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CHAPTER I

INTRODUCTION

1.1 Background

The design of modern day integrated circuit (IC) packages is increasingly becoming

complex. The initial trend was towards increasing computing capabilities, and this

resulted in a drive in two directions: 1) personal computing affording increasing

avenues at an individual consumer level, and 2) high performance computing, which

focused on needs of supercomputing/enterprise computing. In recent times, however,

the primary driver of innovation in the electronics area has been to reach goals of 1)

miniaturization and 2) proving a multi-functional platform. This is reflected in Fig.

1. The drive towards smaller, reliable and low-cost solutions to functional integration

has resulted in a variety of architectures being proposed, e.g., system-on-chip (SoC),

system-in-package (SiP), and system-on-package (SoP) (as shown in Fig. 2), with

the latest trend being the three-dimensional (3D) integration of functional modules,

shown in Fig. 3.

1.2 Motivation

The nature of the novel and complex geometries involved in these architectures, along

with the various relevant local and non-local electromagnetic interactions pose a sig-

nificant design problem. The simulation of such packages involves the mathematical

processing of large linear systems arising from the passive component models of in-

terconnects and packages. The fast and reliable full-wave simulation of such modules

is therefore a necessity to speed up the design cycle time, while maintaining accuracy

of the results.
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Figure 1: The progress in the integrated circuits area from the initial computing
days up until today, and the primary drivers of the market.

Figure 2: System on Package (SoP) integration. (Courtesy: Packaging Research
Center, Georgia Institute of Technology.)

The 3D full-wave simulations, based on discretization of Maxwell’s equations,

forms an important and highly accurate class of solutions to such problems. In the
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Figure 3: 3D multifunctional vertical integration. (Courtesy: Interconnect and Pack-
aging Center, Georgia Institute of Technology.)

frequency domain, the solution involves the inversion of a large matrix, expensive in

terms of both, time and memory. In the time-domain, the solution may be formu-

lated as an explicit method, thus reducing the memory problem. However, the issue

of long-time simulation still remains. In terms of the design cycle of IC packages,

represented in Fig. 4, there is a need for fast frequency sweep full-wave analysis of

IC package structures in the 3D simulation step. An approach relying on fast char-

acterization of package modules based on model order reduction (MOR) is suggested

in this dissertation as an intermediate step. The full-wave simulation of the complete

system is retained, but is instead carried out using the fast methods (e.g., MOR)

before the final test structures are sent for fabrication. The modified design flow is

shown in Fig. 5.
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Figure 4: Hierarchical design flow for the simulation and testing of semiconductor
package modules

Figure 5: Modified hierarchical design flow for the simulation and testing of semi-
conductor package modules, inclusive of the proposed hybrid methodology
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1.3 Contribution

As part of this work, a computationally fast frequency domain full-wave electromag-

netic simulation scheme is developed. The contribution of the research is:

1. The development of a second order equivalent-circuit based full-wave simulation

model. Here, an equivalent circuit framework for electromagnetic simulation of

one-, two- and three- dimensional problems will be formulated and demonstrated

with the help of suitable examples.

2. The development of model order reduction methods that maintain stability and

passivity, while generating accurate network response curves. The focus here

would be to develop model order reduction techniques, which can work on the

equivalent circuit based electromagnetic simulation framework.

Once the above is attained, any given layout can be converted to a second order

equivalent circuit based electromagnetic framework, where reduction algorithms can

be applied to obtain a fast frequency response. An overview of the technical flow,

resulting from the contribution is shown in Fig. 6

1.4 Organization of the Thesis

The thesis is organized as follows: chapter one provides an introduction to the research

briefly describing the background and motivation, the expected contribution and the

organization of the thesis. Chapter two starts with the description of the nature

and origin of the problem being addressed. Susequently, the way the solution to

this problem has evolved in terms of computer-aided design (CAD) approaches, and

the significant fast methods involved are described. Chapter three describes the

extraction of an equivalent full-wave circuit model from a given layout for one-, two-

, and three -dimensions starting with the Maxwell’s equations. A way of including
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Figure 6: An overview of the proposed simulation technique covering all aspects of
the contribution of this thesis.

lumped elements in this equivalent circuit based electromagnetic framework is also

described.

In chapter four, model order reduction for the second order equivalent circuit

framework is introduced and demonstrated with the help of examples. Chapter five

describes an improvement of the algorithm presented in chapter four by using the

concept of multipoint expansion. Chapter six then focuses on bilinear conformal

transformation and its application in second order reduced order modeling. The

corresponding multipoint extension is also introduced and demonstrated with the help

of examples. Also, the challenge involved in model order reduction of the combined

system is overcome, and validated by means of examples. Chapter seven provides

the conclusion and summarizes the contribution of this thesis. Finally, chapter eight

describes possible avenues for future work.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Design of IC Packages

The design of IC package with multilayer stack-up (see Fig. 7) while minimizing the

negative electromagnetic phenomena is a challenge, as has been briefly described in

chapter I. This has been primarily driven in the past by the digital computing needs.

