT2 A
−1B)γ2

aug

+BTA−1ξ3(ξT3 A
−1B)γ3

aug

(23)

In this case, each of BTA−1ξ1(ξT1 A
−1B) is a two-by-two matrix. In terms of the matrix

elements, for each frequency point ωn, Equation 23 can be rewritten as

 ∆Y11 ∆Y12

∆Y21 ∆Y22


ωk

=

 D1
11 D1

12

D1
21 D1

22


ωk

γ1
aug(ωk) +

 D2
11 D2

12

D2
21 D2

22


ωk

γ2
aug(ωk)

+

 D3
11 D3

12

D3
21 D3

22


ωk

γ3
aug(ωk)

.

(24)

Simultaneous equations can, subsequently be formed by equating the coefficients of

the matrices (or their linear combinations) as shown
∆Y11

∆Y21 + ∆Y21

∆Y22


ωk

=


D1

11 D2
11 D3

11

D1
21 +D1

12 D2
21 +D2

12 D3
21 +D3

12

D1
22 D2

22 D3
22


ωk


γ1
aug

γ2
aug

γ3
aug


ωk

(25)
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The system of simultaneous equations shown in Equation 25 is solved by linear least-

squares technique as

Γ = (DTD)−1DT∆Y, (26)

where, Γ is the γ vector in (25), D is the coefficient matrix in (25), and ∆Y is the

vector of ∆Y parameters in (25). Since the linear formulation shown in Equation 23

is an approximate equation to obtain an optimum solution of a system using linear

least-squares, a finite error is incurred. The error function for a set of augmented

elements, cumulated over the frequency range is given by

Φ(x) =

 1

Nf

Nf∑
k=1

[
Np∑
i=1

Np∑
j=1

∣∣Y meas
i,j (ωk)− Y model

i,j (ωk,x)
∣∣2]1/2

 (27)

It can be seen that the error function in Equation 27 is the average root-mean-square

(rms) error, where Np is the number ports, and Nf is the number of the frequency

samples. Since a finite error is incurred in the linear formulation in (23), the y-

parameters of the lumped element network do not match the measurement/EM data

after a single iteration of the simultaneous solution of all the augmented variables.

Instead, the values of the augmented elements are substituted in the lumped model to

obtain the new updated y-parameters of the model and the error difference between

the model and the measurement data is recalculated. This process of adding and

updating the augmented networks is continued till the error difference between the y-

parameters of the model and the measured data falls below a specified value. It should

be noted, again, that the linear least-squares solution of the augmented variables is

performed for each frequency point, since the error difference, shown in Equation 28

is the cumulative error over the frequency range as

ε(jω) = ‖Ymeas(jω)− Y (jω)‖. (28)
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2.3.2 Series augmentation

The discussion in the previous section considered the case where the augmented el-

ements were added in parallel to the existing elements of the network. In terms of

the network topology, a shunt augmentation do not add extra nodes to the existing

network. Specifically, a shunt augmentation do not affect the size of the matrix A, B

and the ξ vectors in Equation 23. This is because, the dimensions of these parameters

(A, B and ξ) depend on the number of nodes present in the network.

However, in a series augmentation, the nodes of the network need to be updated

during augmentation of a new element. Renumbering all the nodes in a large network

can become cumbersome. In this work, the largest node number is searched and the

corresponding value is incremented by unity and assigned to the new node that is be-

ing added during the augmentation. In this process, the numbers of the pre-existing

nodes are preserved and need not be updated. The idea has been graphically depicted

in Figure 28. The addition of a series element is performed along the lines of the tech-

Figure 28. Graphical illustration of the node numbering technique, implemented in the
series augmentation methodology.

nique shown in [78] (while adding inductor-type elements to the MNA matrix). Here,

a new variable representing the unknown current through the augmented variable is

added to the vector x in the MNA equation in (12). Further, if a series element is

added at the kth node, the ξ vector is a column vector with its kth entry set to ‘+1’

and zeros elsewhere. If the augmented variable is on the mth row, the mth diagonal
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entry of A is set to −zaug. Following the derivation in the previous section (for shunt

augmentation), it is straightforward to obtain the augmented element zaug as

−z−1
aug = γ−1

aug − ξTA−1ξ. (29)

2.3.3 Multiple simultaneous augmentation

In general, adding a series or parallel element one at a time, may not lead to fast

convergence. Therefore, to analyze realistic test structures, the ability to add mul-

tiple series and/or shunt element simultaneously is imperative. Ordinarily, from a

model optimization perspective, the effect of adding multiple elements simultane-

ously, to a network, is different from the effect of individually but separately adding

the same elements. In addition, as mentioned before, the simultaneous addition of

series and shunt elements allows the technique to handle realistic test structures and

data, which requires a combination of series and shunt element addition to match the

measured/EM effects. To accommodate both the series and shunt augmentation in

the modeling framework, a verification stage (to identify the type of connection) is

added to the existing series and shunt formulation. Based on the type of augmenta-

tion for each element, either of the series or shunt formulation is applied to arrive at

the final network, when the error bound is satisfied. The flowchart for the series/shunt

implementation is shown in Figure 29. As mentioned before, the number of simul-

taneous augmentations is limited to the rank of the system, which is usually three

for a two-port network. More augmentations can be added but iterations becomes

necessary.

2.4 Test cases

In this section, the validity, accuracy, and the efficiency of the proposed methodology

is presented. The first test case under consideration is a spiral inductor embedded in

multi-layer, LCP-based substrate. The layout of the inductor and the corresponding

lumped element model (extracted at a particular frequency) is shown in Figure 17.
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Figure 29. Flowchart for series and shunt augmentation.

The layout of the inductor, shown in Figure 17, was simulated in SONNET. The

correlation between the unaugmented model and the EM data is shown in Figure

30. The augmentation technique was applied to the S-LCM of the inductor. The

convergence took 13 iterations, for the solution passes of all the augmented network

elements. At every pass of the iteration, three elements were either solved or updated.

The augmented model has been depicted in Figure 44. The highlighted sections repre-

sent the augmentation to the S-LCM, two-port inductor. The augmented values are;

Lsh2=6.8 nH, Csh1=1.2 pF, Rsh1=2.6 ohm, Csh2/3=0.22 pF, Rsh2/3=44 ohm.The

results of augmentation has been depicted in Figure 31. Clearly, it can be seen in

Figure 31 that the model response matches the EM data, quite expectedly, at the

frequency where the parameters of the model were extracted. An example of the

error convergence after multiple iterations of augmentation is shown in Figure 33.

The second test case under consideration is a planar embedded capacitor. The

layout of the capacitor in SONNET and the corresponding S-LCM, are shown in

Figures 34. The difference in the Y-parameters between the EM data and the S-
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Figure 30. Comparison of the Z11-parameters of the EM simulation data with the
unaugmented circuit model (S-LCM) of the inductor.

Figure 31. Comparison of the Z11-parameters of the augmented circuit model with the
EM simulation data.

Figure 32. Augmented model of the spiral inductor; the augmentation elements are
represented by the shaded boxes.
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Figure 33. Augmentation error as a function of the number of iterations.

Figure 34. Layout of a planar capacitor (in SONNET).

Figure 35. Comparison of the Y-parameters of the S-LCM of the capacitor, and that
obtained from the EM simulation.
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Figure 36. Comparison of the Y-parameters of the augmented model of the capacitor,
and that obtained from the EM simulation.

Figure 37. Augmented model for the capacitor; the augmented sections are represented
by the shaded boxes.

LCM is shown in Figure 35. Clearly, there is a significant difference between the

two results. The augmentation technique was applied to the S-LCM in order to

simultaneously add series and shunt elements at different locations of the model. The

final updated model and the results after convergence (within the specified error)

are shown in Figures 37 and 36, respectively. The augmented values are; Lse1=0.4

nH, Rse1=1.2 ohm, Rp1=Rp2=4.6 ohm. As shown in Figure 36, the augmentation

technique is useful for broadband matching of the passive component models with the

EM/measurement data. In addition, the final, augmented model is stable and passive,
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Figure 38. Multi-section model for the embedded RF inductor.

Figure 39. Comparison of the S-parameters of the S-LCM (circle) and that obtained
from the EM solver (triangle).

due to the use of predesigned, physical element library and boundary conditions in

the calculation of the impedance/admittance values.

In the third case, the goal was to develop a cascaded multi-section model for

the embedded RF inductor shown in Figure 17. The multi-section S-LCM for an

embedded inductor is shown in Figure 38. The difference between the S-parameters

of the S-LCM and that obtained from the EM data is shown in Figure 39. Series

and shunt augmentations were applied to the S-LCM to obtain a broadband multi-

section model. The results of augmentation is shown in Figure 40. The multi-section

augmented model is shown in Figure 41.

It took 20 s (DELL dualcore workstation, 2.8 GHz Pentium IV processor and 3

GB RAM) and 15 iterations for the convergence of all the augmented sections.

The fourth test case under consideration is another spiral inductor (with a value
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Figure 40. Correlation between the S-parameters of the augmented model (circle) and
that obtained from the EM solver (triangle).

Figure 41. Multi-section augmented model for the embedded RF inductor; the shaded
boxes represent the sections augmented to the core S-LCM.
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Figure 42. Comparison of the Y-parameters of the EM simulation data (data sym-
bol:square) with the simple circuit model (S-LCM) of the inductor (data sym-
bol:traingle).

different from that in test-case 1) embedded in multi-layer, LCP-based substrate.

The layout topology of the inductor and the corresponding lumped element model

(extracted at a particular frequency) is similar to that shown in Figure 17.

The layout of the inductor was simulated in SONNET. The correlation between

the unaugmented model and the EM data is shown in Figure 42. The augmentation

technique was applied to the S-LCM of the inductor. The convergence took 13 iter-

ations, for the solution passes of all the augmented network elements. At every pass

of the iteration, three elements were either solved or updated. The augmented model

has been depicted in Figure 44. The highlighted sections represent the augmentation

to the S-LCM, two-port inductor. The results of augmentation has been depicted in

Figure 31. It can be seen in Figure 31 that the model response matches the EM data,

quite expectedly, at the frequency where the parameters of the model were extracted,

after 16 iterations (for all the augmentations). The augmented values are as follows:

Cs=0.8 pF, Lp=0.2 nH, and Cp4=Cp5=0.45 pF.
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Figure 43. Comparison of the Y-parameters of the augmented circuit model (data
symbol:circle) with the EM simulation data (data symbol:square).

Figure 44. Augmented model of the spiral inductor; the augmentation elements are
represented by the “dotted” boxes.
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2.5 Summary

In this chapter, a circuit augmentation technique for broadband modeling of com-

ponent libraries, and tuning of embedded passive circuits have been demonstrated.

The circuit augmentation technique is based on a previously developed circuit par-

titioning technique, a modified nodal analysis formulation and a linear optimization

framework. The circuit augmentation algorithm that has been implemented in this

dissertation automatically ensures passivity and stability of the broadband model.

The technique has been verified for broadband modeling of spiral inductors, planar

capacitors. The circuit augmentation technique has also been applied for the tuning

of bandpass filters. Comparisons have been performed with tuning using commercial

circuit simulators, employing nonlinear optimization, to demonstrate the advantages

of the proposed technique.
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CHAPTER 3

EFFICIENT DEVELOPMENT OF DESIGN LIBRARY
FOR LAYOUT-LEVEL SIZING OF RF CIRCUITS

In Chapter 1, it has been explained how the rapidly evolving telecommunications mar-

ket has led to the need for advanced RF circuits. Accurate prediction, early in the

design schedule, is difficult for complex multi-band/multi-mode RF circuits. In addi-

tion, time-to-market pressures require that design (circuit/electromagnetic)iterations

be kept to a minimum. For integration in a SOP framework, there is a clear need

for design cycle time reduction of passive and active RF modules. This is important

because layout level electromagnetic (EM) optimization of RF circuits has been the

major bottleneck for reduced design effort. Such bottlenecks are critical in design

flows on emerging technologies, that lack of extensive component libraries. In Chap-

ter 2, efficient techniques for the automatic development of passive, broadband circuit

models from network analyzer/EM data have been explained. These techniques can

then be applied for the development of design libraries and circuit sizing. As shown

in Figure 45, the focus of this chapter is the efficient and accurate development of

design libraries that enable the sizing of layouts, thereby significantly reducing the

design cycle time.

In RF designs, the physical effects of layout such as the electromagnetic coupling

and the parasitics affect the circuit performances. Furthermore, with the emergence

of multiple frequency standards, the electrical specifications of the components have

different constraints. For example, a voltage-controlled oscillator (VCO) operating

at 2.45 GHz may require an inductor with a self-resonance frequency (SRF) of at

least 5.5-6 GHz with high quality factor (Q). However, a 5.8 GHz VCO may require

an inductor with a high SRF (> 8 − 10 GHz) and a reasonable Q. Design require-

ments of this kind can lead to very long EM simulation time. Since liquid crystalline
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Figure 45. RF Design flowchart; the shaded boxes indicate the focus of Chapter III.

polymer (LCP) substrate provides design flexibility of RF circuits across a large fre-

quency range (0.5-20 GHz) by embedding the passives in the substrate [9],[10],[16],

a time-efficient, design constraint-based scaling and optimization technique can be

useful. High performance, miniaturized filters, LNAs, VCOs, duplexers and baluns,

functional from 500 MHz to 6 GHz, using embedded inductors and capacitors on

multi-layer, organic laminate substrate with LCP have been reported in [10]. The

fabricated inductors have Qs varying from 30-200 for an inductance range of 1-25 nH

[16]. The capacitors with a capacitance density of 1 pF/mm2 and Qs greater than

300 have also been demonstrated [16],[10]. In this chapter, a scaling method has

been proposed and applied to the library development of embedded passives in LCP

substrates. In Chapter 2, an augmentation methodology has been demonstrated for

the development of broadband models of passive components. In this chapter, an

ANN-based technique has been proposed to develop component libraries. The two

techniques was then combined to perform tuning for layout-level sizing of passive

devices (e.g. bandpass filters).

With increasing design complexity of multi-band RF front-end modules, along
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Figure 46. Fabricated RF front-end blocks in LCP-based substrates; baluns(top-left),
bandpass filters(top-right), oscillators(bottom-left), and mixers(bottom-right).

with stringent performance specifications, the need for fast design closure is impera-

tive. From Chapter 1, it is clear that the existing design methodologies for SOP-based

RF circuits suffer from such major drawbacks as:

(a) Design flows are not scalable at the layout level and completely new set of

EM/circuit simulations are required to generate the layout for a new set of

design specifications

(b) Prototype circuits require multiple iterations of EM simulations for fault detec-

tion in fabricated circuits.

(c) Design flows lack “multi-domain” (electrical, mechanical parameters, to name a

few) statistical diagnosis and yield enhancement techniques for batch-fabricated

circuits on large panels.

In Chapter 1, the various methods adopted by the researchers to optimize RF cir-

cuits have been discussed. These include geometric programming [30], neural network
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modeling [35], space mapping [33], aggressive space mapping [79], and polynomial

mapping [31]. In all of these methods, there is focus on optimization of a pre-designed

layout, as opposed to design scaling to meet different performance specifications. For

example, the space mapping technique proposed by [33] provides a way for efficient

optimization once the structure is generated. This is performed through the coarse

and fine mapping implemented in the space mapping algorithm. Inherently, design

scaling requires a perturbation of a larger “design space” as opposed to nominal de-

sign optimization. Furthermore, methods such as neural network-based modeling,

convex optimization [63], and geometric programming depends on the analytical ex-

pressions of the electrical/process parameters of the circuit/module component being

modeled. Therefore, these techniques will be limited by the analytical complexity

of the multi-layer models for circuits that have a large number (> 25) of active and

passive components embedded in different layers of the multi-layer substrate. Addi-

tionally, the focus of prior works is on time-efficient layout optimization of RF circuits

and not synthesis/efficient library development. Accurate and efficient generation of

component and circuit libraries, required for new design as well as design scaling,

therefore, is the subject of this chapter.

For proof-of-concept validation, the library development and the design scaling

methodologies have been demonstrated on a multi-layer, organic substrate with LCP

dielectric material (εr=2.95, tanδ=0.002). The electrical characteristics of the LCP

material have been discussed in Chapter 1. It should be noted, however, that the

method is generic and can be applied to designs on any multi-layer packaging tech-

nology. The method presented in this chapter enables the layout-level scalability

of inductors and filters based on the constraints imposed by design specifications.

The technique is based on nonlinear mapping of inductor and filter geometries and

its electrical specifications using ANNs and polynomial functions with limited data
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generated from EM solver. The design scaling methodology is based on layout seg-

mentation, broadband model mapping and nonlinear/linear circuit-level optimization.

The aforementioned methodologies have the following advantages:

(1) It enables global tradeoff analysis between competing objectives such as area,

Q and SRF for planar inductors and capacitors.

(2) It uses a small dataset for neural model training by using adaptive interpolation.

(3) It enables component and device layout scalability across the various topologies.

(4) It allows for the mapping between the electrical response and the physical pa-

rameters.

(5) It enables the scalability of the circuit layout over a range of +/-20% of the

center frequency (CF).

(6) It allows bandwidth tunability of 0.5-5% of CF.

(7) It reduces the number of iterations for EM simulations performed on the layout

to meet design specifications.

3.1 Layout-level scaling of RF Circuits: Concept

In RF designs, the physical effects of the layout such as electromagnetic coupling and

parasitics affect the circuit performance. Furthermore, with the emergence of mul-

tiple frequency standards, the electrical specifications of components have different

constraints. Since liquid crystalline polymer (LCP) substrate provides design flexi-

bility of RF circuits across a large frequency range (0.5-20 GHz) by embedding the

passives in the substrate, an efficient and scalable library development technique can

be useful for fast design closure of RF circuits.

Layout-level scaling is the process of extracting network/layout level parameters

for a component/circuit from an existing set of specifications. Traditionally, RF
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Figure 47. Flowchart for conventional design and layout-level circuit scaling; the itera-
tion shown on the left is performed in forward mapping while that shown on the right
is performed in design scaling.

design flows lack scalability due to the effects of layout level parasitics on circuit

performance. The steps involved in developing a layout scaling methodology for

RF circuits has been shown in Figure 47. A conventional design flow attempts to

optimize the circuit performance at the layout level at the premium of time-consuming

EM simulations for the full layouts. In contrast, a design scaling approach extracts

physical dimensions of the layout from the electrical specifications by using some

intermediate circuit level modeling and optimization. As shown in Figure 47, the

scaling method develops a lumped circuit model with parasitics from a layout. To

scale the model to a different frequency specification with minimum EM simulations,

the proposed method performs optimization at the circuit level. After optimization,

the physical dimensions of the layout are extracted using polynomial functions that

map the physical parameters to their component values.

3.2 RF bandpass filters in LCP substrate

The bandpass filter is an important block in an RF front-end module. With the

convergence of multiple frequency standards, the design of filters faces such design
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Figure 48. Cross-section of the dielectric stackup for the stripline configuration.

challenges as controllability of passband ripple, bandwidth, stopband attenuation,

and harmonic rejection. High-performance, miniaturized filters have been designed

in LCP-based substrate across different topologies to meet different frequency speci-

fications. These include inductively coupled resonator filters, coupled line filters and

capacitively coupled filters [10]. The filter designs are also based on hybrid topologies

with a combination of coplanar waveguide (CPW) and stripline configurations to en-

sure volumetric reduction in multi-layer substrate. The filters are electromagnetically

shielded with the use of top and bottom ground planes for reducing signal coupling

from adjacent blocks.

Figure 46 illustrates the photograph of fabricated filters, with a size of 2mm X

2mm X 1.2 mm for Wi-Fi applications. The cross-section used for the filters is shown

in Figure 48. The stackup consists of a 4-metal layer stackup with top and bottom

ground planes. The core dielectric material (εr = 3.35) on either side of the LCP layer

has low loss and has a thickness of 36 mils. The laminated LCP and the metal layers

are 1 mil and 0.5 mils thick, respectively. The passives are designed in the middle

two metal layers. The entire cross sectional thickness of 1.8 mm (can be as low as 0.9

mm, in current processes) was fixed in the designs that have been used for validation

in this dissertation.

In addition to the layout sizing of bandpass filters, details on inductor synthesis

have also been described. This is because, for a fixed cross section, the capacitance is a
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function of the width and the length and its Q value is only limited by the loss tangent

(tanδ) of the dielectric material [10]. However, inductors have multiple geometrical

parameters such as the side-length, line width, line spacing and the number of turns.

Furthermore the Q values of the inductors are comparatively lower than that of the

capacitors. The need for high-Q inductors, coupled with the difficulty of achieving

it, make the geometry optimization of inductors, an indispensable part of RF circuit

design.

3.3 Efficient library development for embedded passives

In the absence of extensive design libraries of embedded passives in LCP-based sub-

strates, synthesis techniques for inductors/capacitors, based on multiple design con-

straints, is important. Methods for optimization of inductor geometries in a multi-

variable design environment have been reported by [30],[31]. In contrast, this section

provides a layout-level synthesis technique for planar inductors that is used in RF

front-end modules.

3.3.1 Multi-variable nonlinear mapping using ANNs

In the design of inductors, a nonlinear relationship exists between electrical parame-

ters like inductance (L), Q and SRF; and the geometrical design variables such as the

side-length, line-width, line-spacing and the number of turns. Artificial neural net-

works have emerged as a powerful alternative to numerical and analytical modeling

techniques for capturing such nonlinear mapping of parameters.