With the current and foreseen explosion in the wireless communications industry, the

fast and full characterization of the electromagnetic effects in a mixed-signal package

becomes imperative. In this regard, the development of radio frequency (RF) front-

end modules optimized in terms of size and performance are critical as well. There

are two related issues in this respect [56]: 1) Modeling and 2) Analysis. Modeling

encompasses the extraction of a physically representative model of the mathemati-

cal governing equations. Analysis encompasses the domain of the solution and the

method employed to solve the model. In the first section of this chapter, we describe

the relevant electromagnetic effects and in the next section, we describe the various

methods used to solve these models, paying particular attention to fast methods.

2.1.1 Major Electromagnetic Design Challenges

In terms of specific challenges involved in modern IC package design, the critical

electromagnetic effects can be classified as [66] [8]:

1. Reflection noise: Incorrect terminations and signal path discontinuities cause

overshoot, undershoot, and ringing, as shown in Fig. 8. This is primarily

caused by impedance mismatch, examples of which include - change in signal

trace width, branching of signal trace, and signal line crossing a gap in the
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Figure 7: Typical multilayer stackups used/proposed for electronic packages. (Cour-
tesy: Packaging Research Center, Georgia Institute of Technology.)

Figure 8: The sources of reflection noise in IC packages.

reference plane giving rise to return path discontinuity.

2. Simultaneous switching noise (SSN): The imperfect nature of power distribution

network gives rise to parasitics causing noise, as shown in Fig. 9 reaching orders

in the range of hundreds of millivolts. As indicated by the name, a large number

of devices switching simultaneously cause fluctuations in the voltage between

power and ground planes resulting in SSN.

3. Crosstalk noise: This is caused by the direct electromagnetic coupling between

signal traces and vias, as shown in Fig. 10. This is primarily caused due the close

placement of such structures resulting in the coupling of electric and magnetic

8



Figure 9: The source of simultaneous switching noise in IC packages.

Figure 10: The source of crosstalk noise in IC packages.

fields, giving rise to mutual capacitance and mutual inductance, respectively.

4. Attenuation noise: This is the loss in the intensity of the signal being transmit-

ted, primarily due to the material properties and the loss intrinsically associated

with the substrate and the conductors.
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In addition to the above effects, the mixed-signal nature of packages, inclusive of

digital, analog, and RF modules, makes it even more critical that an electromagnetic

solver be used to fully characterize the system.

2.2 Simulation IC Package Modules

The traditional methods for the analysis of package structures were primarily lumped

circuit models. Interconnect designs were initially driven by capacitance extraction

tools [67, 35]. Indeed, the motivation for modeling interconnect structures was driven

by device scaling, and therefore a need for optimizing the placement and routing

of interconnects. In this respect, prediction of the delay time (RC delay) was the

most important aspect. The crosstalk noise can be modeled through a ratio of the

coupling capacitance, Cc, to the lumped capacitance. This relies on the concept

of charge-sharing [21]. More accuracy was achieved through the following lumped

component models:

1. Lumped RC model (Fig. 11): Following the concept of charge sharing, the

resistive component of the conductors were modeled to attain greater accuracy.

The initial work involved the derivation of analytical expressions based on RC

transmission line model of the interconnects [59, 70]. An illustration of the

lumped RC model is shown in Fig. 11.

2. Lumped RLC model: With increasingly higher operating frequencies, the effect

of inductance comes in to play, as the impedance due to inductance is directly

proportional to the frequency. One should keep in mind that the highest fre-

quency point of interest is related, not to the clock frequency, but to the rise

time associated with a signal. And it is this inductive effect that results in ring-

ing , overshoot, and reflection noise. Analytical expression for the delay based

on these models have been derived [33, 31]. An illustration of the lumped RLC

model is shown in Fig. 12.
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Figure 11: The lumped RC model for an interconnect.

Figure 12: The lumped RLC model for an interconnect.

Figure 13: The distributed RLC model for an interconnect.

3. Distributed RLC model: The accurate modeling of the inductive effects in-

clusive of the mutual inductance effects due to the long current return paths

necessitated consideration of the distributed RLC models [14, 4]. An illustration

of the lumped RLC model is shown in Fig. 13.

As design complexity of integrated circuit packages increases, [66], the argument

in favor of the use of full-wave three dimensional (3D) simulation increases, as against

using lower dimensional simulations or lumped-circuit equivalent models. The full-

wave solvers in turn can be classified as [56] (also shown in Table 1) :

1. Differential equation based: The differential equation based solvers include the

finite difference method [78] and the finite element method [32]. Such methods

typically rely on discretizing the entire volume of the structure under investi-

gation and solve for the relevant electromagnetic fields throughout the layout.
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In the time domain, such methods are limited by stability conditions. For the

finite difference time-domain method (FDTD), the stability requirement gives

rise to the well-known Courant condition [68]. In the frequency domain, these

methods give rise to the inverse problem - the inversion of a large sparse matrix,

which is time and memory intensive. A major advantage of such methods is

their generality. Since the whole geometry is discretized, variations in mate-

rial properties and geometrical features in a layout can be accurately captured.

This can, however, result in a very large problem size due to the fine meshing

of the layout. Techniques such as non-uniform meshing, adaptive refinement of

the grid, multigridding and domain decomposition can be used to alleviate such

concerns. In addition, efficient sparse matrix solvers, be it in terms of direct

solution or iterative solution can be used.

2. Integral equations based: A useful interpretation of the electromagnetic problem

is in terms of the electric field at any point in the layout as the superposition

of the fields due to currents and charges elsewhere in the system. Method of

moments [26] is the prevalent solver in this domain, wherein only the conductor

regions are discretized. The integral equation based methods give rise to smaller

dense matrices. Due to the dense nature of these matrices, if direct solvers

were to be used, it would be far more expensive to solve the integral equation

based solver, than the differential equation based solvers. This is because the

complexity scales as O(N3) for dense matrices, as compared to O(N2) in the

case of sparse matrices, N being the zie of the system matrix.

2.2.1 Fast Methods for IC Package Simulation

For integral equation based solvers, the prominent method of choice is the fast mul-

tipole method (FMM) [23, 62, 13], and has been successfully applied for capacitance

extraction [43], inductance extraction [34], and for scattering from conductor as well
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Table 1: Comparison of the electromagnetic simulation approaches based on the
equations solved.

as dielectric bodies [17]. For finite difference based methods, this has been addressed,

amongst other methods, by means of non-uniform meshing [68, 45], multigrid tech-

niques [73, 72], domain decomposition methods [75, 77] and reduced domain sim-

ulations with approximations for one dimension [18]. The Courant condition which

imposes a limitation on the grid size for the FDTDmethod has been overcome through

the use of unconditionally stable implicit methods [64, 44, 63]. However, the fast and

full characterization of designs remains an important aspect, both in terms of val-

idating lumped circuit models and lower dimensional simulations, and in terms of

speeding the design flow. Model order reduction methods provide an alternative fast

solution to the aforementioned problem.

2.3 Equivalent Circuit based Electromagnetic Simulation

The interpretation of the full-wave equations can also be done in terms of equivalent

circuits. Equivalent circuit-based solvers have found favor due to a variety of reasons:

1) use of SPICE for electromagnetic simulation 2) use of circuit-based numerical tech-

niques 3) ease of EM/lumped circuit element co-simulation. Some of the prominent

solvers of this category are discussed below.

1. PEEC model: In [57], an equivalent circuit was extracted from the electric field
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integral equation (EFIE) in terms of the capacitive and inductive interaction.

This directly derives from the fact that the EFIE can be interpreted in terms of

a partial inductive and partial capacitive interaction between the currents and

charges present in the layout. This results in the distributed equivalent circuit

network representation called the partial element equivalent circuit (PEEC)

representation.

The PEEC model derivation starts with the equation for the total electric field

at a point, r, inside a conductor with conductivity, σ, as

E0(r, t) =
J(r, t)

σ
+

∂A(r, t)

∂t
+∇Φ(r, t) (1)

where, E0 is the applied electric field, J is the conductor current density, A is

the magnetic vector potential and Φ is the electric scalar potential. Proceeding

from the above equation, in conjunction with substitutions for electric scalar

potential and magnetic vector potential, an integral equation can be derived for

the total electric field. This equation in combination with the current continuity

equation, shown below in (2), forms the basis for derivation of the PEEC model.

∇ · J+
∂q

∂t
= 0. (2)

The resulting PEEC model is shown in Fig. 14.

The resulting system of equations for PEEC is in the form of modified nodal

analysis (MNA) equations, wherein the enforcement of Kirchoff’s current law for

the PEEC model corresponds to the solution of the current continuity equation

(2).

2. Equivalent circuit model for FDTD: In [12], a circuit interpretation of the FDTD

grid was provided. The FDTD grid is directly converted in terms of a network
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Figure 14: The partial element equivalent circuit model [57].

of interconnected gyrators and capacitors. The very nature of the derivation

ensures the stability of the equivalent circuit, by satisfying the Courant condi-

tion.

3. Transmission line matrix method: A popular differential equation based equiva-

lent circuit simulation method is the transmission line matrix (TLM) technique

[28, 29, 15, 53]. It starts with the Huygens model of wave propagation. The

entire layout is converted to a set of interconnected transmission lines. The

excitation of the layout results in transmissions and reflections, which can be

calculated based on transmission line theory. In Cartesian coordinates ,this

results in a set of interconnected unit cells comprising transmission lines. Scat-

tering parameters may be suitably calculated by measuring the transmitted and

reflected waves. An illustration of the three dimensional TLM model is shown

in Fig. 15.

4. Susceptance element based solvers: Susceptance elements have been recently

studied as promising candidates for modeling magnetic coupling [16, 5, 79].

[16] starts with the expression for partial inductances and then proceeds to
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Figure 15: The three dimensional transmission line matrix model [29].

calculate the susceptance matrix. In [5], the extraction process is modified to

include only partial inductance models for small localized windows. However,

the extraction of equivalent circuit from layout, based on Maxwell’s equations

does not mitigate the huge requirement in terms of time and/or memory, and

therefore necessitates the use of fast methods, more specifically, model order
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Figure 16: The basic concept of model order reduction (MOR).

reduction methods.