ANNs are preferred due to their asymptotic properties, and because they exhibit

smooth results for approximating multi-dimensional discrete data. A multi-layer,

perceptron-based neural network structure is shown in Figure 49. During forward

mapping, (from the inductor geometries to the electrical parameters), the input

neurons [x1, x2, ..., xn] represent the inductor geometries, and the output neurons

[y1, y2, ..., ym] produces L, SRF and Q as the output. Here n and m being the number
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Figure 49. Multi-layer perceptron-based neural network structure.

of inputs and outputs in a general ANN structure. The datasets get reversed during

reverse mapping. A single layer of hidden neurons has been used in this work. The

outputs from all the processing units are summed through weights (wij) to form the

output, as shown in Equation 30. This output passes through the activation function

given by

γli =

Nl−1∑
j=0

wlijz
l−1
j (30)

σ(γ) =
(eγ − eγ)
(eγ + e−γ)

(31)

The activation function shown in Equation 31 is a hyperbolic tangent function. After

passing through the activation function, the output dataset is obtained as

σ(γLi ) = γLi =

NL−1∑
j=0

wLijz
L−1
j (32)

In this work, the Levenberg-Marquadt nonlinear optimization algorithm has been

used to train the neural networks. The details of this optimization technique has

been discussed in the following section.
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3.3.2 Levenberg-Marquadt optimization

Levenberg-Marquardt optimization is a virtual standard in nonlinear optimization

techniques. It significantly outperforms the gradient descent and conjugate gradient

methods for medium-sized problems ( number of weights less than 1000). It is a

pseudo second-order method, meaning that it works with only function evaluations

and gradient information but it estimates the Hessian matrix using the sum of outer

products of the gradients. To improve the convergence time without the loss of

accuracy, the algorithm combines the speed of steepest descent (for sharp slopes),

and the curvature or second-order information (for gentle slopes) of the modeling

function. The iterative equation for steepest descent is given by

wi+1 = wi − µd (33)

where w represent the weights that are associated with the edges of the multi-layer

perceptron graph as shown in Figure. Here, d stands for the derivative and is given

by

d =
〈
(f(x;w0)− y)∇f(x;w0)T

〉
(34)

where f(x;w) represents the general deterministic modeling function. The purpose

of the model training is to develop an optimized set of weights such that the output

of the neural model is the closest approximation to the measurement/EM data.

Let E be defined as the average squared error, the error being the absolute differ-

ence between the actual data and that predicted by the trained neural network. It is

well-known from linear algebra that when we have a linear function model, then the

error function E is of a simple quadratic form

E(w) =
〈
(f(x;w)− y)2

〉
(35)

where the angle brackets donate the mean over input output pairs. First, let us

consider the general deterministic model f(x;w). It is a function of both the data
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x and its parameters w. When the model is used to predict the behavior of the

unknown target function,we have fixed w and are more interested in f as a function

of x. However, when we are training our model by optimizing the weights to reduce E,

we are interested in f as a function of w (instead of x). For the following discussion,

we will consider this second view of f , and all derivatives and gradients are with

respect to w.

One way to approximate E as locally quadratic (in w) near a minimum is to

approximate f(x;w) as a linear function of w. Let us define f̂(x;w) which is a linear

approximation of f(x;w) in the neighborhood of a specific weight value w0 as

f̂(x;w) = f(x;w) + (w − w0)T∇f(x;w0), (36)

Assuming the model is f̂ , the expressions for E(w) and ∇E(w), in terms of y, f̂(x;w)

and ∇f̂(x;w) are written as

Ê(w) =
〈

(f̂(x;w)− y)2
〉
, (37)

∇Ê(w) =
〈

2(f̂(x;w)− y)∇f̂(x;w)
〉
. (38)

After a few mathematical manipulations, it can be shown that

∇Ê(w) =
〈
2(f(x;w0) + (w − w0)T∇f(x;w0)− y)∇f(x;w0)

〉
. (39)

Let

H =
〈
∇f(x;w0)∇f(x;w0)T

〉
(40)

where H stands for the Hessian. It should be noted that while d is exactly the average

error gradient, H is not the true Hessian (matrix of mixed partials) of the function. In

other words, Hij 6= ∂f/∂xi∂yj. Instead, H is an approximation to the Hessian which

is obtained by averaging the outer products of the first order derivatives (gradients).

To complete the quadratic approximation, we have:

∇Ê(w) = 2H(w − w0) + 2d (41)
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∇Ê(w) = 0⇒ 2H(wopt − w0) + 2d = 0 (42)

wopt = −H−1d + w0 (43)

Based on these derivations, the iterative update of the weights by steepest descent is

modified as

wi+1 = wi −H−1d. (44)

Intuitively, the Levenberg-Marquadt algorithm employs a steepest descent type method

until the function approaches a minimum. Upon approaching the minimum, the iter-

ative updating gradually switches to the quadratic rule. It can also be checked as to

how the function approaches the minimum by tracking the change in the error. The

“blend” between the steepest descent and the quadratic approximation is denoted by

λ. The update rule is therefore modified as

wi+1 = wi − (H + λI)−1d. (45)

Mathematically, as λ gets small, the update rule approaches the quadratic approxi-

mation. On the other hand, if λ is large, the rule approaches the steepest descent.

The iterative relation is made better by addition of local curvature information as

shown in the final Levenberg-Marquadt form

wi+1 = wi − (H + λdiag[H])−1d. (46)

The only drawback of this nonlinear optimization technique is that it requires a matrix

inversion step as part of the update which scales as the N3 where N is the number

of weights. For medium-sized networks (for example, a few hundred weights) this

method will be much faster than the gradient descent plus momentum. Fortunately,

the training of neural networks for practical RF structures are generally medium-

sized problems (in terms of weights), thereby proving conducive to this powerful

optimization technique. The following section discusses the test cases for training

and data sampling.
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Figure 50. Layout of a spiral inductor in SONNET, depicting the different physical
parameters.

Figure 51. Cross-section used for the design of microstrip spiral inductors.
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Figure 52. Depiction of the self-resonance frequency (SRF) of an inductor.

3.3.3 Adaptive data sampling

In this work, an initial library of 300 spiral and loop inductors, based on stripline

and microstrip topology, respectively, were simulated using SONNET, a commercially

available 2.5D full-wave method of moments (MoM)-based EM solver. The layout of

an inductor in SONNET is shown in Figure 50. The cross-section used for microstrip

design is shown in Figure 51, while the inductors with stripline topology have the

cross-section shown in Figure 48. The inductance and quality factor were extracted

from SONNET data as

L = Im{Z11}/2πf, (47)

and the quality factor (Q) is given by

Q = Im{Z11}/Re{Z11}. (48)

The SRF was measured at the impedance transition frequency, as shown in Figure 53.

For the training of the neural networks to “coarsely” map the input dataset to the

output, eighty percent of the library was used. The remaining twenty percent of the

inductor designs were used to test the neural networks. During testing, the mapping
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accuracy was found to be worse than 10 percent. This is because, the number of data

points (240) that was used for training the neurons was not sufficient to develop a

mapping with the desired accuracy(< 3%). The inductor Q, area, L and SRF were

represented as nonlinear functions of the inductor side-length, width and turns as

shown below:

f =
M∑
k=1

bkjg(
N∑
j=1

ajixi + aoj) + bok, (49)

g(x) = (ex + e−x)/(ex − e−x), (50)

x = {side length, width, turns, spacing}

where, f represent Q, L, and SRF ; b and a are the weights associated with the

neural network, N represents the number of hidden neurons, M represents number

of outputs and x is the regressor vector [80]. Practical ranges of design values (

for wireless communication systems) were targeted during the library development.

During the design of spiral inductor library from EM simulations, the number of turns

varied from 0.75-1.75 in steps of 0.25. For each of these designs, the side-length was

varied from 0.5-3.75 mm in steps of 0.25 mm and the width (w) from 0.075-0.225

mm in steps of 0.075 mm. It is to be noted that the orders of magnitude of various

input and output parameter values of inductors are different. Therefore, a systematic

preprocessing of training data called “scaling” is desirable for efficient neural-network

training. The EM simulation data was normalized before being fed to the neural

network. The data was scaled with respect to the maximum and minimum values

of the data range for each electrical/geometrical parameter using a linear scaling

technique as

xsc = xomin + [(x− xmin)(xomax − xomin)]/(xmax − xmin), (51)

where xsc, x represent the normalized and denormalized values of the input data and

x0
max/min, xmax/min, represent the normalized and de-normalized maximum/minimum

values of the data range for a particular parameter.
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Figure 53. Correlation between modeled data and test data during forward mapping;
(Top)-Inductance mapping, (Middle)-Quality factor mapping, and (Bottom)-SRF map-
ping. 71



The variations of the different electrical parameters for a section of the dataset

are shown in Figure 53. There is a recurrent discontinuity in Figure 53. It should

been seen that in Figure 53, there is no sample point in the region of discontinuity,

rather sample points exist only in the smooth regions. The ANN-modeled plot for the

training dataset looks the way it is because, the variation of parameters were taken

for different widths of the inductor geometries. Every monotonic section of the curve

represents geometry variations for a particular width.

During the training, the number of neurons in the hidden layers were manually

adjusted so that the training error (the correlation between the neuro-modeled output

and the training data) is neither too small (less than 2%), which hampers the general-

ization capability of the neuromodels nor too large (greater than 10%), which reduces

mapping accuracy. As stated before, it was found that the size of the library was too

small to provide an accuracy within 5% of the EM simulation data. Generation of

the EM data, which is required for training of neural networks, is computationally

expensive. Initially, MATLAB’s inbuilt TrainLM neural network tool was used to

train the neural models with limited EM data for forward mapping. The correlation

between the EM data and the TrainLM-based neuromodel for 5 test data points is

shown in Figure 54. Figure 54 show ANN-model to EM data correlation for two

different training instants (with the same data). The large correlation error can be

seen readily.

This problem was tackled by the following methods:

(a) EM modeling of pad and via structures

(b) Adaptive data sampling
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Figure 54. MATLAB TrainLM ANN-model to EM data correlation in forward mapping
after training of ANN; Red graph is the TrainLM output for test data and Blue graph
is the EM simulation result for test data. X- Axis is the test sample number; made
continuous by interpolation. Figs (a),(b) represent two different training results for the
same test data.
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Figure 55. Photograph of the fabricated microstrip loop inductors.

3.3.3.1 EM modeling of probe-pads and vias

Significant discrepancies were observed between the inductance values obtained from

the measurements and those obtained from the modeling results. A few such discrep-

ancies in the inductance values have been listed in Table 1.

Table 1. Correlation between the measured data and neuromodeled data without in-
cluding the effect of via and CPW pad models

Size (sq. mils) Turns L meas(nH) L model(nH) Freq(GHz)

30 × 22 1 1.49 1 1
54 × 30 1 3.18 2.5 4
45 × 45 2 4.86 5 1
60 × 62 3 12.77 15 1
39 × 12 1 1.63 1.1 4

The difference in the results was attributed, firstly, to the way in which the induc-

tor/capacitor test samples were simulated in SONNET. An example simulation test

structure (required for training data and test data) has been shown before in Figure

50. As shown in the figure, the EM simulations do not take into account, the effect of

vias and probe pads. This is different from the fabricated test structures, as example

of which is shown in Figure 55.

The test boards containing the inductors (and the filters) did not have de-embedding

test structures. Therefore, the measurements took into account, the effect of vias and
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Figure 56. SONNET-based EM model for the CPW pads and thruhole vias for the
microstrip inductor.

probe pads on the impedance/reactance profile of the inductors/capacitors. This

problem was resolved by the development of separate models for the probe pads and

the vias in SONNET. The EM models of the via pads and the thruhole structures

has been illustrated in Figure 56.

The S-parameters of the model, shown in Figure 56, were augmented with the S-

parameters of the inductors/capacitors. The improved hardware to model correlation

has been tabulated in Table 2.

Table 2. Correlation between the measured data and the neuromodeled data after
adding the EM models for vias and CPW pads of the spiral inductors

Size (sq. mils) Turns L meas(nH) L model(nH) Freq(GHz)

30 × 22 1 1.49 1.27 1
54 × 30 1 3.18 2.95 4
45 × 45 2 4.86 5.15 1
60 × 62 3 12.77 13.5 1
39 × 12 1 1.63 1.4 4

The difference in the modeling results (before and after EM modeling) in Table 1

and Table 2 underlines the need for via and probe-pad modeling.

3.3.3.2 Adaptive data sampling

To further improve the modeling accuracy of the neural networks, problem, the re-

sponse surface analysis of the electrical parameters, as a function of geometry varia-

tions, was performed. For example, the response surface plots for inductance(L) and

quality factor(Q) as a function of critical geometrical parameters are shown in Figure
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Figure 57. Response surface for the inductance(L) of the microstrip inductors.

57 and Figure 58, respectively.

It can be seen that the response surfaces are piecewise monotonic in nature. From

the piecewise monotonicity, it can be inferred that more data points can be generated

from the existing library based on separate interpolation of the “smooth” portions

of the response surface. An adaptive sampling algorithm was implemented in the

neural network structure and was used in conjunction with the training of the neural

models. Based on the desired accuracy of the required Q, L, area and SRF (1-5%),

the training dataset was sampled through interpolation to generate more data points

(the final size of the library can be 10-15 times the size of the library developed

from EM simulation). At each stage, the neural network was trained with the larger

library size (than the previous stage) to improve mapping accuracy. For example, if

a tolerance of 10% (around the desired value) is acceptable for a design, a step size

of 0.30 turns (1.35 to 1.65) is sufficient, as tabulated in Table 3.

On the other hand, if a tolerance of 3% (around the desired value)is required for

a design, a step size of 0.05 turns (1.55 to 1.6) is required, as tabulated in Table 4.
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Figure 58. Response surface of the quality factor(Q) of the microstrip inductors.

Table 3. Variation in physical parameters for tolerance of 10% in Q

No. of turns Side-length(mil) Quality Factor Inductance(nH)

1.35 91 99.23 11.88
1.35 92 98.65 12.17
1.65 79 99.56 11.79
1.65 80 98.69 12.14

Thirdly, if a 3% variation is required for both the inductance and quality factor is

required, a step size of 0.05 and 1 is required for the number of turns and sidelengths,

respectively. The results for forward mapping for 3% variation has been shown in

Table 5.

The neuromodel was then used to forward map and reverse map between the elec-

trical parameters and geometries. If the design-imposed accuracy of the component

values was met, the training data interpolation was stopped. Otherwise, the train-

ing loop was iterated using interpolated data with smaller step size. The method

works very well for monotonic variations of the data. The time-consuming part, how-

ever, was the generation of highly nonlinear data points. The neuromodels were then
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Table 4. Variation in physical parameters for a tolerance of 3% in Q

No. of turns Side-length(mil) Quality Factor Inductance(nH)

1.55 69 105.93 8.02
1.6 68 106.37 8.04
1.6 69 106.08 8.31
1.6 70 105.76 8.56

Table 5. Variation in the physical parameters for a 3% tolerance in Q and L

No. of turns Side-length(mil) Quality Factor Inductance(nH)

1.35 94 97.07 12.75
1.35 95 96.06 13.06
1.35 96 94.86 13.36
1.4 91 96.86 12.67
1.4 92 96.84 12.97
1.4 93 96.65 13.27
1.5 87 93.32 12.83
1.55 85 93.33 12.79
1.6 83 95.68 12.66
1.6 84 94.51 13.02
1.6 85 93.29 13.29
1.65 82 96.76 12.87
1.65 83 95.71 13.24
1.7 80 95.73 12.77
1.7 81 94.89 13.05

checked for new test case values of side-lengths, line-widths and the number of turns

for inductance calculations. The correlation between the modeled and EM data was

within 5%. Figure 59 shows the correlation between the ANN-modeled data using

the interpolation technique and EM simulation data for forward mapping using test

data. The sampling technique allow for high mapping accuracy without resorting

to extensive EM simulations. The nonlinear mapping approach is generic and can,

therefore, be applied to different inductor topologies. The flowchart for the sampling

algorithm is shown in Figure 60.
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Figure 59. ANN-model to EM data correlation using interpolation for test data (same
as that used in Figure 54); Red graph is the TrainLM output for test data and Blue
graph is the EM simulation result for test data. X- Axis is the test sample number;
made continuous by interpolation.

Figure 60. Flowchart for the adaptive data sampling algorithm.
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3.3.4 Synthesis and design space exploration

Geometrical synthesis of inductors requires reverse mapping from the electrical spec-

ifications to geometries. The neuromodeled output provided multiple solutions of

geometries for a given inductance and different values of Q and SRF. The concept

is shown in Table 6. From a design perspective, the synthesized inductor geometry

that meets the design specifications of SRF, area and L and has the maximum Q is

the design that is to be selected. Mathematically, the optimization function can be

written as:

Area < Areagiven;SRF > SRFgiven;maximize(Q)|L=L0 ,

where Areagiven is the maximum area of the inductor allowed by a design and SRFgiven

is the minimum SRF required for the inductor in the design.

The design space exploration, leading to the synthesis of inductors, can be formu-

lated as follows: Let the geometry dataset associated with the ith inductor be

X i = [xi1, x
i
2, ...., x

i
N ]T , (52)

where N is the number of geometrical parameters associated with each inductor,

and M is the number of inductors. The area of the inductor Ai can be obtained

as a function of X i as Ai = ϕ(xi) where ϕ(•) represents the geometrical mapping

relationship. Let the dataset for Q, SRF , L and area (A) for the ith inductor be

given by

Ei = [Qi, SRF i, L,iAi]T . (53)

The neural network technique described earlier, has been used to develop weighted

mapping functions to map X i to Ei through the forward mapping procedure and

Ei to X i through the reverse mapping procedure. The algorithm for design space

exploration can now be outlined as shown in Figure 61.

The geometries synthesized by reverse nonlinear mapping may not exactly be fea-

sible for fabrication since the resolution of the process is 12.5 µm while the reversed
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Figure 61. Algorithm for design space exploration.

mapped geometries can have higher decimal orders. In this case, the design values

were rounded in accordance with the process rules with minimum error. For exam-

ple, a current LCP-based fabrication process allows a minimum line width and line

spacing of 75 µm. Synthesized designs gave 2-5 percent variation as compared to EM

simulations. The Q and SRF variation with synthesized data for a 12.5 nH spiral

microstrip inductor at 2.4 GHz is shown in Table 6.

Table 6. Synthesis results for a 12.5 nH (@2.4GHz) spiral inductor exhibiting Q, area
and SRF tradeoffs (for a line spacing of 0.1 mm; 1mm=40 mils).

No.of turns Side(mil) Width(mil) Q-value L(nH) SRF(GHz)

1.5 101 9 135 12.5 4.1
1.75 91 9 120 12.5 4.1
1.35 94 6 97 12.5 4.6
1.5 87 6 93 12.5 4.75
1 130 6 75 12.5 4.3

1.25 100 6 83 12.5 4.5
3.3 40 3 70 12.5 6.3
2.3 46 3 71 12.5 5.5
3.75 34 3 50 12.5 5.7
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Figure 62. Ideal schematic for a second-order capacitively coupled bandpass filter.

The table clearly indicates the tradeoffs incurred in maximizing Q and minimizing

area for the same inductance value of 12.5 nH (@ 2.4 GHz). Based on the design

requirements, the designer can make a choice from multiple synthesized options that

are shown in the table.

3.4 Layout-level sizing of RF bandpass filters

The development of library of embedded RF passives can also be extended to the

scaling of RF circuits. Layout-level scaling of filters in the absence of extensive de-

sign templates to meet different frequency standards can significantly reduce the time

required for EM simulations and redesign. Previous works have focused on efficient

optimization techniques of a pre-designed layout. In contrast, this section of the

chapter focuses on design reuse of filter layouts in LCP to enhance the circuit design

libraries. In addition, the proposed methodology allows scalability of broadband cir-

cuit models for synthesizing layouts with different performance measures (bandwidth,

center frequency, insertion loss etc.). The advantage lies in minimizing the number

of layout template designed for a particular frequency specification and extracting

layout-level parameters over a range of frequencies with minimum EM simulation

data. The proposed technique described consists of multiple levels of abstraction and

have been detailed in the following subsections.
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Figure 63. Lumped element modeling for segemented sections of the bandpass filter
shown in Figure 62.

3.4.1 Lumped circuit modeling

The stages of the proposed layout-level sizing technique is best explained with the help

of a circuit layout. A second-order, capacitively coupled, chebyshev bandpass filter

was chosen as the topology to illustrate the underlying principle of design scaling.

The ideal schematic of the filter is shown in Figure 62. It is a 3mm X 3mm X 1.5

mm 2-pole bandpass filter operating at a center frequency of 2.45 GHz and having

a bandwidth of 300 MHz. The design stackup has two inner metal layers with top

and bottom ground planes (not shown in the figure), which are 1.83 mm from each

other. In Figure 63, the resonator capacitors Cresn1, Cresn2 and L-resonator section Lcp

have mutual coupling and was taken into account while segmenting the circuit. The

layout was segmented into circuit sections which are isolated from each other without

significant loss of accuracy. In Figure 63, the dotted lines represent the segmented

sections. For example, the L-resonators were segmented into coupled section Lcp, and

uncoupled sections L1 and L2. This segmentation approach allowed separate scaling

and mapping of geometrical sections which have little electromagnetic interaction

between them.
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To develop scalable design libraries (Ls, Cs, filters etc.) using the neural net-

works, the development of broadband models for the library elements is imperative.