2.3.1 Model Order Reduction for Electromagnetic Simulation

In the frequency domain, the accelerated analysis of complex structures has been

made possible through model order reduction methods [56]. Given a linear system,

the aim of MOR is to create a reduced system such that the transfer function of

the system is approximated with an acceptable tolerance. This is illustrated in Fig.

16, wherein the original system transfer function, H(s) = Y (s)/X(s), is reduced to

HR(s) = YR(s)/XR(s).

To begin the discussion on model order reduction in detail, a linear circuit network

is considered, composed of resistive, capacitive and inductive elements. From circuit

theory [71], the corresponding analysis for this network can be done by means of the

modified nodal analysis equations given as,

sCX(s) = −GX(s) +BU(s), (3a)

Y(s) = LTX(s), (3b)

where, C,G ∈ C
N×N , B ∈ C

N×m and L ∈ C
N×p, m being the number of inputs,

and p is the number of ports, U is the external current or voltage excitation, X is

the input state variable, and Y is the output state variable. Assuming zero initial
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conditions, the transfer function for the above equations may be written as

H(s) = LT (G+ sC)−1B. (4)

The approximation to the above expression is the goal of model order reduction

methods, which may be classified on the basis of their mathematical solution type as,

an explicit method or as an implicit method.

In the case of explicit method, the transfer function is first expanded by the means

of an infinite Taylor’s series expansion as,

H(s) = H0s+H1s+H2s
2 + . . . . (5)

The idea then is to truncate the above infinite series at a particular order as,

Hq(s) = H0s+H1s+H2s
2 + . . .+Hqs

q, (6)

such that a good approximation of the original system is obtained. In the case of

the Pade’ approximation, the transfer function is represented as a rational function

as shown below

Hq(s) =
Pq(s)

Qq(s)
=

a0s+ a1s+ a2s
2 + . . .+ ams

m

1 + b0s+ b1s+ b2s2 + . . .+ bnbn
. (7)

Due to its rational form, Pade’ approximation is better able to capture the poles

in a system than the corresponding Taylor’s series expansion. Early research on these

techniques focused on reducing model order of interconnects through explicit moment

calculation or the Krylov-subspace counterpart thereof, resulting in compact models.

In [54], the asymptotic waveform reduction algorithm (AWE) was proposed which

is an explicit moment matching technique using Pade’ approximations to generate

reduced order models. But this method was found to be unstable when matching

higher order moments. Projection based methods were studied as a numerically sta-

ble alternative, and more specifically the Krylov subspace methods were used for

reduction. The basic idea in Krylov subspace reduction is to generate a set of basis
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vectors, which are then used for projecting the original system to a space where the

resulting transformed system is much smaller. The Krylov subspace based reduction

process is illustrated in Fig. 17. The Pade’ via Lancszos Iteration (PVL) [19] is

one such method, where the Lanczos process is used to implicitly match moments.

Issues regarding the passivity of the MOR techniques were addressed in the passive

reduced order interconnect macromodeling algorithm (PRIMA) [48]. Qualitatively, a

circuit is defined to be passive if the net energy generated by the circuit is zero. The

task of ensuring passivity of the circuit remains non-trivial, and involves additional

enforcement algorithms. Depending on the need, one may enforce strict passivity or

conditional passivity [56]. The introduction of conditional passivity made it possible

to use MOR of full-wave simulations for the analysis of passive structures. The model

order reduction for electromagnetic governing equations has been previously presented

in [9, 65, 50, 38, 76, 47]. In [27], the partial element equivalent circuit (PEEC) model

extracted from an interconnect layout is suitably reduced using AWE. In [74], a com-

parison of the use of AWE, PVL and PRIMA for compact finite difference frequency

domain (FDFD) scheme is provided. To work with susceptance element based circuits,

we have to use a suitable model order reduction method which works on susceptance

elements, instead of mutual inductance terms as has been the trend. Susceptance

element based model order reduction have recently found increasing interest. The

efficient nodal order reduction method (ENOR) [60] was used to reduce lumped mod-

els extracted from interconnect structures without the need for additional passivity

enforcement algorithms. It applies an orthogonal projection on the system based on

moment-matching techniques in combination with Arnoldi-like orthogonalization [61].

Stability issues during the orthogonalization process were addressed in the improved

ENOR (imp-ENOR) algorithm [80].

It becomes even more involved to find a reduced model, when the response of a

given layout exhibits complex behavior. One way to address the issue is by increasing
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Figure 17: The concept of Krylov subspace based model order reduction method.

the order of the solution, thus in effect, matching more moments of the reduced

model to the original system. But keeping in mind that for given imaginary points of

expansion, Krylov projections are necessarily a localized approximation, the efficacy

of the aforementioned approach can be expected to vary depending on the reduced

order. In this regard, improvement can be obtained by choosing multiple points of

expansion to obtain a more globally representative projection matrix. This has been

demonstrated for rational functions by means of complex frequency hopping (CFH)

algorithm [11], and for Krylov projections by multipoint expansion algorithms [22,

24, 30]. A significant variation of the linear model order reduction scheme was shown

in [10] by performing the PVL process through a bilinear conformal transformation

(BCT), which resulted in a reduction with a definite error-bound. This process was

subsequently shown in [37] to be a subset of a more general projection method with

a non-unity multiplicative constant in the BCT.

Another important class of MOR for package and interconnect structures is the

balanced truncation method [51, 52]. The major advantage of such methods is the

existence of an a priori error bound. However, such methods also suffer from a

memory complexity requirement of O(N3), N being the number of unknowns. This

precludes the direct application of such methods for larger problems. Table 2 shows

the comparison between Krylov-subspace and balanced truncation methods.
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Table 2: A comparison between the two major MOR methods.

Figure 18: The contribution of this thesis in the design space of simulation methods.

2.4 Contribution of Thesis - A Broader Perspective

If we were to look at the design space in terms of the the size of the problem and the

main parameters being the accuracy of the simulation technique and the speed with

which the solution is obtained, each of these techniques can be suitably characterized.

It is in this context, that we place our goal to be a hybrid approach which is able

to find a suitable balance between the speed of simulation and the accuracy of the

results obtained. This is shown in terms of the design space in Fig. 18.

Fig. 19 shows the goal of this thesis in terms of the primary fields involved.
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Figure 19: The goal of this thesis, in terms of electromagnetic simulation and model
order reduction.
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CHAPTER III

EQUIVALENT CIRCUIT BASED ELECTROMAGNETIC

SIMULATION

3.1 Introduction

In this chapter a second order equivalent circuit framework for solving electromagnetic

system of equations will be discussed. This framework is based on the differential

equation based method, described briefly in the previous chapter.

3.2 Equivalent Circuit based Full-wave Simulation - SEEC

Model

In this section the formulation for extracting the second order susceptance element

equivalent circuit (SEEC) model is described, and then validated with numerical

results. The concept, as illustrated in Fig. 20, is to move from layout to a second

order equivalent circuit form.

3.2.1 Susceptance Element Equivalent Circuit (SEEC) Model

First, consider the differential form of Maxwell’s equation in the frequency domain:

∇× ~H = jω~D+ σ~E+ ~Js (8a)

∇× ~E = −jω~B (8b)

∇ · ~D = ρ (8c)

∇ · ~B = 0 (8d)

where, ω is the frequency in radians, ~E and ~H are the electric and magnetic field

vectors respectively, ~D and ~B are the related field/flux density vectors respectively, σ

is the position-dependent conductivity of the medium, ρ is the electric charge density,
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Figure 20: The susceptance element equivalent circuit, SEEC, model extraction
process.

and ~Js is the external current density source vector. In 3D, the above vector equations

for an isotropic, inhomogeneous medium can be written in scalar form, discretizing in

each direction of the Cartesian coordinates. The Yee-grid [78], as shown in Fig. 21,

is used so as to implicitly satisfy the divergence laws (8c) and (8d). The discretized

equations can be written in block matrix form as:













Gσ Dh

De 0






+ jω







Cǫ 0

0 Lµ



















E

H






=







Me

Mh






Ieh (9)

where, Dh and De are the discretized matrix forms of the curl operator for the mag-

netic and electric field vectors respectively, Gσ is the conductance matrix associated

with losses in the media, Cǫ is the capacitance matrix associated with the dielec-

tric permittivity of the medium, Lµ accounts for the self and mutual inductances

due to the magnetic permeability of the medium, E and H are the matrix forms of

the electric and magnetic field vectors in Cartesian coordinates respectively, Me and

Mh are the incidence vectors for the electric and magnetic current density excitation

represented by Ieh.

3.2.2 1D SEEC Extraction

In a single dimension, say z, the Maxwell’s equations to be considered are

jωǫEy =
∂Hx

∂z
− σEy (10)
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Figure 21: The Yee cell discretization, showing the dual grid placement of electric
and magnetic fields.

Figure 22: The one-dimensional susceptance element equivalent circuit, SEEC,
model.

jωµHx =
∂Ey

∂z
(11)

Substituting for Hx in Ey from (11) in (10), and using the Yee-grid discretization, the

SEEC model in 1D can be easily extracted. The relevant extracted model is shown in

Fig. 22, where k is the index for discretization along the z- direction, ∆z represents

the discretization in z- direction, and the electric field at each node is mapped as the

corresponding nodal voltage.
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3.2.3 2D SEEC Extraction

The transverse magnetic mode governed as below, is considered:

jωEx =
1

ǫ

(

∂Hz

∂y
−

∂Hy

∂z
− σEx

)

(12)

jωHy =
1

µ

(

−
∂Ex

∂z

)

(13)

jωHz =
1

µ

(

∂Ex

∂y

)

(14)

Substituting (4) and (5) in (3), and discretizing using the Yee cell, the following is

obtained:
(

Gx + sCx +
Γx

s

)

Vx = BxIx (15)

It is to be noted that the susceptance elements can also be formulated in terms

of controlled sources. The companion model for such a transformation is shown in

Fig 23, where ǫ is the dielectric permittivity of the medium, and ∆y and ∆z are the

discretization lengths in the y- and z- directions, respectively.