In Chapter 2, an automatic, passive and broadband modeling technique, based on

network augmentation, has been demonstrated. The methodology was validated by

developing broadband, passive models for embedded RF spiral inductors and pla-

nar capacitors. This augmentation technique was then applied to the EM data of

the layout segments to develop scalable broadband model for the entire filter layout.

These broadband models were compared against the traditional narrowband 2-port

and 1-port models of the passives (extracted in SONNET, at a particular frequency)

to evaluate the computational effort for the broadband modeling. The advantage in

using the augmentation technique is twofold

1 The augmented models for the segmented sections are broadband in nature,

allowing for scalable design libraries

2 Large circuit layouts can be handled since time-consuming EM simulations for

modeling the layout segments is minimized

The augmented lumped circuit models take into account the effect of parasitics and

coupling. The schematics of the models for coupled L-resonator, matching capacitors

Cm1, Cm2, center capacitor CC and coupled Cresn1, Cresn2 are shown in Figure 63. The

models showed very good correlation with EM simulation up to the second harmonic

with a fundamental frequency of 2.45 GHz. Due to the use of segmented models,

fast optimization at the circuit level was possible to meet the design specifications

without losing the effects of physical layout on circuit performance.

The continuity of the reference ground plane in the circuit layout has a significant

effect on the coupling between the resonator capacitors, which affects the bandwidth

characteristics of the filter. In the layout, the lower plates of the two resonator

capacitors were connected through a common ground plane. During lumped circuit
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Figure 64. Mapping of reference ground plane of the resonator capacitors; separate
polynomial functions are used for split and continuous ground plane coupling.

modeling, it was seen that the mutual coupling between the two resonator capacitors

is not only a function of the size and spacing but also depends on the presence or

absence of the ground plane. The difference in the coupling between the continuous

and discontinuous ground planes is shown in Figure 64. In Figure 64, the spacing

indicates the separation between the innerside edges of the top metal planes of the

capacitors. Furthermore, the bottom plane has an overlay over the top plane to

compensate for fringing capacitance. As a result, the bottom planes touch each other

and become continuous at a point when the top planes are separated by a distance

of 0.19 mm. Hence the coupling coefficient between the capacitors in the models

will have different values based on continuous or split ground planes. This effect has

been included in this work through piece-wise mapping of the coupling coefficients

for continuous and discontinuous ground planes.

3.4.2 Sizing using model mapping

The broadband circuit models for the inductors and the capacitors were developed,

using circuit augmentation. The circuit models, as explained in the previous sec-

tions take into account the effect of coupling, were developed based on the modeling
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techniques developed by [10]. To allow scalability in the design libraries, models of

the layout segments were made scalable, based on nonlinear polynomial mapping of

the circuit model parameters to EM simulation data, using parametric simulations or

ANNs.In its general form, the mapping can be mathematically formalized as follows:

Let the segmented component parameters (which include the parasitics) be rep-

resented by the vector as

C = [C1, C2, ..., CN ]T , (54)

where N is the total number of model parameters. Here C consists of all the param-

eters in the circuit model which includes the ideal components and their parasitics.

Let us assume that for a component Cj, there exists a vector

gj = [gj1, gj2, ..., gjk]
T , (55)

where k is number of data points for which the solver was instructed to parameter-

ize, for the particular parameter. Based on this data, nonlinear polynomial functions

ϕij(•) could be extracted for each of the geometrical sections to map to its correspond-

ing component value in the model. This can be written as Ci = ϕij(gij). Therefore

from the lumped circuit model component vector [C1, C2, ..., Ck]
T , the geometry map-

ping functions can be represented by

[{ϕ1m(g1m)}, {ϕ2m(g2m)}, ...., {ϕkm(gkm)}]T , (56)

where each vector ϕjm(gjm) represents all the polynomial mapped geometries (equal

to li) associated with the component Ci as

ϕi(gi) = [{ϕi1(gi1)}, {ϕi2(gi2)}, ....., {ϕili(gili)}]T . (57)

Here li is the number of geometrical parameters associated with Ci. The circuit-

level optimization parameters in the entire model is a subset of the entire model

parameter C and is given by [C1, C2, ..., Cs]
T . All the optimization parameters in the
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model, therefore, have mapping relations to its geometries given by

[{ϕ1m(g1m)}, {ϕ2m(g2m)}, ...., {ϕsm(gsm)}]T , (58)

In Equation 58, s is the number of variables selected for optimization. The next stage

was to have mapping functions that correlate the component values to its parasitics.

Let the mapping functions for this relation be given by φi(•) , where

Cp
i = φi(C

c
i ), (59)

In Equation 59, Cp
i represents the parasitic associated with Cc

i and also,

Cp
i

⋃
Cc
i = C, (60)

where C is the entire model parameter vector, and
⋃

represents the union operation.

In conventional simulation methods, the component set C is the input, from which

certain variables are selected for optimization. In this work, the vector [Cc
s , φ(Cc

s)]
T

is used in the optimization routine where ‘s’ is the number of parameters selected

for optimization. At each step of the optimization of Cc
s , the parasitics also get

updated through φ(Cc
s) in the simulation framework. As a result, the final optimized

component values take into account, the associated parasitics. Mathematically, the

jth geometrical parameter of the ith component value Ci could be extracted as shown

g∗iopt
= ϕ−1

im(C∗im) (61)

where g∗iopt
is the optimized mth geometrical parameter corresponding to the optimized

component C∗i .

From the theory explained in this section, it is important to note that the re-

verse mapping was made under the premise that the mapping function ϕ(•) remains

practically unchanged over the frequency range in which the reference layout was

scaled. This holds true since the method described involves scaling of a reference

layout within +/-20% of its center frequency with 0.5-5% tunability in bandwidth.
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Three-dimensional EM simulations using Ansoft’s HFSS and SONNET over the entire

frequency range of scaling have verified that the mapping functions remain unchanged.

The above methodology is best explained with the help of the layout of a bandpass

filter, as shown in Figure 63. In Figure 63, the uncoupled inductor section in the lower

half of the right lumped inductor model with shunt capacitor Cr and series resistance

R12 were mapped to the inductor geometry as:

Lr = 0.0024(∆L)3 + 0.0273(∆L)2 + 0.0674(∆L) + 0.8104 (62)

Cr = −0.0009(∆L)3 + 0.0051(∆L)2 − 0.0009(∆L) + 0.023 (63)

R12 = 0.0007(∆L)3 + 0.111(∆L)2 + 0.1082(∆L) + 0.0942 (64)

where ∆L is the increment in the inductor length of L1 and L2 for a fixed induc-

tance of 0.8 nH. Similar mappings were obtained for all the other circuit models. The

scalable models with parasitics were combined to perform filter circuit optimization

using Agilent’s Advanced Design System (ADS). The values of the components ob-

tained from scaling and those obtained by simulating the designs in the EM solver

(SONNET) are shown in Table 7.

Table 7. Comparison of the component values for three scaling test cases based on 2.45
GHz reference layout; correlation of EM simulation (Full-wave) data with the data
obtained from the polynomial mapped model (poly).

Center Freq(GHz) C m1(pF) CC(pF) C resn1(pF) L resn1(nH)

2.2 poly 0.451 0.11 1.80 1.76
full-wave 0.445 0.106 1.82 1.79

2.45 poly 0.50 0.16 1.80 1.64
full-wave 0.48 0.164 1.82 1.652

2.85 poly 0.355 0.065 1.06 1.06
full-wave 0.36 0.055 1.064 1.79

At each stage of the optimization process, the desired components were tuned

and the corresponding polynomial-mapped geometries and parasitics were updated

as well. For example, after optimization, the length (∆L) and the spacing (∆S) of
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Figure 65. Scaling of segmented layout parameters from optimized lumped circuit mod-
els; an example has been shown for the coupled inductor section of the bandpass filter
in Figure 63.

the inductors, as well as the width (∆W ) of the capacitors, illustrated in the previous

example, was reverse mapped from the component parameters as shown

∆L = 0.039(Lr)
3 + 0.982(Lr)

2 − 0.0674(Lr) + 0.6104 (65)

∆S = 0.0231(Cr)
3 + 0.051(Cr)

2 − 0.0012(Cr) + 0.032 (66)

∆W = −0.0009(k)3 + 0.351(k)2 − 0.013(k) + 0.0123 (67)

The scaling of the inductor section, explained before, has been illustrated in Figure

65. The values of the components obtained from scaling, and those obtained by

simulating the designs in the EM solver are shown in Table 2. The flowchart for the

optimization and scaling methodology is shown in Figure 66.

Table 2 shows that the component values obtained from optimization are within

2-5% of the EM simulation using the scaled geometries. The simulated results for the

reference layout are shown in Figure 67. Based on different design specifications, the

reference layout was scaled to a design at 2.2GHz with a bandwidth of 325 MHz and
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Figure 66. Flowchart for optimization and layout-level sizing methodology.

Figure 67. S-parameters of the reference design (2.45 GHz bandpass filter).
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Figure 68. Correlation between full-wave data (sampled) and data from scaling method-
ology (solid) for a 2.2 GHz RF bandpass filter.

Figure 69. Correlation between full-wave data (sampled) and data from scaling method-
ology (solid) for a 2.8 GHz RF bandpass filter.
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to another filter with a center frequency of 2.85 GHz and a bandwidth of 400 MHz.

The S-parameters of the data from scaling techniqes, and that from the EM solver

shows good correlation. Figure 68 shows the EM to model correlation for a scaled 2.2

GHz bandpass filter. Figure 69 shows the EM to model correlation for a scaled 2.8

GHz bandpass filter.

3.4.3 Correlation of scaled model with EM simulation

A detailed analysis of the S-parameters of the extensive lumped circuit models and

that obtained from the EM data by using the scaled geometries (shown in Figures

67,68,69) showed that while S21 had very good correlation, the S11 results had some

discrepancy. This can be explained as follows. The return loss characteristic (S11)

is predominantly a function of the matching capacitors in the filter. It can be seen

in the layout, that the segmented sections of these capacitors along with the central

capacitors include the vias that were used in the design.

In other words, separate via models were not used as part of the design sizing.

As a result, the mapping functions for the capacitor geometries and its component

values required to be of higher order than what was used in the design for capturing

the nonlinearities, introduced due to the vias. The argument is supported by the

fact that no such discrepancies were seen in the S21 characteristic. This is because

the resonator inductors and capacitors, which predominantly affect the passband

characteristic, did not have any vias in their structures.

3.4.4 Additional test cases

The layout sizing method discussed was applied to bandpass filters across frequencies

and topologies. Reference layouts of filters at different frequency bands and with

transmission zeros were designed and scaled to different frequency specifications. The

results of layout sizing have been discussed in the following subsections.
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Figure 70. Layout of a second order, capacitively coupled 5.5 GHz bandpass filter in
SONNET.

3.4.4.1 5.5 GHz bandpass filter scaling

The scaling methodology was applied to a capacitively coupled resonator bandpass

filter with a center frequency of 5.5 GHz and a bandwidth of 750 MHz. The cross

section of the layout is the same as that for the filter shown in Figure 63. The filter

has a lateral dimension of 2.3 mm X 2.3 mm. The layout of the filter is shown

in Figure 70. The filter has the same topology as the 2.45 GHz filter, shown in

Figure 67. Consequently, a similar segmentation procedure was applied to the layout.

For correcting the discrepancies due to via effects, which are prominent at higher

frequencies, higher order mapping functions were used for the center as well as the

matching capacitors. For example, the matching capacitor Cm1 in the layout in

Figure 63 with parameters Cp1, Cp2 and C were mapped to its length increment of

the capacitor plates from EM simulation data by 4th order polynomial functions as

Cp1 = 0.0079(W )4 + 0.00691(W )3 − 0.071(W )2 − 0.069(W ) + 0.0111 (68)

Cp2 = 0.0068(W )4 + 0.0051(W )3 − 0.056(W )2 − 0.041(W ) + 0.031 (69)

C = 0.012(W )4 + 0.0111(W )3 − 0.0168(W )2 + 0.061(w) + 0.0491 (70)

The improvement can be clearly seen in the S-parameters shown in Figure 71.
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Figure 71. Correlation between full-wave data (triangular) and data from scaling (solid)
for filters centered at 4.7 and 6.5 GHz based on coarse data of 5.5 GHz filter, shown
in the middle.

From the figure, it is clear that S11 has a better correlation between the scaled

models and the EM simulation due to the use of higher order polynomial fitting. The

poles of the filter have also been captured in the scaled layout. The reference layout

has been scaled to a filter at 4.7 GHz with a bandwidth of 550 MHz, and another filter

at 6.5GHz with a bandwidth of 750 MHz. The component values are within 3-5% to

that obtained from EM simulations. The circuit-level optimization took 5 minutes

on DELL PC with 2.8 GHz Pentium IV processor and 1 GB RAM. EM simulations

in SONNET of each segmented part with geometrical variation took on an average

of 10 seconds per frequency point with a cell size of 3 mils × 3 mils. Table 8 shows

the comparison of component values for three scaling test cases - between polynomial

mapped model and full-wave EM simulation.

Results in Table 8 show that the use of fourth order models gave better correlation

with EM data compared to the third order models in the first design.
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Table 8. Comparison of component values for three scaling test cases; between polyno-
mial mapped model (poly) and full-wave EM simulation (full-wave).

Center Freq(GHz) C m1(pF) CC(pF) C resn1(pF) L p(nH)

4.7 poly 0.411 0.072 1.12 1.22
full-wave 0.393 0.068 1.15 1.25

5.5 poly 0.350 0.061 0.98 0.96
full-wave 0.371 0.057 1.06 1.04

6.5 poly 0.260 0.051 0.84 0.90
full-wave 0.272 0.050 0.89 0.95

Figure 72. Ideal circuit schematic of the inductively coupled resonator filter.

Figure 73. Layout of the filter (with transmission zeros) in multi-layer LCP-based sub-
strate; (Top)-top plane, and (Bottom)- bottom plane of the filter structure.
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3.4.4.2 Filter with transmission zeros

The scaling method was applied to a different filter topology. The filter shown in

Figure 72 is an inductively coupled resonator bandpass filter. The feedback capacitor

C12, and the inductively coupled resonators provide multiple signal paths between

the input and output, that are out of phase, resulting in the transmission zeros. The

transmission zeros in the design allows controllability of the stopband attenuation and

rejection at specific frequencies. The layout of the filter is shown in Figure 73. The

layout has a lateral dimension of 3.9 mm × 4.1 mm. The cross section for the layout is

same as that shown in Figure 48. The spacing between the inductors, which controls

the inductive coupling in this design is an important design parameter. Further,

during EM modeling, the inductive lines on the lower plane were also segmented.

The top and bottom metal layers of the layout are shown in Figure 73. The EM

simulation results from the scaled geometries is shown in Figure 74. The scaled

model response was within 2-5 percent of EM simulations. It should be understood,

however, that the segmented lumped element technique which was seen to work very

well for 2 metal layer designs (considering the number of layers in which the passives

are embedded), will have problems with multi-layer designs (no. of metal layers >

3). This was realized in modeling the inductor coupling for the filter in Figure 73.

This is due to the electromagnetic coupling between multiple metal layers which is

not accurately captured by lumped models.

3.4.4.3 Dual-band filter

In the design of dual band filters, if the frequency bands are further away than the

scalability of each frequency band, then separate mapping functions need to be used

for the two filters. An ideal schematic of a dualband filter with operating center

frequencies at 2.3 GHz and 4.25 GHz have been shown in Figure 75. Let the entire

lumped circuit model vector for each of the two filters be defined by C1 and C2,

where the vectors are similar to that in Equation 54. Let, for the components for
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Figure 74. S-parameters of the reference and scaled filters; cyan represents the reference
design (1.8 GHz) and blue represents the scaled design(2.9 GHz).

Figure 75. Ideal schematic of the 2.3 GHz and 4.25 GHz dual-band filter.
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Figure 76. Layout of the 2.3 GHz and 4.25 GHz dual-band filter.

the first filter C1, ϕ1 represent the polynomials for mapping the model parameters

to geometries, and φ1 represent the mapping of the ideal component values to their

parasitics. Similar relations hold for C2 (in terms of ϕ2 and φ2). Therefore, in the

circuit level optimization of a dual-band design, the vector of parameters that is

optimized is given by

C1,2 = [C1c
s1 , φ

1(C1c
s1), C2c

s2 , φ
2(C2c

s2)]T , (71)

where C1,2 represents the components of the whole filter to be optimized; and ‘s1’,

‘s2’ are the number of components in each filter to be optimized. The geometries for

the design are extracted, which is similar to Equation 61 for a single band design as

g∗1iopt
= (ϕ1)−1

i1 (C1∗
i ), (72)

g∗2iopt
= (ϕ2)−1

i2 (C2∗
i ), (73)

where g∗1i, g
∗
2i, represent the extracted geometries for the two bandpass filters.

The layout of the dual-band filter is shown in Figure 76. The design consists of two

single band filters that were scaled from the 2.45 GHz and 5.5 GHz reference layouts.

The circuit model of the dual band design was optimized to meet matching conditions
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Figure 77. S-parameters of the dualband filter.

and reverse mapped to obtain the physical parameters of the dual-band filter layout.

The design has a lateral dimension of 6.8 mm × 3.3mm with a cross section shown in

Figure 48. The EM simulation results with the scaled geometries for the dual band

filter are shown in Figure 77. It consists of two band pass responses centered at 2.3

GHz and 4.25 GHz with bandwidths of 250 MHz and 300 MHz respectively. Scaled

design layout have a tunability of +/- 20 % with respect to center frequency with

a bandwidth tunability of 0.5-5%. This was expected since the single band designs,

from which the dual band filter is designed had similar scalability and tunability in

terms of the center frequency and bandwidth.

3.5 Augmentation for model tuning

The optimization scheme employed in the previous sections for the scaling of bandpass

filters is nonlinear in nature, and therefore more time-consuming. To improve the

efficiency of the layout sizing scheme, a linear optimization-based tuning technique

has been proposed in this section. This technique is based on the augmentation

methodology explained in Chapter 2. As explained in Chapter 1, the layouts of

the components are chosen from pre-designed libraries. In case of new designs, the
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Figure 78. High-level description for the tuning requirement in RF circuits.

design flow usually begins by choosing individual components from the predesigned

library. In many cases, the design values for the circuit components do not exactly

match with that of the library components. In this case, the component with the

closet value is chosen and its geometries are varied so that the required component

specs are met. Full-wave EM solvers are typically employed for the tuning of layouts.

Furthermore, when the layout components are connected via interconnects at a later

stage of the design flow, the interconnects add to the inductance, resistance and

parasitic capacitance of the overall circuit [9]. However, unlike broadband modeling

of components, during circuit tuning, the circuit’s frequency response needs to be

satisfied at only discrete and/or narrow band(s) of frequencies. Conventionally, the

circuit response is modified and manual EM iterations are required again to restore

the design specifications at the overall layout level. The aforementioned problem is

illustrated in Figure 78.

To address this sizing problem, the augmentation technique was applied to add

tuning elements to the existing broadband models in the previous section. The broad-

band models for the components of the design library constitute the initial model for
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Figure 79. Comparison of the S-parameters obtained from the connected broadband
model (data symbol:square), and that obtained from the EM simulation of the complete
filter layout in SONNET (data symbol:traingle).

Figure 80. Simulation setup for the tuning of the bandpass filter.

the filter. However, as explained before, the response of the filter changes due to the

addition of interconnects, required to physically connect the broadband models of the

passive components. The goal is to meet the frequency response of an RF bandpass

filter at specified frequency points. The difference in the S-parameters obtained, by

appropriately connecting (through netlists, without any physical interconnects) the

broadband models of the filter components, and the desired response is shown in Fig-

ure 79. The setup of the broadband models, with the tuning elements, for the entire

filter has been depicted in Figure 80. The results after applying the augmentation
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Figure 81. Comparison of the S-parameters obtained from the tunable broadband
model, and that obtained from the EM simulation of the complete filter layout in SON-
NET; the frequency points where the specifications need to be satisfied are shaded in
gray.

methodology, for tuning, are shown in Figure 81. The augmented models, after the

addition of tuning elements, for inductors and matching, resonator and center capaci-

tors, are shown in Figures 82 and 83, respectively. Since the two resonator capacitors

and the two matching capacitors are identical, only one tuned augmented model has

been shown for each of the same.

After adding the tuning elements, the port-to-port Z(or Y)-parameters can be

obtained to find the equivalent inductance/capacitance, the resistive loss and the

parasitic capacitance/inductance of the passive being modeled. At this stage, the

designer can look into the ANN-based design library to obtain the component with

the required electrical parameters (values of inductance, loss, parasitics etc.). Further,

the tuned model can be added to the existing library of broadband models to increase

the size of the model library, thereby reducing the number of iterations for future

designs.