3.2.4 3D SEEC Extraction

The SEEC model for 3D can be extracted in a way similar to the 2D extraction

process.

Here, the differential Maxwell’s equations under consideration can be written as

jωǫEx =
∂Hz

∂y
−

∂Hy

∂z
− σEx (16)

jωǫEy =
∂Hx

∂z
−

∂Hz

∂x
− σEy (17)

jωǫEz =
∂Hy

∂x
−

∂Hx

∂y
− σEz (18)

jωµHx = −(
∂Ez

∂y
−

∂Ey

∂z
) (19)

jωµHy = −(
∂Ex

∂z
−

∂Ez

∂x
) (20)

jωµHz = −(
∂Ey

∂x
−

∂Ex

∂y
) (21)
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Figure 23: The susceptance element equivalent circuit, SEEC, model for a single
voltage node for a x- directed transverse magnetic mode.

Discretizing the above using the Yee-grid, and then substituting for the magnetic

fields in the electric field equations, the 3D SEEC model is extracted, wherein ad-

ditional susceptance elements account for the interaction between all the the fields.

An illustration of this process is shown in Fig. 24. Perfect electric conductor (PEC)

and perfect magnetic conductor (PMC) boundary conditions are enforced by short-

ing and opening the nodal points along the boundaries of the simulation domain,

respectively. This allows us to extract a susceptance element based equivalent circuit

model directly from a given layout. The use of susceptance element for equivalent

model construction is also advantageous as has been discussed previously in [5][79].

The relevant block matrix equations for the 3D simulation can then be written in a

manner similar to (15) as
(

G+ sC+
Γ

s

)

V = BI (22)

where, G, C, Γ ∈ R
N×N , B ∈ R

N×p and I ∈ R
p×p, N is the number of unknowns, and
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Figure 24: The three dimensional extraction of the susceptance element equivalent
circuit, SEEC, model.

p is the number of ports. Essentially (22) is the nodal analysis form of the Maxwell’s

equation and corresponds directly to the Helmholtz equations. It is by working on

this second order model that significant advantages are gained [60], as against using

MOR of linear systems [74]. The susceptance matrix, along with the capacitance and

conductance matrices, is symmetric positive semidefinite with a diagonal dominance,

and is therefore amenable to fast iterative solution [79].

3.2.5 Inclusion of Losses

Dielectric losses can be included by changing the capacitance term in the SEEC

model. Inclusion of skin effect mode has to be done taking into account the surface

impedance boundary condition [6]. A representation of the modified two dimensional

SEEC model accounting for the dielectric and skin effect losses is shown in Fig. 25
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Figure 25: The two dimensional susceptance element equivalent circuit, SEEC, model
inclusive of losses.

3.3 Numerical Test Cases

3.3.0.1 Power Ground Structure with Aperture

In the introduction as well as the description of the origin and history of the problem,

various reasons to motivate the need for 3D simulations in package modeling have

been mentioned. With the first example of a power ground structure with aperture,

we provide a physical representation of the 3D nature of the fields. The cross-section

and the top view of the structure is shown in Fig. 26 and Fig. 27, respectively. A

network port is defined between the top and bottom planes. The plot of the electric

field distribution along the x- and y- directions along the plane of the aperture is

shown in Fig. 28 and Fig. 29, respectively. The z- component of electric field is

shown in Fig. 30. The presence of the fringing fields is clearly seen, which cause a

coupling of the fields from the bottom layer to the top.
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Figure 26: The cross-section of the power plane structure with aperture.

Figure 27: The top-view of the power-plane structure with aperture.

3.3.0.2 Power Plane

To verify the accuracy of the equivalent-circuit based full-wave simulation approach,

a power-ground plane, as shown in Fig. 31, is simulated. A 13 mm × 13 mm thin

metal plane is considered, placed at the center of a dielectric box of dimensions

21 mm × 21 mm × 60 µm. A unit cell of 0.5 mm × 0.5 mm × 10 µm was used to

discretize the structure shown in Fig. 31. The dielectric constant of the homogeneous

medium enclosed in the PEC box is 3.8. The impedance response of the structure ob-

tained from the SEEC model is compared to that obtained from the simulation using

Laguerre equivalent circuit (SLeEC) approach, also called the Laguerre-FDTD [63].

Since, Laguerre-FDTD and SEEC model use similar finite difference discretization
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Figure 28: Electric field distribution along the x- direction of the power-ground
structure with aperture.

0

0.005

0.01

0.015

0.02

0
0.005

0.01
0.015

0.02

0

0.005

0.01

0.015

0.02

 

Y (in m)
X (in m)

 

E
y 

(V
/m

)

0

2

4

6

8

10

12

14

16

18

x 10
−3

Figure 29: Electric field distribution along the y- direction of the power-ground
structure with aperture.

and have similar port definitions, the response from these models can be expected to

match very well. This is shown in Fig. 32.
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Figure 30: Electric field distribution along the z- direction of the power-ground
structure with aperture.

Figure 31: The layout, cross-section and the top-view of the 13mm power plane
structure.