To compare the results with ADS (employing non-linear optimization schemes),

the broadband model blocks in Figure 80 were replaced with S-parameter blocks,
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Figure 82. Tuned broadband model of the spiral inductor; the elements added dur-
ing broadband modeling is shown by vertical-lined boxes, and the tuning elements
have been shown by the hatch-lined boxes;Lsh2=6.8 nH, Csh1=1.2 pF, Rsh1=2.6 ohm,
Csh2=Csh3=0.22 pF, Rsh2=Rsh3=44 ohm, Lt1=0.43 nH, Lt2=4.45 nH

Figure 83. Tuned broadband model of the planar resonator capacitor; the elements
added during broadband modeling is shown by vertical-lined boxes, and the tuning
elements have been shown by the hatch-lined boxes; Lse1=0.4 nH, Rse1=1.2 ohm,
Rp1=Rp2=4.6 ohm, Ct2=5.87 pF, Ct1=Ct3=0.78 pF
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Figure 84. Tuned broadband model of the planar matching capacitors; the elements
added during broadband modeling is shown by solid-lined boxes, and the tuning ele-
ments have been shown by the dotted-lined boxes; Cs1=0.49 pF, Ls=0.65 nH, Rs=2.3
ohm, Ls1=0.22 nH, Cp4=Cp5=0.85 pF

Figure 85. Tuned broadband model of the planar center capacitor; the elements added
during broadband modeling is shown by solid-lined boxes, and the tuning elements
have been shown by the dotted-lined boxes; Cs1=0.13 pF, Ls=0.2 nH, Ls1=0.31 nH,
Rs=4.4 ohm
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corresponding to the individual layout components. As before, shunt and series tun-

ing elements were added to match the desired response. The comparison of the

S-parameters after optimization of the tuning elements are shown in Figures 86 and

87. It should be noted, that the results are, to some extent, sensitive to the choice

Figure 86. Comparison of the S21-parameters obtained from the augmentation-based
technique(corresponds to the response that is shifted to the right) and that obtained
from nonlinear, multi-variable optimization using ADS (corresponds to the response
that is shifted to the left).

Figure 87. Comparison of the S21-parameters obtained from the augmentation-based
technique (triangle) and that obtained from nonlinear, multi-variable optimization us-
ing ADS (circle).

of the nominal values of the tuning elements in the ADS. This is explained by the

fact that the choice of nominal values of the tuning elements, leads to a better con-

vergence in Figure 86, compared to Figure 87, that correspond to a different set of
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nominal values of the tuning elements. However, the nonlinear optimization scheme

employed in ADS has the advantage of solving all the unknown elements at the same

time, unlike the proposed approach where the number of simultaneous variables is

limited is determined by the rank of the augmentation coefficient matrix. However,

as shown in Figures 86 and 87, the ADS-based simultaneous optimization has its

own problem of choosing the nominal values for all the parameters. This problem of

choosing the nominal value can become intractable when the number of variables is

large (greater than 5-10). On the contrary, the augmentation scheme actually solves

for the least-squares estimate of the values and do not require any nominal reference.

3.6 Summary

In this chapter, an efficient and accurate library development and layout-level circuit

sizing methodology for the design of RF circuits in multi-layered organic substrate

with LCP dielectric material is presented. The circuit sizing technique is based on

layout segmentation, broadband modeling, polynomial mapping, and circuit-level op-

timization and tuning. An optimization technique based on ANNs and design space

exploration has also been discussed for the synthesis of embedded inductors and ca-

pacitors. Synthesized results for components and circuits show accuracy that is within

5% of EM simulation results. A linear optimization-based circuit sizing methodol-

ogy based on the augmentation technique has also been demonstrated. The tuning

methodology is fast compared to nonlinear optimization using ADS. Design cycle

time was significantly reduced since optimization were performed at the circuit level.

Filter layout scaling was demonstrated across different frequency bands (single band

as well as dual band), and circuit topologies. The mapping technique can be also

applied to diagnostic analysis of circuit layouts in batch processing where geometrical

variations affect the circuit performance.
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CHAPTER 4

STATISTICAL ANALYSIS AND DIAGNOSIS
METHODOLOGY FOR EMBEDDED RF PASSIVE

CIRCUITS

The design of wireless circuits for RF frequencies requires precise values of passive

components which is often not satisfied due to manufacturing variations, resulting in

yield loss. In addition, RF design procedures in SOP-based technologies are migrating

toward finer process features, that require tighter tolerances. Therefore, the circuit

performance measures and yield are becoming increasingly sensitive to process fluctu-

ations. These process fluctuations result from the buildup of variances at the different

stages of the fabrication. To alleviate this problem, performance and yield figures for

emerging technologies need to be analyzed during the design phase. However, fault

detection and diagnosis for RF circuits after manufacturing is a time-consuming step

in the design cycle. This is because multiple simulations of electromagnetic (EM)

during incremental variations of structures are required while varying different layout

parameters for correlation with the measured response. The focus of this chapter,

as shown in Figure 88, is the application of statistical methods that enable accurate

and efficient diagnosis of batch-fabricated RF circuits layouts. As demonstrated in

Chapters 2 and 3, LCP-based packaging technology is a cost-effective approach to

developing SOP-based RF circuits. As mentioned before, LCP material can be used

to fabricate large panels (12” X 9”). For realistic yield estimation in batch fabrica-

tion, evaluation of the statistical analysis of performance measures is important. The

picture of LCP panel with bandpass filers is shown in Figure 89.

The panel consists of 2,000 RF bandpass filters. The spread of the performance

measures (S21 and S11) for 50 such functional filters from the panel are shown in

Figures 111 and 91.

RF bandpass filter is one of most important blocks in an RF front-end. With
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Figure 88. Focus of Chapter IV (shaded) in the perspective of an RF CAD framework

Figure 89. (Left) Visual comparison of the filter size and (right)photograph of an LCP
panel.
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Figure 90. Measurement results of insertion loss (S21) for the fabricated filters.

Figure 91. Measurement results of return loss (S11) variations of an embedded RF
bandpass filter.
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the convergence of multiple frequency standards, the design of filters requires precise

controllability of the different performance measures. Due to the process variations,

only a portion of the batch-fabricated filters meet the allowed range of specifications.

The rest of the designs either depict functional failures (i.e. they do not possess

filtering property), or they exhibit parametric failures (i.e. they show large variations

in performance measures). As a result, prior estimation and optimization of yield

in such emerging technologies is critical for cost-effective manufacturing. It should

be noted, however, that the proposed statistical analysis and diagnosis approach is

generic in nature and can be applied to any multi-layer packaging technology. LCP-

based substrate was chosen as a proof of concept platform to validate the statistical

analysis methodology.

In RF designs, the physical effects of the layout, such as electromagnetic coupling

and parasitics affect circuit performance. The statistical analyses of RF circuits that

are based on circuit simulators are fast, but they do not provide accurate results. In

addition, the electrical characteristics of the embedded passive components (Ls, Cs,

Rs), operating at RF frequencies, are highly dependent on the geometrical as well as

the material properties. The conventional method to study the effect of component

variations on system performance is to perform Monte Carlo (MC) analysis [12].

However, as discussed in Chapter 2, the MC technique for EM simulations can be

time and memory-intensive. In addition, the MC analyses do not provide diagnosis

or fault-detection capability, since it does not map the variations in the electrical

parameters to the layout parameters.

The simulation time in general, for a method of moments (MoM)-based iterative

solver increases as O(n2), where n is the number of cells in the layout. Parametric

layout variations for sensitivity analysis (for example, optimetric analysis in Ansoft’s

HFSS) would require fine mesh setting of the test structures. Fine meshing is required

to accommodate small increments in the geometrical parameters of the layout, the
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stepwise increment process being typical in sensitivity analysis. Fine mesh settings

translate to large number of cells, which, in turn, requires large amount of memory.

Furthermore, the cell size of the mesh varies inversely as the highest frequency of

analysis. In other words, larger the highest simulation frequency, smaller is the cell

size. Hence, EM simulations for the statistical analyses at high frequencies (> 2GHz),

which require small cell size, is memory intensive. Classical worst-case analysis, in

this case, is limited by the large number of input-output parameters and impractical

simulation time. Clearly, there is a need for time-efficient, layout-level diagnosis

methodology of RF circuits in prototype designs, as well as in batch fabrication.

4.1 Statistical design and modeling

With a particular performance measure of an RF circuit, such as insertion loss (for a

bandpass filter), for a population of samples, a histogram such as the one shown in

Figure 93 can be obtained. The spread in performance, illustrated in the figure, is due

to inherent fluctuations in the manufacturing process. Local disturbances, caused by

spot defects in the manufacturing process, are the primary causes of the catastrophic

failures. Global disturbances, caused by process tolerances, are the primary causes

of the parametric variations. Statistical design refers to the study that attempts to

investigate and incorporate the effect of process variations on the circuit performance

for a realistic estimate of performance and yield [81]. This study requires statistical

circuit models that accurately reflect the process variations.

Statistical modeling for performance analysis/optimization is a new paradigm for

embedded RF circuits. Therefore, it is useful to follow the research and develop-

ment of statistical design and parametric yield optimization methods in digital IC

design flows. Based on the studies, the different approaches to generating statistical

parameters can be categorized as follows (as shown in Figure 92):

(a) Simulation based statistical modeling
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Figure 92. High-level methodology for statistical design.

(b) Measurement based statistical modeling

4.1.1 Simulation based techniques

Simulation-based statistical modeling is a “virtual” methodology that uses process

and circuit simulators as the sources of statistical data. Such techniques are useful in

the intial stages of process development, when test structures are unavailable. Such

a methodology is also useful when the existing parameters of a low-yield process is

incrementally improved.

The limitation of this approach, however, is that the inputs feeding the process

simulators, such as dielectric variations, board warpage, and other material properties

are not easily and efficiently characterizable in a fabrication line. Furthermore, the

large number of models in a process simulator creates an additional challenge for

calibration of the process simulator.
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Figure 93. Statistical distribution of a performance metric, illustrating the region of
acceptance, the region of parametric failure, and the region of catastrophic failure.

4.1.2 Measurement-based techniques

Measurement-based statistical modeling methods are practised in process-centric dig-

ital IC manufacturing. Measurement-based methods utilize high-speed, parametric

testers and process control monitors (PCMs) to capture process variations. The

practical advantage of the measurement based approach is that the pertinent device

and process characteristics are measurable, electrically. Therefore, it is possible to

develop a realistic model in a timely manner. The limitations of the measurement-

based methods, however, are in the techniques for data analysis and data reduction.

In addition, the correlation between the model parameters are not considered in this

type of modeling technique. Several researchers have recently addressed these issues

with more advanced statistical techniques for data analysis and generation of the

statistical models.
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Figure 94. Typical variation of a performance metric (S21) for a bandpass filter for
wireless applications.

4.2 Performance variations in RF bandpass filters

The RF bandpass filter is an important block in the design of an RF front end. With

the convergence of multiple frequency standards, the design of filters requires precise

controllability of passband ripple, bandwidth, stopband attenuation and harmonic

rejection. An example of the different performance measures for an RF bandpass

filter is shown in Figure 94 [56].

High performance, miniaturized bandpass filters have been designed on LCP across

different topologies to meet the different frequency specifications. These designs in-

clude inductively coupled resonator filters, coupled line filters and capacitively cou-

pled filter [9],[10]. Some of these designs are also based on hybrid topologies with

a combination of coplanar waveguide (CPW) and stripline configurations to ensure

volumetric compaction in multi-layer organic substrate. The filters are electromagnet-

ically shielded with top and bottom ground planes for reducing signal coupling from

the adjacent blocks. As mentioned in Chapter 1, the dimensional and the electrical

stability of LCP material allow RF electronic devices to be manufactured in laminate
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technologies. However, LCP-based processes may require strict process control for

RF passive components.

Data sheets for the LCP material are commercially available in [82]. In the data

sheet, thickness variation of 10%, and moisture absorbtion (at 23◦ C) of 0.04% has

been reported. The changes in the values of the capacitors of the filters can be

attributed to the change in the dielectric thickness. In addition, the capacitance

values are also affected by variations in the dielectric constant value, the latter being

affected by moisture absorption. Furthermore, in the manufacturing process, copper

etching is conventionally assumed to have 10% line width variation for the minimum

width lines. Based on these variations, the statistical analysis should be performed

to estimate the yield of a particular design.

Dielectric constant variation can be attributed to the water absorbtion of the di-

electric material. Since water has high dielectric constant (εr = 76.7) and loss tangent

(tanδ = 0.157), water absorption can change the electrical properties of the material

and degrade filter performance. Literature survey in the material characteristics of

LCP and FR4 core material has shown the validity (for all practical purposes) of a

linear change in the dielectric constant due to the water absorption. The following

relation can be written for the effective dielectric constant:

εreff
= εrwater(%water) + εrlcp

(1−%water), (74)

where %water is the percentage of water absorbtion. Dielectric constant values for

water and LCP material are εrwater = 76.7 and εrlcp
=2.9, respectively. Applying the

maximum water absorbtion of 0.04% in Equation 82 resulted in 1% change in the

dielectric constant. Although, this variation is very small for most high-speed elec-

tronic design and packaging applications, it proves critical, and, therefore, should be

considered for RF front-end analysis. It is important to note that though Equation 82

is an approximation, the methodology presented is transparent to this approximation.

The manufacturing variations for the organic bandpass filter have been listed in
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Figure 95. Flowchart of the statistical modeling and diagnosis methodology.

[56]. These manufacturing variations are assumed to have normal distribution with

their mean (µ) and standard deviation (σ) presented in the table.

4.3 Statistical modeling methodology for embedded RF cir-
cuits

A design of experiments (DOE)-based statistical modeling methodology was employed

in [56] for stochastic analysis and diagnosis of high-speed digital systems. In this

dissertation, a similar DOE-based simulation setup to efficiently characterize the sta-

tistical disturbance space has been implemented. Furthermore, the relation between

performance and design variations have been used for developing a parametric diagno-

sis methodology. The flowchart of the statistical analysis and diagnosis methodology

is shown in Figure 95.
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The process begins by identifying the key performance measures, significant pa-

rameters, and the statistical distributions of these parameters. After constructing

an accurate model of the system, the performance measures were approximated as

sensitivity functions of the design parameters through planned simulations. In this

dissertation, the stochastic modeling is multi-domain in nature. It takes into account,

the effect of electrical and mechanical parameter variations on the performance met-

rics of the devices being modeled. For example, to account for the thermo-mechanical

stress effects incurred in the large panels, the warpage model of the board was included

in the sensitivity analysis.

Linear and piecewise-linear (pwl) regression equations was used to map the mul-

tiple performance measures to the physical parameters. Linear and pwl regression

techniques are not suitable for obtaining response functions over wide ranges of pa-

rameters, they can be used for fast characterization in small (around 5% to 10% of the

nominal values) statistical variation space, which is the case for diagnosis. Yield and

performance analysis was performed after computing the joint probability distribution

(jpdf) of the analyzed performance measures. Parametric causes of the unacceptable

performances of an individual system was searched by using the information acquired

from the statistical analysis, thereby performing layout-level diagnosis.

Instead of catastrophic failures (Figure 92), this dissertation focusses on para-

metric failures, which occurs due to the variances of the component and the process

parameters.

4.3.1 Segmented lumped element modeling and simulation

Segmented lumped element modeling of circuits have been formally explained and

validated in Chapter 3. The lumped circuit models of the layout segments have been

shown in Chapter 3, and were combined to extract the filter performance measures in

the circuit simulator (Agilent’s HP-ADS). The layouts of the segmented components

were simulated in SONNET EM solver to extract the values of the circuit model
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parameters. This is because simulation of the entire filter layout, using a DOE scheme

in an EM solver, is computationally expensive.

As explained in [56], the design parameters were varied only within the statistical

variation ranges. Therefore, with due consideratation to practical error bounds, third

and higher order effects were ignored. The quadratic model for n design parameters

is given by

y = β0 +
n∑
i=1

βixi +
n∑
i=1

n∑
j=1

βijxixj + ε, (75)

where y is the approximated response, x’s are the design parameters, β0 is the in-

tercept term, βis are the coefficients of the first-order effects, βij are the coefficients

of the second-order effects and ε is the approximation error. If i 6= j, then βij is

called the interaction coefficient. One way to plan the experiments is to simulate

all combinations of the design factors at all levels. This is called the full-factorial

experimentation. If m is the level of the experiment plan and n is the number of

design parameters, a full-factorial experiment results in mn simulations. For a large

number of parameters in RF designs, a full-factorial experiment plan is prohibitively

time-consuming, especially for the requirement of the large number (mn) of full-wave

EM simulations. A 3-level, full-factorial plan, with n parameters and 3n experiments,

contains information on higher order interactions such as, linear and quadratic (xix
2
j)

and bi-quadratic (x2
ix

2
j ). These interactions are usually insignificant and are often

ignored. Therefore, in such cases, the number of simulations can be reduced without

incurring significant error, and fractional factorial experiment plans are obtained.

The number of simulations in the fractional factorial experiment plan is defined as

mn−p, where p is the fraction element. For example 34−1 plan simulates four factors in

27 simulations. The plan is 1/3 fraction of the 34 full factorial plan. Table 96 shows a

34−1 array, where 0’s, 1’s, and 2’s correspond to different levels of factors A, B, C and

D. The elements of the simulation matrix were coded values of the manufacturing

variations, where 1’s represent their mean, 0 and 2 are µ−3σ and µ+3σ respectively.
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Here, µ is the mean and σ is the standard deviation. The component values in the

table were obtained from SONNET EM simulations. Using the component values in

each row, ADS circuit simulations were performed to obtain the filter performance.

A second table was generated with the results for the filter performance measures.

Each row represented a different simulation condition. The filter performance was

therefore, related to layout parameters.

4.3.2 Sensitivity analysis

The effects of the parameters was plotted by averaging the response at each level.

For example, Figure 96 shows the sensitivities of certain performance measures with

respect to layout parameters, the slopes being the measure of sensitivity. For example,

Cmid is important for bandwidth, while Cresn1/ResL is important for insertion loss

(min attn or S21). Based on the linearity and piecewise linearity of the plots, the

performance measures can be represented as first-order linear approximations. For

example, a performance measure P i can be linearly approximated as a regression

equation [56] as

P i = βi0 + βi1X
1 + βi2X

2 + ...+ βinX
n + ε, (76)

where n is the number of layout parameters, βs are the sensitivity coefficients and

X i s are the layout parameters converted to the standard normal by (x − µx)/σx .

Regression errors are given by εi. For example, the sensitivity equations for the filter

for 1 dB bandwidth (BW 1dB), and attenuation at 2.1 GHz (attn 2 1 GHz) against

the layout parameters, such as, the width of the center capacitor (Cmid), the width

of the resonator capacitor (Cresn1/2), the width of the resonator inductor (ResL), the

matching capacitor width (Cmatch), and the dielectric constant of substrate (εr) are

given by

BW 1 dB = 0.1131− 0.0426(C mid) + 0.0023(C resn1) + 0.002(Resn L)U(Resn L)+

−0.004(εr)

(77)
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Table 9. Array showing the fractional factorial plan

Experiment A B C D=AB2C2

1 0 0 0 0
2 1 0 0 1
3 2 0 0 2
4 0 1 0 2
5 1 1 0 0
6 2 1 0 1
7 0 2 0 1
8 1 2 0 2
9 2 2 0 0
10 0 0 1 2
11 1 0 1 0
12 2 0 1 1
13 0 1 1 1
14 1 1 1 2
15 2 1 1 0
16 0 2 1 0
17 1 2 1 1
18 2 2 1 2
19 0 0 2 1
20 1 0 2 2
21 2 0 2 0
22 0 1 2 0
23 1 1 2 1
24 2 1 2 2
25 0 2 2 2
26 1 2 2 0
27 2 2 2 1
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Figure 96. Sensitivity plots for the filter performance measures against layout param-
eters; The layout parameters has been converted to standard normal by (x − µx)/σx;
Sensitivity plots have been shown for (a)insertion Loss, (b)attenuation at 2.1 GHz,
(c)lower 1 dB cutoff frequency, and (d)1 dB bandwidth.
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attn 2 1 GHz = 31.6096 + 1.3361(Resn L) + 0.2644(C resn1)− 0.3356(εr)

+2.9389(C match)
(78)

Here R2 represents the regression coefficients, a measure of model fitness [56], and is

computed as

R2 = 1−

27∑
1

[εi]
2

27∑
1

[P i − P̄ i]2
, (79)

and U is the unit step function. R2 values close to 1 indicate good predictive capability

of the regression equations. The simulation matrix was a resolution four L27(34)

fractional factorial plan. As explained before, the L27(34) matrix does not confound

single factor effects into two factor interactions. To show that the interaction effects

are negligible, the simulation plan and the filter performance were applied to response

surface regression (RSREG) procedures in SAS software [21]. It was seen that the

R2 values of the cross products (e.g. 0.0007, 0.0021, 0.0005, and 0.0005) were very

small compared to the corresponding R2 values of the linear terms (e.g. 0.7052,

0.8892, 0.9977, 0.9978). For min attn, ripple, BW 1dB and BW 3dB, the R2 values

of the quadratic effects are significant, therefore, these performance measures were

approximated by piecewise linear equations, the variables being insertion loss, ripple,

1 dB and 3 dB bandwidths respectively. The sensitivity coefficients were obtained

with least-squares approximation as discussed before. For example, the coefficients

for BW 1dB and attn 2 1 GHz were obtained as

[βBW 1dB] = ([E]T [E])−1[E]T [bW 1dB], (80)

[βattn 2 1 GHz] = ([E]T [E])−1[E]T [attn 2 1 GHz], (81)

where E is the simulation matrix (explained in Sec. IV A) , while [BW 1dB] and

[attn 2 1 GHz] are the simulation results from the Table generated using design of

experiments. In Equations 80, 81 the approximation error εi for the performance
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measure P i can be calculated as

[εi]27X1 = P i − [E](([E]T [E])−1[E]T )[P i], (82)

4.3.3 Extraction of probability density functions (pdfs) of performance
measures

Using the regression equations of the performance measures and the pdfs of the pro-

cess variations, the pdfs of the performance measures can be computed. The statisti-

cal variations of the layout parameters of components are independent of each other.

This provides a significant advantage in computing the filter performance based on

their variations. In general, let y be a random variable defined as

y = y0 + h1(x1) + h2(x2) + h3(x3) + ...+ hn(xn), (83)

where h1, h2, ..., hn are functions of the independent random variables x1, x2, ..., xn.

Then pdf of y is defined as

fy(y) = δ(y − y0)⊗ fh1(h1(x1))⊗ fh2(h2(x2))⊗ ...⊗ fhn(hn(xn)), (84)

where δ is the delta function, ⊗ is the convolution operator and fh1(h1(x1)), ..., fhn(hn(xn))

are the pdfs of h1(x1), ..., hn(xn) respectively . Given the pdf of a random variable xk,

fxk(xk), and a function hk(xk), the pdf of the random variable hk can be computed

as

fhk(hk) =
fxk(xk1)∣∣∣ḣk(xk1)

∣∣∣ +
fxk(xk2)∣∣∣ḣk(xk2)

∣∣∣ + .....+
fxk(xkn)∣∣∣ḣk(xkn)

∣∣∣ , (85)

where xk1, xk2, ..., xkn are solutions to the equation hk− ḣk(xk) = 0 for a specific value

of hk, and ḣk is the derivative of hk. For cases in (2), (3), where βk is the coefficient

from the regression equation. Then we have

fhk(hk) =
fxk(hk/βk)

|βk|
. (86)

Therefore, the pdfs of the performance measures can be computed by convolving the

pdfs of the summation terms in (76) as

fP i(P i) = δ(P i − βi0)⊗ f(βi1X1)⊗ f(βi2X2)⊗ ...⊗ f(βinXn). (87)
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Figure 97. Piecewise linear function approximation for the estimation of weakly non-
linear sensitivities.

It can be seen that some of the sensitivity plots in Figure 96 are piecewise linear. In

other words, a nonlinear sensitivity function can be approximated (with a practical

degree of accuracy) with piecewise linear functions. A three section piecewise linear

model has been illustrated in Figure 97.

A piecewise linear (pwl) relation between a variable x and a parameter y can be

written (for example, with the first two stages of the pwl function in Figure 97) as

y = β0 + β1x+ β2(x−BP )U(x−BP ) + ε, (88)

where β0,1,2 are the regression coefficients, BP is the breakpoint, ε is the regression

error, and U is the unit step function defined as U(x) = 1, if x ≥ 0 and U(x) = 0,

otherwise. Equation (12) can be rewritten as

y =

 β0 + β1x+ ε, ifx < BP

(β0 − β2BP ) + (β1 + β2)x+ ε ifx ≥ BP

 . (89)

The coefficients β0, β1, and β2 in (12) were obtained by the least-squares approxima-

tion of y with the parameters x and xU(x − BP )[20]. The pdfs of the performance

measures with linear and pwl terms can be written, as an example for P i, as

fP i(P i) = δ(P i−βi0)⊗ f(βi1X1)⊗ f(βi2aX2⊗βi2bX2U(X2))⊗ ...⊗ f(βinXn) (90)

Here X2 is a pwl term. The pdf for the piecewise linear terms in Equation 88 is
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computed as [83]

fy(y) =


fx(y/β1)
|β1| if y/β1 ≤ 0

fx(y/(β1+β2))
|β1+β2| if y/(β1 + β2) > 0

 . (91)

The pdf of pwl terms in Equation 88 in general for positive and negative βs can be

computed as

f(y) =
fx(y/β1)

|β1|
U(y/(−β1)) +

fx(y/((β1 + β2))

|β1 + β2|
× U(y/(β1 + β2)), (92)

Since fx(x) is normally distributed with µ =0 and σ =1, (fx(y/β))/ | β | is the

normal distribution of y with µ =0 and σ = β . Therefore, for the piecewise linear

terms y = β1x+ β2xU(x) , the pdf of y can be computed as

f(y) = N(y, 0, |β1|)U(y/(−β1)) +N(y, 0, |β1 + β2|)× U(y/(β1 + β2)), (93)

where N(r, µ, σ) is the normal pdf of the random variable r, with mean ‘µ’ and

standard deviation ‘σ’. For first order linear approximated performance measures,

the µ and σ values are computed as

µ = β0; σ =

√√√√ 4∑
i=1

β2
i σ

2
xi
, (94)

The mean (µ) and variance (σ) of the pwl function y are given by

µy =

∞∫
−∞

yfy(y)dy = β2/
√

2Π, (95)

σ2
y =

∞∫
−∞

y2fy(y)dy − µ2
y = (β1 + β2)2/2 + β2

1/2− β2
2/2Π. (96)

For piecewise linear approximated performance measures,the µ and σ values are com-

puted as

µ = βo +
n∑
i=1

βi2/
√

2Π, (97)
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Figure 98. Probability density function for the 3 dB bandwidth.

σ =
n∑
i=1

√
(βi1 + βi2)2

2
+

(βi1)2

2
− (βi2)2

2Π
, (98)

where βi1 and βi2 are the coefficients of xi and xiU(xi) terms. Similar analysis was

performed on the individual components of the filter. Using similar sensitivity curves

for the components and least square approximation, the values were approximated

by first order linear equations. Due to the normally distributed nature of the man-

ufacturing parameters, and first order linear equations, the components also have

normal distributions. Figure 98 shows the pdf for the 3 dB bandwidth using convo-

lution. Figure 99 shows the pdf for the minimum attenuation. The solid line is the

convolution while the dotted line gives the normal distribution, which displays good

agreement with the convolution results.

The convolution results have also been compared to the histogram of 100,000

random parameter instances applied to Equations 91 and 92. The convolution results

were multiplied by a constant for visual comparison with the histogram. Figure 100

and Figure 101 show the results. Close agreement is observed between the results from

the convolution technique and the histogram analysis, indicating that the convolution

results accurately represent the probability density function.
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Figure 99. Comparison of probability density functions for minimum attenuation using
convolution methodology(solid line) and normal approximation (dotted line).

Figure 100. Comparison of probability distribution of 3dB bandwidth; Convolution
(solid line) and random instances (histogram).
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Figure 101. Comparison of probability distribution of insertion loss (S21); Convolution
(solid line) and random instances (histogram).

In real-life applications, a few of the parameter distributions can be close to, but

not ideally normal. Skewness and kurtosis are the measures of the deviation from

normal distribution. They are defined as µ3/σ3 and µ4/σ4, respectively, where µ3

and µ4 are the third and fourth statistical moments and σ is the standard deviation.

Clearly, the skewness and kurtosis for normal distribution are 0 and 3, respectively.

For the random samples in Figure 99, the skewness and the kurtosis were computed as

0.1786 and 3.1112, indicating that they are distributed very close to normal. Similar

analysis on the 3dB bandwidth (Figure 98) results in a skewness of 0.0086 and kurto-

sis of 3.0146. It is possible to compute yield with the exact convolution results shown

in Figure 100. However, since the normal distribution is well defined in multivariate

space, mean, variance, and covariance of the approximate normal distributions have

been computed for the performance measures. The mean and variances of the ap-

proximate normal distribution of the performance measures were computed by adding

the mean and variances of the linear and piecewise linear terms.
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Figure 102. (Left) Photograph of a 12in × 9in LCP-based panel; (Right) Pictorial
representation of the board warpage (figure not to scale).

4.3.4 Warpage modeling

Integration of embedded passives in RF circuits requires reliability estimation in or-

der to maximize yield in batch fabrication. This subsection focusses on the effects of

warpage on the performance variations of the embedded RF components. A concep-

tual representation of board warpage (not to scale) is shown in Figure 102, alongside

a 9 in × 12 in LCP panel with embedded inductors and filters.

Warpage effects are critical in thin (∼30 mils) and large (18 in × 24 in) panels.

The dependence of warpage on board thickness has been illustrated in Figure 104[21].

Recent studies have also reported the deformations (due to warpage) of panels that

occur during thermal cycling with different substrates. The z-axis deformations for

LTCC, LCP, FR4 and Teflon materials have been illustrated in Figure 103[21].

From Figure 104, it is evident that, for thin panels, inclusion of the effect of

warpage on the performance variations is critical to realistic estimation of the manu-

facturing yield. This is because of thermo-mechanical effects that affect the electrical
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Figure 103. Out-of-plane displacement as a function of the distance from the center of
the board; multiple plots correspond to different board-level RF packaging substrates.

Figure 104. Board warpage as a function of board thickness.
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characteristics of the fabricated devices, in addition to the process variations. Out-

of-plane displacement (warpage) of the printed wiring board assemblies (PWBAs)

has raised concerns on the assembly quality and their long-term reliability. Since

the manufacturing of LCP-based panels is based on the PWB infrastructure, similar

problems are being encountered in the batch fabrication of embedded LCP-based RF

circuits.

Warpage of an organic PWB prevents surface-mount components from being

aligned with the pads on the board during the placement process. After the leads are

connected, the distances between the top surface of the PWB and the bottom surfaces

of the components will vary due to warpage. Such variations will unevenly stress the

interconnections and cause some of them and consequently (in some cases) the whole

assembly, to fail. In addition, warpage-induced displacement affects the inline place-

ment of the metallization layers of the embedded components (for e.g. capacitors and

stacked inductors), thereby affecting their values. Warpage can also cause die cracks,

via cracks, plated through hole (PTH) cracks, and delamination between different

material layers during the assembly process. Many material, geometry, and process

related parameters contribute to PWBA warpage.

From previous studies [21],[84],[85], the coefficient of thermal expansion (CTE)

mismatch has been recognized as the dominant material factor for board warpage.

From a geometric standpoint, the dimensions of the board and the components are

critical to warpage [84]. Structures with larger aspect ratios (ratio of length to thick-

ness) tend to generate larger warpage. In addition, the component layouts will affect

the shape of the deformed PWB surface. During assembly and temperature cycling,

PWBs and components experience a series of temperature variations. Large board

panels experience considerable mechanical stresses during the thermal cycles due to

mismatch in CTE (coefficient of thermal expansion) between the different layers,

containing the supporting prepreg layers, the embedded LCP layers, and the copper
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Figure 105. Two-plate model for the analytical calculation of board warpage.

metallization.

Large area (18 in × 24 in) processing which enables batch fabrication of devices

using embedded passives in LCP substrate is a new technology that has been discussed

in Chapter 1. The process enables the manufacturing of 2,000 - 10,000 devices on a

single panel. Analysis of the variation of the electrical characteristics of the circuit

components (e.g. inductance, capacitance) as a function of the spatial location of

the circuit on the board is critical to realistic yield estimation for large panels. This

is due to the reason that the statistical variance of performance measures, and the

failure of the designs increase with increasing distance of the circuit locations from

the center of the board.

The most straightforward model for thermo-mechanical stress analysis, for the

multi-layer stackup shown in Chapter 2, is a two-layer analytical plate model [84].

The top layer is assumed to be LCP and the bottom layer as prepreg. The thickness

of the LCP layer will be the combined thickness of all the individual LCP layers (in

this case, 1) and similarly for the prepreg layers.

The analytical plate model considers only two layers of the substrate as shown in

Figure 106. The assumptions are that the interface is mechanically well bonded, and

the two layers have in-plane isotropy with Youngs moduli, E1 and E2, Poissons ratios,

ν1 and ν2, and CTEs, α1 and α2. The first step is to get the curvature of the two-layer
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stackup for a specified temperature loading. The plate bends with a curvature of κR,

which is the inverse of the radius of bending (denoted as “R”) is given by

κR =
D1

C4

6h1h2 (h1 + h2) , (99)

where h1, h2 denote the combined thicknesses of the LCP and prepreg layers respec-

tively. Also,

C1 = E2
1h

4
1 ; C2 = E2

2h
4
2 ; C3 = E1E2h1h2. (100)

The coefficient C4 in Equation 99 can be obtained by combining the expressions for

C1, C2, C3 in Equation 100 as

C4 = C1 + C2 +
[
C3

(
4h2

1 + 6h1h2 + 4h2
2

)]
. (101)

In Equation 99, D1 is given by

D1 = E1E2 (α1 − α2) ∆T, (102)

where ∆T is the temperature loading for the process stage whose corresponding cur-

vature is computed. Here the single layer of LCP is 1 mil in thickness which is much

smaller compared to the combined thickness of the supporting dielectric layers (73

mils). Therefore, by using thin approximation [84], the curvature is given by

κR = 6
E1

E2

h1

h2
2

(α1 − α2) ∆T, h1 << h2, (103)

The maximum warpage displacement is given by Equation 104, where the curvature

κR is obtained from previous equations, as shown

WL = L2κR/8, (104)

where L is the diagonal length from the center of the board. Therefore, the warpage

of the board grows as the square of the distance from the point where it is held during

curing.
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Figure 106. Board warpage distribution as a function of the distance from the center
of the board (point of support during the thermal cycle.

Figure 106 shows the growth of the warpage as a function of the distance from

the neutral point, which in this case, is the center of the board. The dotted line

indicates the warpage levels within which the circuits statistically depict parametric

variations in performance measures. For warpage levels beyond the dotted line, the

statistical trend of circuits is functional failures instead of parametric variations. The

iso-warpage (similar warpage level) contours are circular in nature due the isotropy of

thermo-mechanical properties of the different layers in the stack-up. Accurate finite-

element modeling of test structures of embedded passives using ANSY STM in similar

stackup has been shown by [86].

In this dissertation, the filters consist of planar spiral rectangular inductors.

Therefore, the inductance does not undergo a significant change after deformation,

since it does not have any turns in the z direction. Therefore, the effect of capacitance

variations has been included in the sensitivity analysis. Linear regression analysis of

the performance measures to extract the probability density functions (using convolu-

tion methods) has been shown in Section 4.3.3. Capacitance variations of around 5-8

% due to such warpage effects for similar stackup and thermal cycling conditions have

been reported in [85]. The statistical analysis shown in this chapter is extended to

also take into account, the mechanical parameters of large panel fabrication. In this
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work, the design parameters are varied only within their statistical variation ranges.

Therefore, the third and higher order effects were ignored. As explained before, the

model parameters of the components are extracted from SONNET data and filter

response is generated using HP-ADS. Each performance measure was approximated

by linear and piecewise linear terms forming a regression equation. The statistical

distribution of the performance measures is extracted by computing the mean and

variance of individual components in the regression equation. The mechanical pa-

rameter variations are included in the regression equation for the components. For

example, the regression equation for the resonator capacitor is given by

C1 = 0.2125 + 0.07611(εr)− 0.0982(t)− 0.0231(wr), (105)

where εr, t and wr stands for dielectric constant, line width and warpage level re-

spectively. The regression equation is used to extract the mean and variance of the

capacitance as

µC1 = 0.2125 + 0.07611µεr − 0.0982µt − 0.0231µwr , (106)

σ2
C1 = (0.07611)2σ2

εr
+ (−0.0982)2σ2

t + (−0.0231)σ2
wr
. (107)

These multi-domain statistical parameters of the components are used to extract the

pdfs of the performance measures. The pdf for the capacitance C m1 and the insertion

loss of the 2.3 GHz filter (with the warpage variations) have been shown in Figure

107 and Figure 108 respectively.

In order to test the spatial effect of warpage on performance failures, a test board

was fabricated. The photograph of the LCP-based board has been shown in Figure

109. In Figure 109, it can be sen that the same filter designs (bunched as coupons)

have been placed at different locations of the board. The measurement results for

insertion loss (S21) and return loss (S11) for 50 filters on an LCP-based test board has

been shown in Figure 111 and Figure 110, respectively. The measurement results, in
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Figure 107. Probability density function of the capacitance for a capacitor after includ-
ing the effect of warpage.

Figure 108. Probability density function of the insertion loss (S21) after including the
effect of warpage.
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Figure 109. Fabricated panel of bandpass filters; The circles indicate different sets of
filters distributed across the board to study performance variability.

Figure 110. Measurement results of return loss (S11) for the fabricated filters.
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Figure 111. Measurement results of return loss (S11) for the fabricated filters.

Figure 112. Mean deviation of the measured results, from the design specifications, for
different coupons.

terms of the coupons at different locations on the board, have been grouped in Figure

112 to demonstrate the effect of warpage. As predicted by the simulation results,

the least variance in measurements for return loss (S11) was shown by the filters in

coupon 3, located at the center. The model-to-hardware correlation for S11 variations

have been depicted in Figure 113. From the correlation, it can be concluded that the

modeling technique was able to capture the variations with sufficient accuracy.
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Figure 113. Model-to-hardware correlation for average deviation of S11 from measure-
ments and the simulations (shown for coupon 1 and 3.

4.4 Diagnosis based on design scaling

Diagnosis is the process of detecting faults in circuits after fabrication, thereby im-

proving design yields. Fault diagnosis methodologies are prevalent in digital circuits.

In RF designs, however, the physical effects of layout affect the circuit performance.

In this part of the dissertation, diagnostic methods have been discussed for two sce-

narios: (a) discrete diagnosis to be applicable in the design of prototypes; and (b)

probabilistic diagnosis based on statistical analysis for batch-fabricated designs, re-

spectively.

In this part of the dissertation, the design scaling technique, discussed in Chapter

2, has been applied to the diagnosis of “prototype” designs. The variations in the

measurement data from EM simulation were applied to the layout-level scaling flow to

extract new layout geometries which are different from the origin layout parameters.

The result was non-unique since multiple combinations of layout variations gave the

same shift in frequency response characteristics. Certain designs met the process

constraints and were selected for a cross-sectional analysis by which faulty designs

could be detected. A flowchart of this prototype diagnosis methodology has been

illustrated in Figure 114.

The mathematical formulation of the layout sizing methodology has been ex-

plained in Chapter 3. This analysis has been extended to demonstrate prototype

diagnosis. To avoid confusion, the mathematical notations that were used in Chapter
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Figure 114. High-level methodology for the prototype diagnosis.

3 have been maintained in this section.

The measurement results of some of the fabricated filters show unacceptable vari-

ation from the desired frequency response. Multiple iterations of EM simulations

of entire layouts with incremental variations in component geometries, to meet the

measured response, can be time-consuming. A subset of the synthesized designs rep-

resents the possible defects in the fabrication, since some synthesized designs depict

geometry changes that are not in accordance with the fabrication rules. Let the set

of desired frequency characteristics of the filter (e.g. bandwidth, center frequency,

insertion loss, transmission zero location) be given by the vector as shown

λT = [λ1, λ2, ..., λi]
T , (108)

Let the frequency parameters for a device that show unacceptable variation of mea-

surement data from simulation results is given by

λ̃d = [λ̃1, λ̃2, ..., λ̃j]
T , (109)

where λ̃d is a subset of λT . λ̃d is used as the optimization goal in the circuit simulator
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to tune the components in order the meet the measured frequency response. The so-

lution, as stated before, is non-unique as different variations in component geometries

lead to similar shift in frequency response. This is achieved by setting different sets

of optimization variables in Agilent’s ADS. Let the multiple synthesized component

sets that meets λ̃d be given by

[C1
1 , C

1
2 , .., C

1
k1 ]T , [C2

1 , C
2
2 , .., C

2
k2 ]T , ....., [Cn

1 , C
n
2 , .., C

n
kn ]T , (110)

where n is the number of optimization variable sets and ki is the number of variables

in the ith set. Using reverse polynomial mapping, as explained in Section 2.4.2, the

modified geometry sets can be obtained as

gim = ϕ−1
im(Ci

m), (111)

where Ci
m is the mth component of the ith synthesized set, and gim is the corresponding

geometrical parameter. The modified geometry sets for the optimized components of

the synthesized layouts is given by the vector set

[g1
1, g

1
2, .., g

1
l1 ]
T , [g2

1, g
2
2, .., g

2
l2 ]
T , ....., [gn1 , g

n
2 , .., g

n
ln ]T . (112)

Here li is the number of layout parameters in the ith synthesized layout. The ini-

tially synthesized dimensions, and those after tuning (to meet measured frequency

characteristics) are related as

gsynf = gsyni + δ, (113)

where gsyni , gsynf , are the initial and final synthesized dimensions, respectively, and δ

represent the change in geometry. This results in multiple sets of increment/decrement

in component geometries for multiple instances of synthesized layout as

[δ1
1, δ

1
2, .., δ

1
l1 ]
T , [δ2

1, δ
2
2, .., δ

2
l2 ]
T , ....., [δn1 , δ

n
2 , .., δ

n
ln ]T . (114)

When δ is positive, gsynf is greater than gsyni . From a fabrication perspective, this

means under-etching of metal lines. Similarly, a negative δ indicates over-etching of
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Figure 115. S11 and S21 of initial layout (S21 shifted to the left) and multiple instances
of final synthesized layout (S21 shifted to the right and narrow bandwidth) that overlap
with measurement data.

the lines. Statistical results of fabrication in this process show that the probability of

over-etching is 80 % compared to under-etching. Therefore, the sets in Equation 114,

that are predominant in negative δs (corresponding to over-etching), are selected.