3.3.0.3 Three Plane Power Ground with Aperture

To further verify the accuracy of the SEEC model, a three-metal plane structure with

aperture on the center plane is considered. The structure, with PEC boundaries and

port placement is shown in Fig. 33. The discretization of the 22mm×22mm×80 µm
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Figure 32: The impedance response of the 13mm plane structure obtained from the
SEEC model compared to the Laguerre-FDTD method.

volume is done using a unit cell of 0.5mm×0.5mm×10 µm resulting in approximately

50, 000 unknowns. The dielectric constant of the homogeneous medium enclosed in

the PEC box is 4.4. A comparison of the scattering parameters of the structure

obtained from SEEC model with a commercial method of moments solver results in

a good match, as shown in Fig. 34.

3.3.0.4 Lossy Power-Ground Structure

To validate the SEEC model inclusive of the dielectric losses, the same structure as

shown in Fig. 33 was simulated assuming the loss tangent between the metal planes

to be 0.025. A comparison of the results is shown in Fig. 35

3.4 Co-simulation of SEEC with Lumped-circuit Elements

The combined simulation of lumped circuit elements along with full-wave EM sim-

ulation is essential in solving many practical problems. For example, decoupling
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Figure 33: The layout, cross-section and top-view of the three plane power ground
structure with aperture.

Figure 34: The scattering parameters of the three plane power-ground structure
with aperture obtained from the SEEC model compared to a commercial method of
moments solver.

capacitors (decaps) are commonly used to reduce the impedance profile of power dis-

tribution networks. An equivalent circuit representation of the decoupling capacitor,
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Figure 35: The scattering parameters of the three plane power-ground structure
with aperture obtained from the SEEC model compared to a commercial method of
moments solver, inclusive of dielectric losses.

inclusive of the parasitic equivalent series resistance (ESR) and equivalent series in-

ductance (ESL) is shown in. Fig. 36. The inclusion of lumped elements in the SEEC

model can be done in terms of an equivalent current density. For any lumped element

with impedance, Zlumped, placed in the Yee cell (with dimensions ∆x, ∆y, and ∆z)

along the z- direction, the current density is given as:

Jlumped =
Ilumped

Areacell
=

Vlumped

Zlumped × Areacell
(23)

where, Ilumped and Vlumped are the current and voltage associated with the lumped

circuit element, and Areacell is the cross-sectional area of the Yee cell. Vlumped in turn

can be written in terms of the z- component of electric field, Ez, in the Yee cell as:

Vlumped =
l
∑

z=ref

Ez∆z (24)
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Figure 36: The lumped element equivalent circuit for a decoupling capacitor.

Figure 37: The model for co-simulation of the SEEC model with a lumped circuit
element.

where, the lumped element is connected between the nodes ref and l. Thus the

equivalent current source for the lumped circuit element to be included in the Yee

cell is given as:

Jlumped =
Vlumped

Zlumped × Areacell
=

l
∑

z=ref

∆z

∆x∆y

Ez

Zlumped

(25)

The equivalent model inclusive of the lumped element is shown in Fig. 37.

3.4.1 Numerical Test Cases

3.4.1.1 Decoupling Capacitors Resonances

The final example to be considered is that of placing a single decoupling capacitor

between the plane pair as shown in Fig. 38. The dimension of the plane is 250 mm

× 250 mm. The entire structure is discretized using a unit cell of size 10 mm × 10

mm × 0.2 mm with a dielectric constant of 4.4 between the planes. A decoupling

capacitor with parameters ESL = 2.53 nH and C = 100 nF is placed at the port,
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Figure 38: The layout of the plane pair showing (a) the cross-section and (b) the
top-view.

causing a resonance and an anti-resonance, captured in the frequency response. The

response of the structure, with and without decoupling capacitors, is shown in Fig.

39.

3.4.1.2 Power Plane with Decoupling Capacitor

Next we consider an example of full-wave SEEC/ lumped circuit element co-simulation.

A two-metal plane power-ground structure is considered. The structure, with PEC

boundaries and port placement is shown in Fig. 40. The discretization of the

21 mm× 21 mm× 90 µm volume is done using a unit cell of 1 mm× 1 mm× 10 µm

resulting in approximately 15, 000 unknowns. The dielectric constant of the homoge-

neous medium enclosed in the PEC box is 3.8. A comparison of the self impedance

of the structure obtained from SEEC model of the power-ground structure, with and
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Figure 39: The response of the structure without decoupling capacitors (solid) and
with decoupling capacitors (dashed).

without decaps, is shown in Fig. 41. The relevant values of the decoupling capacitor

are: ESR = 15.9Ω, ESL = 0.54nH and C = 179.9nF . A total of 25 decoupling

capacitor spread throughout the plane structure are used, resulting in a significant

decrease in the self impedance.

3.5 Complexity Scaling

Complexity analysis for the quasi-minimal residual method has been well-studied.

The memory complexity of the process is O(Nlog(N)), thus affording the solution

of large test cases. The computational complexity of the process is O(rlog(Nz(A))),

where r is the number of iterations of the solver, and Nz(A) is the number of non-

zeros in the system matrix A. Results of the complexity analysis done on a 32-bit

machine with 2 GB RAM with an Intel Core 2 Duo E4500 processor are shown in

Fig. 42.