These sets are then compared with the fabricated designs to detect component faults.

The frequency characteristic for the initial and final synthesized design (to correlate

with measurement data) is shown in Figure 115. Figure 115 depicts the measurement

for the fabricated prototypes for the filter design shown in Figure 32, in Chapter 2.

The measured response shows a change of 5.5 % in bandwidth and 1 % change

in center frequency. Based on the synthesis technique outlined above and in Chapter

2 (Section 2.4.2), the variation in component geometries for different synthesized

layouts is shown in Table 10. Based on the optimization variables that were selected,

Table 10. Variations(unit:mils) in the physical parameters in the synthesized filters, to
exhibit similar frequency response as the fabricated prototype: Test case 1

Layout Instance δ(C m1) δ(CC) δ(C resn1) δ(L1)

1 -0.5 +0.6 X -1.0
2 -0.7 +0.4 -0.7 X
3 -0.5 +0.75 -0.4 -0.7
4 X +0.6 -0.3 -0.8
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different sets of components have been scaled in different instances of the synthesis.

An “X” in the table, indicates that the physical parameters of the corresponding

component were not perturbed during the scaling procedure. In this example, all the

sized instances have more number of decrement in geometries, and hence, all of these

layouts were compared with the lateral cross section of the fabricated device for fault

detection. The following inferences can be obtained from Table 10. The variations in

instance 1 implied excessive etching for L, which, from process rules, is not accurate.

Further, instances 3 and 4 implied high under-etching in CC and discrepancy in over-

etching levels in C resn1 and L1. Therefore, instance 2 bears highest resemblance

with fabrication faults in resonator and matching capacitors. This was confirmed

by measurements on multiple fabricated devices. This layout was then selected for

redesign. The methodology did not require multiple time-consuming EM simulations

of the whole layout with variations in different physical parameters for correlation

with the measured response. The synthesis of each layout instance took 10 minutes

on a 2.6 GHz Pentium(R) DELL PC with 1 GB RAM.

This includes the time for circuit optimization and polynomial mapping. In con-

trast, an EM simulation in SONNET, (on the same machine) for the entire filter,

took 7.5 minutes for every frequency step of 0.1 GHz with a cell size of 1 mil X 1 mil.

The simulation time in general for a MOM-based iterative solver increases as O(n2),

where n is the number of cells in the layout. Hence, in diagnosis of RF circuits with

small cell sizes to capture the etching effects, this approach can be very useful, com-

pared to a full-blown EM analysis. This is specially important for batch fabrication.

Diagnosis has also been applied to filters with one/two transmission zeros and have

been confirmed through measurement data, as shown in the following test case.

4.4.1 Filter with transmission zeros

In this section, the test case under consideration is an embedded bandpass filter

with transmission zeros. The layout of the filter is shown in Figure 116, while the
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Figure 116. Prototype diagnosis for test case II; A second order bandpass filter with
transmission zeros.

two EM simulation results with design variations are shown in Figure 117. The

designs show variations in the center frequency, the bandwidth and the location of

the transmission zeros. In contrast, no significant change in the insertion loss and the

return loss characteristics were observed. The aim, as before, was to synthesize the

variations in the geometries such that its frequency response bears resemblance with

the fabricated prototype. Similar lumped element modeling and mapping, explained

in the previous section and in Chapter 3 were used in circuit-level optimization to

meet the response (which shows a shift to the right in Figure 117). As an example, the

matching capacitors have polynomial based models of its components and parasitics

as shown

Cp1 = 0.0079(W )4 + 0.00691(W )3 − 0.071(W )2 − 0.069(W ) + 0.011 (115)

Cp2 = 0.0068(W )4 + 0.0051(W )3 − 0.056(W )2 − 0.041(W ) + 0.031 (116)

C = 0.012(W )4 + 0.012(W )3 − 0.0168(W )2 + 0.061(W ) + 0.0491 (117)
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Figure 117. S-parameters for the faulty design(green) and the correct design(pink).

where W stands for the width of the capacitor plate. Similar polynomial-mapped

models were derived for all the segmented sections. These models were used for

lumped circuit optimization. The inverse of the polynomial curve-fits were used to ex-

tract the geometries from the optimized component values. The increment/decrement

in component dimensions have been shown in Table 11.

Table 11. Variations(unit:mils) in the physical parameters in the synthesized filters, to
exhibit similar frequency response as the fabricated prototype: Test case 2

Layout Instance δ(C m1) δ(CC) δ(C resn1) δ(L1)

1 X +0.5 +1.5 -0.5
2 -0.5 +0.4 1 X
3 -1 +0.75 2 -0.75
4 X +0.6 0.6 0.5

Measurement of the device cross-sections confirmed that the variations in the 2nd

layout instance correlated with the manufacturing fault. This clearly reduces the time

for EM iterations to diagnose the layout defects in the fabricated designs.
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4.5 Diagnosis based on statistical analysis

As mentioned before, LCP technology provides a platform for batch fabrication of RF

circuits with embedded passives. As a result of the statistical variations in design and

operational parameters, some circuits display unacceptable variations in performance

measures. For example, for a bandpass filter, the variations can be in bandwidth,

center frequency, return loss etc. For a functional design in this condition, the in-

formation extracted from the aforementioned statistical analysis can be utilized as a

diagnosis tool.

Using the diagnosis methodology, the most probable layout parameters causing

the unacceptable variations in performance measures can be systematically searched.

The statistical framework, discussed in Chapter 4, can be employed to estimate the

variations in the design and operational parameters for the measured variations in

system performance. Here the analysis can be broken into two sections. When the

number of performance measures in a design is less than the number of layout param-

eters, it suggests infinite number of solutions and therefore a probabilistic approach is

used. When the number of performance measures is more than the number of physi-

cal parameters, it suggests a solution of linearly independent equations. A flowchart

that depicts the high-level flow of statistical diagnosis is shown in Figure 118.

4.5.1 Number of performance measures less than number of physical pa-
rameters

For explaining the diagnosis approach, let [X] and [Y ] be the random vectors for n

layout parameters and m performance measures, respectively. The functional rela-

tion between [X] and [Y ] is obtained by characteristic DOE-based simulations, as

explained in the Chapter 4 (Section 4.3.2). If n is greater than m, then a unique

solution of [X] does not exist for a measured set of unacceptable performance metrics

[Y ]. Hence, the real parameter(s) causing the failure cannot be accurately decided.
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Figure 118. High-level flow for statistical diagnosis.

However since all design parameters are associated with pdf s, the most probable so-

lution can be searched. The conditional pdf of the parameter vector [X] for measured

performance y is defined as [56]

f(X|Y = y) =
f(X, Y )

f(Y )
, (118)

where f(X, Y ) is the joint pdf (jpdf ) of the random vector of the design parameters

and performance measures [XTY T ]T . Then, the expected value of f(X|Y = y) is the

most probable parameter set causing the failure. Let Ỹ = [P 1, P 2, ..., Pm]T be the set

of unacceptable performance measures. Equations for the performance measures can

be rewritten by subtracting the intercept terms (β10, β20, ..., βn0) from Ỹ resulting in

Y = βX + ε, (119)

where X is the parameter column, and Y ,β and ε are defined as

Y =



P 1 − β10

P 2 − β20

.............

P n − βn0


β =



β11β12......β1k

β21β22......β2k

.......................

βn1βn2......βnk


ε =



ε1

ε2

...

εn


(120)
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The error column ε is a gaussian random vector with a zero mean computed from

the approximation errors. Since X and Y are gaussian random vectors, a new random

vector Z can be defined as Zn×1 = [XTY T ]T . Then, the pdf of Z is equivalent to the

jpdf of X and Y , which can be computed as

fZ(Z) = fX,Y (X, Y ) =
Exp{−1/2([Z]− E[Z])TCov(Z)−1([Z]− E[Z])}

(2π)2 |Cov(Z)|1/2
(121)

where E[Z] = [µTX , µ
T
Y ]T , and Cov(Z)n×n is a matrix composed of covariance matrices

of X and Y vectors given by

Cov(Z) =

 Cov(X,X)Cov(X, Y )

Cov(Y,X)Cov(Y, Y )

 (122)

It is important to note that for independent design parameters, Cov(X,X) is the

diagonal matrix of the parameter variances. The expected value of the conditional

pdf in Equation 118 can be computed as

E[X|Y = y] = µX + Cov(X, Y )[Cov(Y, Y )]−1(Y − µY ) (123)

Since X and Y are related through the linear regression operator, defined in Equation

119, as Y = βX + ε, then

µY = βµX , (124)

Cov(X, Y ) = Cov(X,X)βT , (125)

Cov(Y, Y ) = βCov(X,X)βT + Cov(ε), (126)

where Cov(ε) is the covariance matrix of the error vector in Equation 119. Substitu-

tion of Equations 124 through 126 results in

E[X|Y = y] = µX + Cov(X,X)βT [βCov(X,X)βT + Cov(ε)]−1(Y − βµX). (127)
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4.5.2 Number of performance measures more than number of physical
parameters

Let An×m be the linear sensitivity matrix that relates n performance measures Yn×1

to m physical parameters Xm×1, by

Y = Y0 + AX + ε, (128)

where Y0 is a constant vector, and ε is the regression error vector. Provided that

(ATA)−1 exists, for n ≥ m, the least-squares solution is computed as shown

X̂ = (ATA)−1AT (Y − Y0). (129)

The sensitivity equations of the matrix A, which correspond to its rows, should be

linearly independent. Otherwise, the matrix (ATA)−1 is singular and not invertible.

If two sensitivity equations in matrix A are linearly dependent, the corresponding

performance measures are highly correlated. Therefore, such performance measures

should not be included in the sensitivity matrix, simultaneously. Correlation coeffi-

cient among two performance measures y1 ∈ Y and y2 ∈ Y , is defined as:

ρy1,y2 =
Cov(y1, y2)

(σy1)(σy2)
(130)

where Cov(y1, y2) is the covariance, σy1 and σy2 are the standard deviations of y1 and

y2, respectively. The correlation coefficient takes values between -1 and 1, where large

values of | ρ | indicate high correlation. The covariance values for the performance

measures of the filter were computed as

Cov(ym, yn) =
4∑
i=1

4∑
k=1

 (βm−iaβn−ka)

2
+ (βm−ia+βm−ib)(βn−ka+βn−kb)

2

− (βm−iaβn−ka)

2π

δ(i− k) (131)

where βm−ia, βm−ib and βn−ka, βn−kb are pwl coefficients of the filter performance

measures ym and yn, respectively. For the manufacturing parameters with linear sen-

sitivity relations, βm−ib = 0 and βn−kb = 0. The covariance matrix can be computed
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by using Equation 131 and the regression coefficients of the sensitivity equations. The

standard deviations of the performance measures are shown in Table 12.

Table 12. Statistical parameters of the filter performance metrics: Test case I

Performance metric Mean(µ) Standard Deviation(σ)

min attn(dB) 2.1714 0.0743
Ripple(dB) 0.4894 0.0613

f1(GHz) 2.3525 0.0437
f2(GHz) 2.4271 0.0474

BW 1dB(GHz) 0.114 0.0041
BW 3dB 0.135 0.0065

It was observed that many of the performance measures are highly correlated.

Therefore, the sensitivity equations are linearly dependent. Amongst linearly depen-

dent equations, only one equation and associated performance measure can be used

for diagnosis. For example, in this case study, the center frequency was selected

from the linearly dependent group. Then, the sensitivity functions of insertion loss

(min attn), inband ripple and the center frequency were considered for diagnosis as

these parameters were linearly independent. It resulted in three equations to solve

four manufacturing parameters. In this case, there is infinite number of solutions.

However, for a measured unsatisfactory filter response, the most probable manufac-

turing parameter set can be searched. Therefore, probabilistic diagnosis was adopted

for this filter. The most probable parameter vector can be written as

(X : f(X|Y = y)max) = µX + Cov(X, Y )[Cov(Y, Y )]−1(Y − µY ), (132)

where (X : f(X|Y = y)max) is the most probable layout parameter vector X for

a measured filter performance y; µX and µY are the expected values of X and Y ;

Cov(Y, Y ) is the covariance matrix of the performance measures; and Cov(X, Y ) is

the covariance matrix of the layout parameters and the performance measures. The

mean values of the performance measures were presented in Table 12.
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For example, the faulty Y and µY vector for min attn, ripple and f2 are defined

as

Y =


min attn

ripple

f2

 µY =


2.1784(dB)

0.5894(dB)

2.3855(GHz)

 (133)

Covariance matrix of the performance measures Cov(Y, Y ) was computed using Equa-

tion 131. Applying the regression coefficients results in

Cov(Y, Y ) =


0.0055 − 0.0006 − 0.0022

−0.0006 0.0038 0.0023

−0.0022 0.0023 0.0021

 (134)

Elements of the covariance matrix Cov(X, Y ) is computed as [56]

Cov(xi, yn) =
βn−ia

2
+
βn−ia + βn−ib

2
, (135)

where βn−ia and βn−ib are the piecewise linear coefficients of filter performance mea-

sure yn, for the layout parameter xi. For parameters with linear sensitivities, βn−ib =

0. Applying the regression to Equation 124 results in

Cov(X, Y ) =



−0.0297 0.0560 0.0414

−0.0038 0.0123 0.0041

0.0023 − 0.0057− 0.0046

−0.0539 − 0.0045 0.0180


(136)

Then using Equation 132, the most probable vector of layout parameters for a mea-

sured set of performance can be computed. Multiple examples illustrate the accuracy

of the diagnosis methodology.

4.5.2.1 Test case:I

The test case under consideration, for probabilistic diagnosis, is the the layout shown

in Figure 32 (Chapter 2). From Table 12 as the 1st example, a vector of layout parame-

ters with random values was chosen according to the statistical distributions, and was
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modeled and simulated. The resulting performance measures are min attn=1.9933

dB, ripple=0.6513 dB and f2 (higher side of 1 dB frequency) =2.5342 GHz. For this

filter, the center frequency has shifted to a higher frequency and hence does not pass

the intended band. The performance results were applied to Equation 132. Table 13

shows the simulated and estimated manufacturing variations in the second and third

columns.

Table 13. Comparison of the diagnosis results with measured variations: Case I

Layout Random input Estimated Least squares
parameter parameter parameters solution

Resn L µ+ 2.29σ µ+ 2.26σ µ+ 1.52σ
C resn µ+ 1.34σ µ− 1.66σ µ− 3.95σ
C mid µ+ 0.71σ µ− 0.35σ µ− 6.64σ

C match µ+ 1.92σ µ+ 2.47σ µ+ 2.76σ

It can be seen that most of the parameters are estimated close to their actual

values. The fourth column in the table is the result obtained from the least square

solution computed using (56). As explained before, the least-squares solution can be

erroneous due to the ill-conditioned sensitivity matrix.

In the 2nd example, with non-random parameter variations, certain parameters

like ResnL and ResnC had +3σ variations from their mean values. The resulting

performance measures where min attn=2.4082 dB, ripple=0.4572 dB, and f2=2.253

GHz. Consequently, a shift is observed in the center frequency and change in the

attenuation at 2.1 GHz. As a result, the filter violates the performance specifications.

From Table 14, it can be seen that the estimated values captures the significant values,

thereby enabling diagnosis.

In example 3, the other parameters were given 3σ variations. The resulting per-

formance measures were min attn=2.5107 dB, ripple=0.612 dB and f2=2.314 GHz.

There has consequently been a shift in frequency and well as attenuation along with

return loss. Estimated layout parameters are presented in Table 15.
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Table 14. Comparison of the diagnosis results with measured variations: Case II

Layout Input Estimated
Parameter parameters parameters

Resn L µ− 3σ µ− 2.65σ
C resn µ− 3σ µ− 2.32σ

C match µ µ− 0.06σ
C mid µ µ− 0.79σ

Table 15. Comparison of the diagnosis results with measured variations: Case III

Layout Input Estimated
Parameter parameters parameters

Resn L µ µ− 0.73σ
C resn µ− 3σ µ− 3.17σ

C match µ µ− 0.46σ
C mid µ− 3σ µ− 1.68σ

As before, it is evident that estimated values capture significant variations. In ad-

dition, it is clear that the diagnosis technique do not give the exact statistical variation

of the layout parameters in batch fabrication, but it captures the dominant variations.

The results of statistical distributions show good correlation obtained from that us-

ing Monte Carlo methods. However, with the extensive lumped element model and

having statistical distributions on all the model elements, Monte Carlo simulations

took 36 hours on DELL PC with 2.4 GHz processor and 1 GB RAM. Clearly, layout-

level statistical analysis using Monte Carlo methods is computationally prohibitive.

Further, Monte Carlo cannot be used for layout-level diagnosis. The methodology

shown in this chapter diagnoses parametric faults occurring due to manufacturing

variations.

4.5.2.2 Test case:II

A second example for statistical analysis and diagnosis is the filter with transmission

zeros shown in Figure 116. Using the regression analysis on the fractional factorial

array of the design (consisting of 27 simulations), a subset of the sensitivity equations
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has been shown

attn 3 7 GHz = 40.489 + 0.025(Cmid)− 0.0083(resnC)

−0.005(resnL)U(resnL) + 0.005(εr) (R2 = 0.995)
(137)

f1 = 2.5213− 0.029(resnC) + 0.0056(Cmatch) − 0.0547(resnL)− 0.0034(εr)

(R2 = 0.980)

(138)

BW 1dB = 0.4413 + 1.3361(Cmid) + 0.0644(resnC)− 0.3356(εr) + 0.0389(Cmatch)

+0.0755(resnL) (R2 = 0.980)

(139)

The probability density functions of the performance measures were computed us-

ing the convolution methodology, explained in Chapter 4. The mean and standard

deviation for the performance measures using has been shown in Table 16.

Table 16. Statistical parameters of the filter performance metrics: Test case II

Performance metric Mean(µ) Standard Deviation(σ)

min attn(dB) 1.1714 0.0443
attn 3 7 GHz(dB) 40.589 0.0718

f1(GHz) 2.5213 0.0657
f2(GHz) 3.1871 0.0874

BW 1dB(GHz) 0.4413 0.0156
BW 3dB 0.6618 0.0082

Here attn 3 7 GHz is the transmission zero location at 3.7 GHz. The covariance

of performance measures was computed to be

Cov(Y, Y ) =


0.0075 − 0.0034 0.0049

−0.0034 0.0017 0.0034

0.0049 0.0034 − 0.0049

 (140)

Here the vector for the performance measure is given by

Y =


attn 3 7 GHz

BW 3dB

min attn

 µY =


40.4894(dB)

0.6618(GHz)

1.1714(dB)

 (141)
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For diagnosis, we needed to extract the covariance matrix between the performance

measures and the physical parameters. This was calculated as [56] , and evaluated to

be

Cov(X, Y ) =



−0.0458 0.0791 0.0624

−0.0058 0.0325 0.0031

0.0021 − 0.0037 − 0.004

−0.0439 − 0.0035 0.0280


(142)

For statistical diagnosis, the ideal design specifications were compared with the statis-

tical variations of the design parameters. The information obtained for the statistical

spread around the ideal specifications can be used, along with the covariance ma-

trices, to obtain the feasible variation of the physical parameters. Table 17 shows

the comparison between the observed and the estimated variations for a randomly

selected design on the panel. Using the analysis and results obtained above, prob-

Table 17. Comparison of the diagnosis results with measured variations

Layout Input Estimated
Parameter parameters parameters

Resn L µ− 0.25σ µ− 0.83σ
C resn µ− 2.85σ µ− 3.17σ

C match µ+ 0.15σ µ− 0.34σ
C mid µ− 3.23σ µ− 2.78σ

abilistic diagnosis was performed. Clearly, the methodology closely estimates the

major variations.

4.6 Simulation with non-gaussian parameters

In statistical analysis of sensitivity data, many of the parameters are statistically

related, thus requiring the use of the parameters’ correlation coefficient matrix. Also,

certain process distributions are not “purely” gaussian in nature. Since the methods

for generating arbitrary sets of statistical parameter data are based on the concepts
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of multivariate analysis, transformation of non-gaussian data to the gaussian/normal

distribution domain is critical.

Appropriate transformation methods are necessary to convert non-gaussian raw

data to the gaussian domain. With the input parameters represented in terms of gaus-

sian distribution, the techniques from multivariate statistics (explained in the previous

sections) can be used to generate the statistical metrics of performance parameters.

The statistical methods that are employed for the extraction of the distribution of

performance measures, requires the data to be in the Gaussian/normal domain. Typ-

ical Monte Carlo simulations in circuit analysis consist of applying random variations

in the design parameters and performing SPICE simulations to extract the circuit

response.

In Section 4.3.3, it was shown how convolution methods are used to extract distri-

butions of performance measures from sensitivity data. In this part, the response sur-

faces are extracted from sensitivity data. For random variations of the design/process

variables, the corresponding perturbed values of the performance measures can be ob-

tained by using least-squares method to approximate the response surface. Figure 119

shows the unnormalized pdf of the insertion loss of the 2.3 GHz filter in the dualband

design by using the response surface. Figure 120 represents the same distribution

obtained from full-scale Monte Carlo analysis in ADS using lognormal design param-

eters. It can be seen that the response surface based method is in good agreement

with the results obtained from the Monte Carlo analysis.

However, extraction of response surfaces with a large set (n>6) of critical, vari-

ational parameters becomes mathematically involved [14]. A simple but powerful

alternative is to transform the non-gaussian raw data into the gaussian domain. By

transformation, it is possible to view normal probability plots, run standard tests for

normality, skewness and kurtosis. The square-root (n = 1/2), lognormal (n = 0), and
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Figure 119. Probability density function of the Insertion Loss using the response surface
methodology.

Figure 120. Probability density function of the Insertion Loss using Monte Carlo sim-
ulations in ADS with non-gaussian parameters.
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reciprocal (n = −1) transform from literature [12] are generally sufficient to trans-

form the “skewed” data into the gaussian domain. Let x be the original variable, and

y its transformed value; then the following transform can be applied

y = a+ c(x+ b)n for n 6= 0 (143)

y = a+ c log(x+ b) for n = 0 (144)

If y is the transformed value of x by the function g, i.e. y = g(x) then, as shown by

[87]

fx(x) = fy(g(x))

∣∣∣∣dg(x)

dx

∣∣∣∣ , (145)

where f denotes a density function. With this new non-gaussian density function

fx(x) the first and second moments can be expressed as shown [87]

µx =

∞∫
−∞

xfx(x)dx, (146)

σ2
x =

∞∫
−∞

x2fx(x)dx. (147)

An important set of transformations are those associated with lognormal distribution.

With x lognormal distributed, so that y = logx is distributed gaussian, the conversion

from log-normal to the gaussian domain is given by

µy = log µx − 1/2(log(
σ2
x

µ2
x

+ 1)), (148)

σ2
y = log(

σ2
x

µ2
x

+ 1). (149)

With the aid of a few mathematical manipulations, it is straightforward to show that

the inverse transformation (gaussian domain to log-normal domain)is given by

µx = exp[(µy + 0.5σ2
y)], (150)

σ2
x = (eσ

2
y − 1) exp[(2(µy + 0.5σ2

y)]. (151)

The transformation of a lognormal technology variable to gaussian data form and

applying to the aforementioned statistical framework for the calculation of the pdf of

the insertion loss , as shown in Figure 121 and Figure 122.
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Figure 121. Lognormal distribution of the Insertion Loss.

Figure 122. Probability density function of the Insertion Loss after conversion from the
lognormal distribution to the gaussian distribution.
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4.7 Summary

In this chapter, an efficient, multi-domain statistical analysis and diagnosis framework

for RF passive circuit layouts such as bandpass filters is presented. The circuits

are composed of quasi-lumped embedded inductors and capacitors in multi-layer,

laminate-type, organic substrate like liquid crystalline polymer (LCP). The statistical

methodology includes modeling of board warpage and dielectric variations that are

critical for large panel fabrication. In this approach, the statistical variations of

the layout parameters are mapped to performance measures through circuit and EM

simulations, based on fractional factorial arrays. The stochastic analysis framework

was utilized as a diagnosis tool to estimate the variations of RF circuit layouts for

measured performance variations. The concept has been validated by the design and

fabrication of embedded RF bandpass filters. The results of statistical analysis and

diagnosis show good correlation with measurement/EM data. Finally, appropriate

transformation techniques for analysis with non-gaussian distributed parameters have

also been discussed.
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CHAPTER 5

YIELD OPTIMIZATION OF RF PASSIVE CIRCUITS

In the fast paced competitive market of electronic products, the time-to-market and

cost hold the key to economic survival. High manufacturability of electronic product

designs minimizes lead time and costs. Design and manufacturing are key activities

in the realization of electronic products. Due to the surge in the consumer wireless

industry, the process of electronic product realization has assumed multidisciplinary

proportions, and hence, design and manufacturing activities are no longer indepen-

dent ventures. There is a need for electronic product designers to collaborate with

manufacturers, gain essential knowledge regarding the manufacturing facilities and

the processes, and apply this knowledge during the design process. The domain that

addresses these issues is called “design for manufacturability”(DFM). The focus of

this chapter, as shown in Figure 123 is the application of a optimization framework

to improve the manufacturing yield of the embedded RF passive circuits. From an

IC perspective, the underlying problems that have led to the development of DFM

methods has been depicted in Figure 124 [88]. As shown in Figure 124, the features

(structures) on the silicon chip are now smaller than the wavelength of the light used

to create them. In order words, if we assume that the green geometric shape shown

in Figure 124 is the ideal (desired) form, then this is the shape that would be created

in the initial GDSII file generated by the physical design tools. The problem is that

if this shape is subsequently created as-is in the photomask, then the corresponding

form appearing on the silicon would drift progressively from the ideal, as feature sizes

associated with the newer technology nodes decrease. A state-of-the-art, DFM-aware

design flow for CMOS integrated circuits, by Magma Design Automation, as recently

as 2006. The design flow for the DFM methodology for digital ICs has been depicted

in Figure 125.
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Figure 123. Focus of Chapter V (shaded) in the perspective of an RF CAD framework

Figure 124. Effect of feature shrinkage on IC interconnect manufacturability.
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Figure 125. A DFM-aware design flow; from characterization to sign-off verification
(Courtesy: Magma Design Automation, Inc.).
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Figure 126. Potential failure mechanisms demonstrated on a conceptual SOP module.

The design of SOP modules is encountering a somewhat different, but equally

difficult challenge in the face of faster time-to-market schedules and low cost. In

order to highlight the manufacturability concerns of SOP-based systems, the multiple

potential mechanisms in the manufacturing of a SOP module has been shown in Figure

126

In addition, with the possibility of large-area manufacturing with LCP, LTCC de-

vices, the need for statistical diagnosis and design centering methods are imperative.

A “multi-domain” statistical framework that takes into account the electrical as well

as the mechanical parameters for the estimation of performance variations and para-

metric yield has been detailed in Chapter 4. The application of statistical methods

for yield optimization is the focus of this chapter.

5.1 Parametric yield

The performance metrics of mass-produced circuits varies from one to another as

a result of the variations of the manufacturing parameters. In addition, there are

statistical variations in component values due to the environmental factors such as

temperature and humidity. Such variances gives rise to a number of questions con-

cerned with minimizing the undesired effect of component tolerances. Among them,

yield maximization (or design centering) problem is of primary importance, simply

because yield is a direct measure of profit.
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From a designer’s perspective, the objective of “high-yield” circuit design is usu-

ally:

(1) To fulfill some lower SLj and upper SUj constraints or (specifications) imposed

on the circuit performance functions yj(e), j = 1, ,m such as insertion loss at

different frequencies, bandwidth, transmission zero locations, etc. dependent

on the vector of circuit elements and parameters.

(2) To realize, as accurately as possible, some of the most desirable (or “best”)

“target” design specifications (TDS’s), STj where

SLj < STj < SUj . (152)

Parametric yield is defined as the percentage of the functional components satisfy-

ing the performance specifications. Here multiple constraints need to be met e.g.

bandwidth, ripple, center frequency. However, due to the manufacturing variations,

certain parameters get shifted in the frequency/amplitude spectrum. In such cases,

the joint probability density functions of the performance measures was approximated

using multi-variate normal distribution [18], which is defined as

fY (Y ) =
exp{−1/2([Y ]− µY )T [Cov(Y, Y )]−1([Y ]− µY )}

(2π)2 |Cov(Y, Y )|1/2
, (153)

where Y is the vector of performance measures, and µY is the expected value for the

vector Y . As an example, the vector Y and µY vector are defined as:

Y =



f 1dB 1

f 1dB 2

min attn

attn 2 1GHz


µY =



2.3348(GHz)

2.4499(GHz)

2.1714(dB)

31.6096(dB)


(154)
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Covariance of performance measures was computed as [53]

Cov(ym, yn) =
4∑
i=1

4∑
i=1


(βm−iaβn−ka)

2

+ (βm−ia+βm−ib)(βn−ka+βn−kb)

2

− (βm−iaβn−ka)

2π

δ(i− k) (155)

where βm−ia, βm−ib, and βn−ka, βn−kb are pwl coefficients of filter performance measures

ym and yn respectively and δ(i − k) is the impulse function. For the manufacturing

parameters with linear sensitivity relations, βm−ib = 0 and βn−kb = 0. The yield

was computed as the integral of Equation 153 over the acceptable region of perfor-

mance. The yield constraints of a filter design were 1 dB bandwidth cutoff frequencies

f 1dB 1 and f 1dB 2, min attn and attn 2 1GHz, the attenuation at 2.1 GHz. The

constraints included bandwidth of at least 2.35 to 2.45 GHz, maximum attenuation

of 2.8 dB and minimum attenuation of 30 dB at 2.1 GHz. The yield is calculated as

shown
2.35∫
−∞

∞∫
2.45

2.8∫
−∞

∞∫
30

fY (Y )df 1dB 1df 1dB 2dmin attndattn 2 1GHz = 45.7% (156)

5.2 Yield enhancement and optimization

Further, using the joint probability distribution of performance measures and com-

puting the acceptability function, it can be inferred whether simultaneous constraints

on a pair of performance measures is physical or not. This has been shown in Figure

127 and Figure 128. In the figures, the acceptability function (z-axis) has not been

normalized. From Figure 127, it can be inferred that, by just the two spikes (indi-

cating design acceptability), simultaneous constraints on the attenuation at 2.1 GHz

and the lower 1 dB cutoff frequency leads to a nonphysical result. This means that

certain design constraints cannot be met simultaneously and will result in very low

yield. On the other hand, the distribution of the acceptability function in Figure 128

implies that it is reasonable to place simultaneous constraints on inband ripple and

lower side frequency of the 1 dB bandwidth.
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Figure 127. Distribution of design acceptability function using simultaneous constraints
on Attenuation @ 2.1 GHz and lower-cutoff frequency of 1 dB bandwidth: isolated
spikes indicate that such constraints lead to low yield.

This suggests that the yield of a design can be improved by identifying the param-

eters on which to place design constraints simultaneously. Here acceptibility function

implies whether a device has met the design criteria. The function is positive when

they are met. Further, it is clear that the yield of the bandpass filter can be improved

by reducing the manufacturing variations. It was also observed that the yield does

not increase unless additional performance tolerance was provided. Using figures of

joint distributions and yield variations with design tolerance, yield targets can be

achieved by the most feasible design and manufacturing changes.

The probability density functions that represent the variations in design param-

eters are typically gaussian in nature. The design yield, which is computed as an

integral of the joint probability density, can therefore be posed as a convex program-

ming problem. A function f : Rn → R is convex if dom f is a convex set and if for
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Figure 128. Computation of design acceptability function using simultaneous con-
straints on inband ripple and lower-cutoff frequency of 1 dB bandwidth: distribution
shows that such constraints lead to realizable yield.
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Figure 129. (Left):Graph of a convex function; the chord between any two points on the
graph lies above the graph. (Right): Graphical illustration of the first-order condition
for convexity.

all x, y εdom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (157)

Geometrically, this inequality implies that the line segment between (x, f(x)) and

(y, f(y)), which is the chord from x to y, lies above the graph of f as shown on the

left, in Figure 129. In addition, for first-order conditions, suppose f is differentiable

(i.e., its gradient ∇f exists at each point in domf , which is open). Then f is convex

if and only if domf is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (158)

holds for all x, y εdom f . This inequality is graphically illustrated on the right, in

Figure 129. A conceptual representation of a 3-dimensional convex function is shown

in Figure 130.

The joint gaussian pdf of n random independent variables y = (y1, · · · , yn) ,where

yi has a mean xi and a variance of σ2
i , is given by [16]

Φx(y) =
1

(2π)n/2σ1σ2...σn
exp

[
n∑
i=0

−(yi − xi)2

2σ2
i

]
(159)

where x = (x1, · · · , xn). The above joint distribution is known to be a log-concave

function of x and y. Further, arbitrary covariance matrices can be handled, since

a symmetric matrix can be converted to the diagonal form by use of orthogonal

transformation. The optimization problem is formulated as

maximizeY (x) =

∫
P

Φx(y)dy (160)
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Figure 130. Graphical representation of a convex surface.

such that x εP , where P is the approximation to the feasible region. Since the

integral of a log-concave function is also a log-concave function, the problem reduces

to maximization of a log-concave function over a convex set. Hence, this can be

transformed into a convex programming problem, with the corresponding property

that any local minimum of the solution is also the global minimum. This is a desirable

criterion in the formulation of the design centering problem. It should be noted that

the yield function remain convex as long as Φx(y) is a concave function of x and y.

For example, this approach would also be valid for an exponential probability density

function. The algorithm proposed in [16] provides an efficient technique for solving

a convex programming problem. The algorithm consists of iteratively finding centers

of approximated “polytopes” which constitute the feasible region. Let the feasible set

be defined as

S = x εRn|x εP (161)

and let xc be the solution to Equation 160. Initially, a region Q = P that contain xc
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is chosen. The region Q is given by

Q = x|Âz ≥ b̂, Â εRp×n, b̂ εRn. (162)

The algorithm proceeds iteratively as follows. First a center zc , inside the current

region Q is found by minimizing the log-barrier function as

F (z) = −
p∑
i=1

log(âTi z − b̂i), (163)

where âTi is the ith row of matrix Â, and b̂i is the ith element of b̂. There exists a

hyperplane that divides the polytope into two parts such that xc is contained in one

of them, satisfying the constraint

cT z ≥ cT zc (164)

with c = −[∇Y (x)]T , (165)

being the negative of the gradient of the yield (objective) function. Since the yield

function is not available in an explicit form, the gradient is estimated using yield gra-

dient approximation methods. This is computationally much cheaper than repeated

circuit/EM simulations with new sets of parameter values. This yield estimator works

with the polytope approximation of the feasible region and requires no simulations.

A point is considered to be feasible if it lies within the approximating polytope; this

leads to a substantial savings in computation, since it is much cheaper to find out

whether a point lies within a polytope than to simulate the circuit with a new set

of parameter values. In practice, the yield gradient is approximate, and possibly er-

roneous, as it is based on Monte Carlo simulations. To offset this problem, the new

hyperplane is taken as

cT z ≥ cT zc − δ
∣∣cT zc∣∣ , (166)
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where δ is a small positive number (typically 0.1 or 0.2), representing the fact that

the plane is moved away by a certain fraction towards the boundary of the current

polytope.

The constraint in (166) is added to the current polytope to give a new region, Q,

that has roughly half the original volume. The process is repeated until the polytope

is sufficiently small, and the final center z, is taken to be the computed design center.

The yield function can be written as,

Y (x) =

∫
...

∫
h(z)Φ(z)dz (167)

where h(z) = 0 if z is not ∈ F , and h(z) = 1 if z ∈ F . In this method, since we have

a polytope approximation, P , to the feasible region, F , we can take an approximation

to the yield as

Yapprox(x) =

∫
...

∫
F

g(z)Φ(z)dz (168)

where g(z) = 0 if z is not ∈ P , and g(z) = 1 if z ∈ P . Thus, the computation

of g(zk) is simply a matter of checking whether the point lies within the polytope

or not, which is a computationally cheap operation and does not require an actual

circuit simulation. Therefore, the gradient estimate can be written as

∂Yapprox

∂xi
=
∫
...
∫
P

g(z)∂Φx(z)
xi

dz

=
∫
...
∫
P

[
g(z)

Φx(z)
∂Φx(z)
∂xi

]
Φx(z)dz.

(169)

An approximate estimate (based on a sample of N points) for yield gradient, based

on the gradient function as

∂Ŷ

∂xi
=

1

N

N∑
k=0

g(zk)

Φx(zk)

∂Φx(zk)

∂xi
(170)

where g(z) = 0 when z is not ∈ P and g(z) = 1 when z ∈ P .

The formulation was applied to multiple test cases, for bandpass filters with dif-

ferent design specifications. The first test case has a nominal set of design parameters
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as shown in the initial estimate column. The optimized parameters have been de-

picted in the other column (optimized estimate). The results of optimization have

been shown in Table 18.

Table 18. Test case I: Performance measures before and after convex optimization

Perf. metric mean Initial estimate Optimized estimate

µ IL (dB) 2.03 2.18
µ BW (GHz) 0.225 0.242

µ attn @ 3.5 GHz (dB) 35 30
µ fc2 (GHz) 2.45 2.43

The table shows the change in the mean of the performance measures as a result

of the optimization of the design parameters. A yield improvement of 14% has been

observed based on the aforementioned analysis. Further, it is to be noted that the

performance variations were allowed within the acceptable region of variations, such

that the optimized estimates of the performance measures fall within the valid region

of design specifications.

For the second test case, again with a bandpass filter, the initial design parameters

of the filter have been shown in Table 19. The optimized parameters have been shown

in next column (optimized estimate). The yield improvement, after the optimization

of the performance measures, was seen to be around ∼ 5%. As explained in the

Table 19. Test case II: Performance measures before and after convex optimization

Perf. metric mean Initial estimate Optimized estimate

µ IL (dB) 1.8 2.0
µ BW (GHz) 0.150 0.142

µ attn @ 4.2 GHz (dB) 43 35
µ fc2 (GHz) 2.15 2.11

previous test case, the variations were allowed within the acceptable region of the

performance measures.
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For the third test case, the initial and the optimized performance measures of

the filter have been shown in Table 20. The convex programming formulation, using

polytopal approximation and the yield gradient estimation, were applied to the fea-

sible region of performance measures. As before, the inequality constraints for the

yield cost function were provided by the allowable region of the performance mea-

sures. The yield improvement, after the optimization of the performance measures,

was seen to be around ∼ 6.6%. As explained in the previous test case, the variations

Table 20. Test case III: Performance measures before and after convex optimization

Perf. metric mean Initial estimate Optimized estimate

µ IL (dB) 2.3 1.9
µ BW (GHz) 0.330 0.319

µ attn @ 5.8 GHz (dB) 50 43
µ fc2 (GHz) 1.9 1.93

were allowed within the acceptable region of the performance measures.

5.3 Summary

The rapidly evolving telecommunications market has led to the need for advanced

RF circuits. Complex multi-band/multi-mode RF designs require accurate predic-

tion early in the design schedule and time-to-market pressures require that design

(circuit/electromagnetic) iterations be kept to a minimum. In this chapter, a layout-

level, yield optimization technique for embedded RF circuits for SOP-based wireless

applications have been presented. The passive portion of the RF circuits is composed

of embedded inductors and capacitors in low loss, multi-layer substrate. The sta-

tistical analysis takes into account the effect of the thermo-mechanical stress effects

and the process variations that are incurred in batch fabrication. Yield enhance-

ment methods based on joint probability distribution and constraint-based convex

programming has also been presented. The results show good correlation with mea-

surement/electromagnetic (EM) data.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The emergence of multi-band communications standards, and the fast pace of the

consumer electronics market for wireless/cellular applications emphasize the need for

fast design closure. In addition, there is a need for electronic product designers to

collaborate with manufacturers, gain essential knowledge regarding the manufacturing

facilities and the processes, and apply this knowledge during the design process. In

this dissertation, efficient layout-level circuit sizing techniques, and methodologies for

design-for-manufacturability have been investigated.

Firstly, design complexity increases due to the increase in circuit functionality

of current celular/wireless devices. In addition, the RF designers have to deal with

multiple design constraints to meet several performance specifications across multiple

frequency bands, simultaneously. Manual iterations in circuit solvers and field solvers

are typically employed in design flows to meet such design goals. These design itera-

tions, however, can become computationally prohibitive. Consequently, time-efficient

design closure is becoming increasingly difficult in the design of modern communica-

tions systems.

Secondly, system-on-package (SOP)-based technologies have emerged as strong

candidates for the integration platform of next-generation, multi-functionality com-

munications devices. However, the current design flow for the SOP-based systems is

not as efficiently modularized into multiple levels of physical and logical abstraction

as its SOC counterpart. Specifically, optimum design metrics do not translate to op-

timum manufacturing metrics. Therefore, design-for-manufacturability methods are

imperative. Previous work have focussed on circuit-level and layout-level optimiza-

tion, but not on design scaling methodologies. Also, extensive research, in the field of

DFM, has been conducted for submicron technology nodes for digital ICs, but little
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work, to the best of the author’s knowledge, have been performed on statistical design

and yield optimization of packaged RF circuits.

With the proposed circuit/component sizing approach, RF layouts can be modi-

fied to meet different frequency specifications, with minimum iterations of EM simu-

lations. In particular, a layout segmentation, modeling, and mapping technique has

been developed for the scaling of embedded RF components, such as, quasi-lumped,

embedded inductors, and bandpass filters. Further, a circuit augmentation technique

has been proposed; to perform broadband modeling for library model development,

and circuit-based tuning of performance measures. Finally, diagnosis of prototype RF

filters have been demonstrated, based on the aforementioned circuit scaling method-

ology.

Furthermore, with the proposed statistical framework, probabilistic diagnosis could

be performed on batch-fabricated designs. In the statistical analysis, the effects of

electrical, as well as mechanical parameters to assess the effect of micro parame-

ters, such as line-width, dielectric thickness variations, and macro parameters, such

as board warpage, have been investigated. The statistical analysis framework was

combined with a constraint-based convex optimization scheme to perform yield opti-

mization of embedded RF circuits.

6.1 Conclusions

Based on the work presented in Chapters 2 through 5, the contributions of this

research can be listed as follows:

(a) A circuit augmentation technique for broadband modeling of components, re-

quired for library development and circuit sizing. The circuit augmentation

technique is based on a previously developed circuit partitioning technique, a
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modified nodal analysis formulation and a linear optimization framework. Phys-

ical design constraints in the circuit augmentation algorithm that has been im-

plemented in this work ensures passivity and stability of the broadband model.

The technique has been verified for broadband modeling of spiral inductors,

planar capacitors. The circuit augmentation technique has also been applied

for the tuning of bandpass filters. Comparisons have been performed with tun-

ing using commercial circuit simulators, employing nonlinear optimization, to

demonstrate the advantages of the proposed technique.

(b) A library development technique for embedded inductors/capacitors in multi-

layer substrate has been presented. The methodology employs artificial neural

networks to develop a neuro-model for the embedded passives. A fast weight

optimization algorithm (Levenberg-Marquadt algorithm) was implemented for

fast training of the neural networks. In addition, an adaptive sampling algo-

rithm is implemented to reduce the size of design library that is required for

neural network training and validation. The proposed modeling and library

develpment methodology is ideally suitable for multi-layer structures with no

more than four metallization layers.

(c) A layout-level circuit scaling technique for RF passive circuits with quasi-

lumped embedded inductors and capacitors has been demonstrated. The pro-

posed approach is based on a combination of segmented lumped circuit mod-

eling, nonlinear mapping using polynomial functions, artificial neural network

(ANN)-based methods, and circuit-level optimization. The methodology has

been validated on measured and simulated frequency response data of RF band-

pass filters, filters with transmission zeros, and dual-band filters. The circuit

augmentation technique has also been applied for the tuning of bandpass filters.
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Comparisons have been performed with tuning using commercial circuit simu-

lators, employing nonlinear optimization, to demonstrate the advantages of the

proposed technique, that is based on a linear optimization framework.

(d) An extension of the circuit scaling technique to layout-level diagnosis of pro-

totype circuits has been proposed. The fabricated designs require diagnosis

of variations in performance metrics such as center frequency, bandwidth and

transmission zeros that occurs due to process variations. Synthesis methodol-

ogy was applied to map the variations in electrical parameters to component

geometries. The synthesized results predict the possible variations in physi-

cal parameters that have been confirmed with measurements of the fabricated

devices.

(e) This dissertation presents a layout-level, multi-domain DFM methodology and

yield optimization technique for embedded RF circuits for SOP-based wireless

applications. The passive portion of RF circuits is composed of quasi-lumped

embedded inductors and capacitors in low loss, multi-layer substrate. The pro-

posed methodology consists of stochastic circuit/EM modeling, layout-level sta-

tistical diagnosis and parametric yield optimization.

The proposed statistical diagnosis technique is based on layout segmenta-

tion, lumped element modeling, sensitivity analysis and extraction of probability

density function using convolution methods. The statistical analysis takes into

account the effect of the thermo-mechanical stress/warpage effects and the pro-

cess variations that are incurred in batch fabrication. Yield enhancement and

optimization methods based on joint probability distribution and constraint-

based convex programming has also been presented. The results show good

correlation with measurement and EM simulation data for embedded, RF band-

pass filters fabricated in LCP-based substrate.
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6.2 Future work

Layout-level circuit sizing is an critical bottleneck in the design cycle of RF modules.

For multi-band architectures, that require design of circuits with large number of

passive components (greater than 30 in filter banks, for example), manual interven-

tion through EM simulations is prohibitively time-consuming. An ideal layout-level

circuit sizing methodology would require a broadband, quasi-physical physical model-

ing framework, and an efficient, multi-dimensional parameterizations technique. The

parameterization technique should be able to map the S-parameters of the compo-

nents to the physical parameters of the corresponding layout. The framework of the

first stage of modeling has been demonstrated in this dissertation. Though several

published works have researched on efficient parameterization techniques for digital

interconnects, none of them addresses the need for developing a similar framework for

efficient circuit sizing of RF circuits. Development of a parameterization methodol-

ogy could be a good extension to the work accomplished in this dissertation. Another

possible and useful area of development in this research is the analysis of coupling,

and thereby include coupled structures in the broadband modeling technique. This

is useful for the optimization of dense layout topologies, where the consideration of

near-field EM coupling is critical to the accurate calculation of performance measures.

Another possible area of future work lies in the development of a computation-

ally robust framework for the DFM methodology that has been presented in this

dissertation. Computation of gradient information is a critical issue that needs to

be addressed in optimization technique in large “variable space”. A survey (and im-

plementation, if required) of the different available optimization schemes need to be

performed to develop a quantitative reference estimate of the appropriate scheme,

to be applied to the DFM framework. Global and evolutionary algorithms such as

genetic optimization can be a good starting point in this direction. In addition, in-

clusion of the package-level parameters in the scheme of statistical design centering
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would result in a true, multi-domain DFM framework. Future work in this direction

will have a significant impact on the economy of manufacturability for SOP-based RF

circuits and systems.
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APPENDIX A

CIRCUIT PARTITIONING

The mathematical details of the circuit partitioning technique have been dscribed in

this appendix. The effect on the circuit node voltages of the addition of an impedance

z between the two nodes of a circuit k and l, has been explained. It is first assumed

that an initial circuit has been solved by means of nodal analysis:

Y v = I (171)

Therefore, the solution vector v is given by

v = Y −1I (172)

Here v is an n×1 vector of nodal voltages, Y is an n×n nodal admittance matrix, and I

is an n×1 vector of (equivalent) source node currents. The effect of the augmentation

of an impedance z between the nodes m and n is determined as follows. Firstly the

connection vector, representing the augmentation between the two nodes m and n is

given by

ξkl ≡ [0 ...0 + 1 0...0 − 1 0...0]T (173)

where a “+1” is present in the mth row, a “-1” is present in the nth row, and zeros

everywhere else. In other words, the connection vector, for an augmentation element,

represents the incidence relation for the element that is being added between the two

nodes. In the case where the augmentation is between a node and a ground, the

element “-1” in the connector vector in Equation 173 is replaced by a “0”; the rest

of the vector remains the same. Following Equation 173, the open-circuit voltage voc

between the nodes m and n can be written as

voc = vm − vn = ξTmnv = ξTmnY
−1I (174)
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where ξTmn denotes the transpose of ξmn. Then, let all independent sources in the

original circuit are set to zero and a one amp current source is connected between the

nodes m and n. Then, the node equations are replaced with

Y v′ = ξmn. (175)

In this case, the nodal voltage vector is given by

v′ = Y −1ξmn. (176)

The specific voltage between nodes m and n would be the Thevenin equivalent

impedance is given by

zTH = v′m − v′n = ξTmnY
−1ξmn (177)

Therefore, the Thevenin loop current(in Figure) is given by

iz =
−voc

z + zTH
. (178)

If, by linearity,iz = 1, then, it implies

v′ = Y −1ξmn (179)

for the node voltage vector, then

iz = − voc
z + zTH

(180)

implies

v′′ = − voc
z + zTH

Y −1ξmn, (181)

for the nodal voltage vector. By superposition, the overall voltage v̂ is given by

v̂ = v − voc
z + zTH

Y −1ξmn (182)

or

v̂ = Y −1

(
I − ξTmnY

−1I

z + ξTmnY
−1ξmn

ξmn

)
. (183)
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APPENDIX B

DESIGN GUIDELINES FOR MANUFACTURING IN
CURRENT LCP PROCESS

A mature manufacturing process is associated with a well-characterized set of design

rules and guidelines. Some ground rules have to be strictly satisfied to avoid design

rule check (DRC) errors. In addition, there are additional design practices to ensure

that unwanted EM coupling, parasitics, and current crowding effects are minimized in

the design process, prior to fabrication. Moreover, these design guidelines will prove

useful to set up physical and electrical constraints in an automatic, ”performance-

aware”, place-and-route tool, if developed for the floorplanning and layout optimiza-

tion of RF circuit layouts. Some important design practices for the manufacturing of

embedded circuits in the LCP process have been listed in this appendix.

The guidelines have been listed as follows:

(1) The minimum line-width is 3 mils, for all layers, except the top layer. The

minimum line-width for the topmost metal layer is 4 mils. The minimum line-

spacing, for all layers, is 3 mils.

(2) Line-to-line coupling can be neglected, if the separation between the lines is

equal to, or more than 10 times the thickness of the LCP dielectric layer.

(3) The routing is performed (manually) by the designers based on its associated

inductance and resistance and how much it affects the overall response of the

circuit (the circuit models and the cost functions will be useful here).

(4) The length of interconnects is kept to a minimum (between components) so that

extensive re-sizing of components is not required due to addition of inductance,

loss and the parasitics of the interconnects.
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(5) In accordance with the symmetric placement of similar sized components, the

interconnects connecting the components are also placed symmetrically about

the midline of the layout w.r.t i/p and o/p ports (unless coupling is desired

between the lines).

(6) Routing of interconnects is generally avoided next to inductors to avoid in-

line coupling; orthogonal orientation is usually preferred. However, this design

practice has less weight if, due to such a placement, the interconnect length is

increased excessively leading to significant change in performance (significant

variation in cost function).

(7) Routing of interconnects parallel to capacitors do not pose similar extent of

performance variations (with the current width of lines in our designs).

(8) Layer transitions of interconnects through micorvias/thruholes is kept to a min-

imum due to the inductive effects of vias.

(9) While routing on any layer with capacitors/inductors on layers above/below,

overlap (effects of overlapping capacitance) is avoided.
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APPENDIX C

VECTOR FITTING BY POLE RELOCATION

Consider the rational function approximation

f(s) ≈
N∑
n=1

cn
s− an

+ d+ sh, (184)

where the residues cn and the poles an are either real quantities or come in complex

conjugate pairs, while d and h are real numbers. The underlying problem is to

estimate all the coefficients in Equation 184 so that a least squares estimation of f(s)

is obtained over a given frequency interval. It is to be noted that Equation 184 is

a nonlinear problem in terms of the unknowns, because the unknowns an appear in

the denominator. Vector fitting solves the problem in 184 sequentially as a linear

problem in two stages, both times with known poles.

C.1 Pole identification

A set of starting poles ān is specified in 184, and f(s) is multiplied with an un-

known function σ(s). In addition, a rational approximation for σ(s) is introduced.

Correspondingly, the augmented problem is given by σ(s)f(s)

σ(s)

 ≈


N∑
n=1

cn
s−ān

+ d+ sh

N∑
n=1

c̃
s−ān

+ 1

 . (185)

It can be seen that the rational approximation for σ(s) has the same poles as σ(s)f(s).

Multiplying the second row in (185) with f(s) yields(
N∑
n=1

cn
s− an

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− ān

+ 1

)
f(s), (186)

or

(σf)fit(s) ≈ σfit(s)f(s). (187)
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Equation 186 is linear in its unknowns cn, d, h, c̃n. Writing (186) for several frequency

points provides the overdetermined linear problem

Ax = b (188)

A rational function approximation for f(s) can be readily obtained from (186). This

is clear when each sum of partial fractions in (186) is written as

(σf)fit(s) = h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− ān)

, σfit(s) =

N∏
n=1

(s− z̃n)

N∏
n=1

(s− ān)

(189)

From (189), we get

f(s) =
(σf)fit(s)

σfit(s)
= h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− z̃n)

. (190)

It can be seen in (190) that the poles of f(s) become equal to the zeros of σfit(s).

Thus, by calculating the zeros of σfit(s), a good set of poles for fitting the original

function f(s) can be obtained.
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mission lines by Padé approximation via the Lancoz process,” IEEE Trans. Mi-
crowave Theory and Techniques, vol. 44, no. 12, pp. 2525–2535, Dec. 1996.

[43] S. H. Min and M. Swaminathan, “Efficient construction of two-port passive
macromodels for resonant networks,” in IEEE Proc. of 10th Topical Meeting
of Electrical Performance of Electronic Packaging, pp. 229–232, Oct. 2001.

[44] L. Daniel and J. Phillips, “Model order reduction for strictly passive and causal
distributed systems,” in IEEE Proc. of Design Automation Conference, pp. 46–
51, June 2002.

[45] D. Saraswat, R. Achar, and M. S. Nakhla, “A fast algorithm and practical consid-
erations for passive macromodeling of measured/simulated data,” IEEE Trans.
Advanced Packaging, vol. 27, no. 1, pp. 57–70, Feb. 2004.

[46] J. Kolstad, C. Blevins, J. M. Dunn, and A. Weisshaar, “A new modeling method-
ology for passive components based on black-box augmentation combined with
equivalent circuit perturbation,” in IEEE Proc. of 10th Topical Meeting of Elec-
trical Performance of Electronic Packaging, pp. 259–262, Oct. 2004.

192



[47] J. Kolstad, C. Blevins, J. M. Dunn, and A. Weisshaar, “A new circuit augmen-
tation method for modeling of interconnects and passive components,” IEEE
Trans. Advanced Packaging, vol. 29, no. 1, pp. 67–77, Feb. 2006.

[48] D. L. Harame, K. M. Newton, R. Singh, S. L. Sweeney, S. E. Strang, J. B.
Johnson, S. M. Parker, C. E. Dickey, M. Erturk, G. J. Schulberg, D. L. Jordan,
D. C. Sheridan, M. P. Keene, J. Boquet, R. A. Groves, M. Kumar, D. A. H. Jr,
and B. S. Meyerson, “Design automation methodology and rf/analog modeling
for rf CMOS and SiGe BiCMOS technologies,” IBM Journal of Researhc and
Development, vol. 47, pp. 139–175, May 2003.

[49] J. P. Spoto, W. T. Coston, and C. P. Hernandez, “Statistical integrated cir-
cuit design and characterization,” IEEE Trans. Computer-Aided Design, vol. 10,
no. 5, pp. 90–103, Oct. 1986.

[50] S. R. Nassif, “A methodology for worst-case analysis of integrated circuits,” IEEE
Trans. Computer-Aided Design, vol. 5, no. 1, pp. 104–113, Jan. 1986.

[51] S. G. Duvall, “Statistical circuit modeling and optimization,” in IEEE Proc. of
International Workshop on Statistical Metrology, pp. 56–63, June 2000.

[52] K. K. Parhi and R. S. Berkowitz, “On optimizing importance sampling simula-
tions,” IEEE Trans. Circuits and Systems, vol. 34, no. 12, pp. 1558–1563, Dec.
1987.

[53] M. Keramat and R. Kielbasa, “A study of stratified sampling in variance reduc-
tion techniques for parametric yield estimation,” in IEEE Proc. of International
Symposium on Circuits and Systems, pp. 1652–1655, June 1997.

[54] N. J. Elias, “Acceptance sampling: An efficient, accurate method for estimating
and optimizing parametric yield,” IEEE Journal of Solid State Circuits, vol. 29,
no. 3, pp. 323–327, Mar. 1994.

[55] J. F. Swidzinski, M. Keramat, and K. Chang, “A novel approach to efficient yield
estmation for microwave integrated circuits,” in IEEE Proc. of 42nd Midwest
Symposium on Circuits and Systems, pp. 367–370, Aug. 1999.

[56] E. Matoglu, Statistical design, analysis and diagnosis of digital systems and em-
bedded RF circuits. PhD thesis, Georgia Institute of Technology, 2003.

[57] T. B. Barker, Quality by experiemental design. New York: Marcel Dekker, 1994.

[58] J. Chen and M. A. Styblinski, “A systematic approach of statistical modeling and
its application to CMOS circuits,” in IEEE Proc. of International Symposium
on Circuits and Systems, pp. 1805–1808, May 1993.

[59] J. P. C. Kleijnen, “Sensitivity analysis and optimization in simulation: design of
experiments and case studies,” in IEEE Proc. of Winter Simulation Conference
1995, pp. 133–140, 1995.

193



[60] D. S. Gibson, R. Poddar, G. S. May, and M. Brooke, “Statistically based para-
metric yield prediction for integrated circuits,” IEEE Trans. Semiconductor
Manufacturing, vol. 10, no. 4, pp. 445–458, Nov. 1987.

[61] H. L. Malek and A. Hassan, “The ellipsoidal technique for design centering and
region approximation,” IEEE Trans. Computer-Aided Design, vol. 10, no. 8,
pp. 1006–1014, Aug. 1991.

[62] J. M. Wojciechowski and J. Vlach, “Ellipsoidal method for design centering and
yield estimation,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 12, no. 10, pp. 1570–1578, Oct. 1993.

[63] S. Sapatnekar, P. M. Vaidya, and S. M. Kang, “Convexity-based algorithms
for design centering,” IEEE Trans. Computer-Aided Design, vol. 13, no. 12,
pp. 1536–1549, Dec. 1994.

[64] P. M. Vaidya, “A new algorithm for minimizing convex functions over convex
sets,” in IEEE Proc. of Fundamentals of Computer Science, pp. 332–337, 1989.

[65] S. W. Director and G. D. Hachtel, “The simplicial approximation approach to
design centering,” IEEE Trans. Circuits and Systems, vol. 17, no. 3, pp. 159–165,
1977.

[66] K. K. Low and S. W. Director, “A new methodology for the design centering
of IC fabrication process,” IEEE Trans. Computer-Aided Design, vol. 10, no. 7,
pp. 895–903, July 1991.

[67] R. Spence and R. S. Soin, Response Surface Methodology : Process and Product
Optimization Using Designed Experiments. New York: Wiley, 1995.

[68] A. J. Strojwas, “Design for manufacturability and yield,” in IEEE Proc. of De-
sign Automation Conference, pp. 454–459, June 1989.

[69] D. E. Hocevar, M. R. Lightner, and T. N. Trick, “An extrapolated yield approx-
imation technique for use in yield maximization,” IEEE Trans. Computer-Aided
Design, vol. 3, no. 1, pp. 279–287, Feb. 1982.

[70] E. Wehrhahn and R. Spence, “The performance of some design centering meth-
ods,” in IEEE Proc. of International Symposium on Circuits and Systems,
pp. 1421–1438, May 1984.

[71] K. Singhal, “Statistical design centering and tolerancing using parametric sam-
pling,” IEEE Trans. Circuits and Systems, vol. 28, no. 7, pp. 692–702, July
1981.

[72] K. Choi and D. Allstot, “Post-optimization design centering for RF integrated
circuits,” in IEEE Proc of International Symposium on Circuits and Systems,
pp. 956–959, May 2004.

194



[73] S. Dalmia, A. Bavisi, S. Mukherjee, V. Govind, V. Sundaram, M. Swaminathan,
and G. White, “A multiple frequency signal generator for 802.11a/b/g VoWLAN
type applications using organic packaging technology,” in IEEE Proc. of Elec-
tronic Components and Technology Conference, pp. 1664–1670, June 2004.

[74] S. Dalmia, V. Sundaram, G. White, and M. Swaminathan, “Liquid crystalline
polymer based RF/wireless components for multiband applications,” in IEEE
Proc. of Electronic Components and Technology Conference, pp. 1866–1873, June
2004.

[75] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain
responses by vector fitting,” IEEE Trans. Power Delivery Networks, vol. 14,
no. 3, pp. 1052–1061, July 1999.

[76] http://www.energy.sintef.no/produkt/VECTFIT/index.asp, Feb. 2007.

[77] R. A. Rohrer, “Circuit partitioning simplified,” IEEE Trans. Circuits and Sys-
tems, vol. 35, no. 1, pp. 2–5.

[78] J. Vlach and K. Singhal, Computer methods for circuit analysis and design. New
York: Van Nostrand Reinhold, 1983.

[79] J. W. Bandler, R. M. Biernacki, S. H. Chen, and Y. F. Huang, “Design op-
timization of interdigital filters using aggressive space mapping,” IEEE Trans.
Microwave Theory and Techniques, vol. 45, no. 5, pp. 761–769, May 1997.

[80] S. Haykin, Neural networks - A comprehensive foundation. New York: Prentice
Hall, 1998.

[81] S. W. Director, “Optimization of parametric yield: A tutorial,” in IEEE Proc.
of Custom Integrated Circuits Conference, pp. 3.1.1–3.1.8, 1992.

[82] http://www.rogerscorporation.com/mwu/pdf/ULTRALAM3000DS.pdf, Mar.
2004.

[83] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical design and analysis of
experiments: with applications to engineering and science. New York: Wiley
Eastern Limited, 1989.

[84] S. Suresh, Failure of materials. United Kingdom: Cambridge University Press,
2001.

[85] J. Strydom, “Investigation of thermally induced failure mechanisms in integrated
spiral planar power passives,” in IEEE Proc. of Electronic Components and Tech-
nology Conference, pp. 1481–1486, June 2000.

[86] M. Damani, “Physics-based reliability assessment of embedded passives,” in
IEEE Proc. of Electronic Components and Technology Conference, pp. 2027–
2031, June 2004.

195



[87] G. R. Cooper and C. D. McGillem, Probabilistic methods of signal and system
analysis. New York: Holt, 1971.

[88] http://www.cadence.com/products/dfm/tech info.aspx, Mar. 2007.

196