The code was also ported to a 64-bit quad-core personal computer with 48GB

RAM. Preliminary investigation showed good scaling of the memory and time per
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Figure 40: The (a)cross section and (b) top-view of the power plane pair structure.
(c) shows a top-view illustration of decoupling capacitor distribution between the
plane pair.

iteration of the simulation, as shown in Fig. 43.

3.6 Summary

A second order equivalent circuit framework for electromagnetic simulation has been

shown. The corresponding circuit equivalent form, SEEC model, was shown for one-

, two- and three- dimensional cases. Since the equivalent circuit form is a direct

representation of the Maxwell’s equation, all electromagnetic effects can be captured

accurately. Lumped components can be included by means of a voltage dependent

current density term. The second order nature of the model translates into half the

number of unknowns as the first order form, but more importantly, presents important

properties for model order reduction.
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CHAPTER IV

EFFICIENT MODEL ORDER REDUCTION OF SEEC

MODEL

4.1 Introduction

As has been discussed in the previous chapter, the focus of model order reduction

(MOR) methods have been primarily towards the first order methods. To work with

the SEEC model, an investigation into suitable second order methods of MOR needs

to be done. The focus of this chapter is to intoduce an existing method of MOR,

which can work on SEEC model, and then to demonstrate its application through

numerical examples.

4.2 Preliminaries

In this section a few definitions and theorems are necessary, which are described

below. Consider a linear system in Laplace domain, given by a system of equations

known as the descriptor form:

sEx(s) = Ax(s) + bu(s) (26a)

y(s) = lTx(s) (26b)

where, x is the vector of descriptors, u and y are the input and output variables,

respectively, A,E ∈ R
N×N , b, l ∈ R

N . The transfer function for the above system is

then given as:

H(s) = lT (sE−A)−1b. (27)

Definition 1 : Let A ∈ C
N×N be a given matrix and b ∈ C

N be a known vector,
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then the qth order Krylov subspace generated by these quantities is defined as:

Kq(A, b) = span
{

b,Ab,A2b, . . . ,Aqb
}

, q ∈ Z
+. (28)

The one-sided projection Krylov subspace reduction is defined to be the operation

of pre- and post- multiplication by a suitable matrix, Q ∈ C
N×q such that the original

system is transformed into a reduced system given by

sQTEQz(s) = QTAQz(s) +QTbu(s) (29a)

y(s) = lTQz(s) (29b)

Theorem 1 : If we choose a projection matrix Q for one-sided projection on (26) such

that,

colsp {Q} = Kq(A
−1E,A−1b), (30)

then, the reduced system matches up to q moments of the original system’s transfer

function.

4.3 Inherently Passive MOR

A passive reduction of MOR for susceptance based elements was recently proposed

in [60]. We first start with (22). We choose the point of expansion to be so and scale

the frequencies by using the following coordinate transformation:

z = −
1

so
(s− so). (31)

An auxiliary quantity is then introduced,

Y (z) =
1

1− z
X(z). (32)

Using the method of moments technique, and expanding X(z), Y (z) and I(z) in

powers of z,

{Cso(1− z) +G} {X0 +X1z + ...}+
Γ

so
{Y0 +Y1z + ...}

= B {I0 + I1z + ...} . (33)
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Equating like powers of z,

ΥoXk = CsoXk−1 −
Γ

so
Yk−1 +BIk (34)

where the following equations complete the recursive formulation for matching the

electric field moment vectors:

Υo =

(

G+Cso +
Γ

so

)

(35)

Yk = Xk +Yk−1 (36)

Y−1 = X−1 = 0. (37)

The orthogonalization process used in [60] presented stability concerns due to the

auxiliary variable Y (z), which was eliminated in [80] by making use of the following

summation:

Yk =
k
∑

l=0

Xl. (38)

Substituting (38) in (35), we get the following set of equations:

Xk = PXk−1 +R
k−1
∑

l=0

Xl (39)

X−1 = 0 (40)

X0 = Υ−1
o B (41)

where, P and R amplification matrices are given by:

P = Υ−1
o Cso (42)

R = Υ−1
o

Γ

so
(43)

Further details on the procedure for generation of the subspace can be found in

[80]. By limiting the number of terms in the summation in (39) to two, the process

limits the effect of roundoff errors. It is to be noted that the column space of the

projection matrix forms the Krylov subspace of order q, Kq. There still remains
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the issue of terminating the recursive calculation at an appropriate level. As has

been the case with other approaches, the iterative process is terminated when a

particular level of convergence has been reached. This can be determined by checking

for the difference between successive iterations and after a predetermined tolerance

is achieved, the final projection matrix is formed. Also, on-the-fly deflation is done

during the orthogonalization process to keep it stable. Once the projection matrix

has been formed, the original system matrix is reduced resulting in the following

governing equation for the reduced system:

(

G̃+ C̃s+
Γ̃

s

)

Ṽ = B̃Ĩ (44)

where,

G̃ = QTGQ, C̃ = QTGQ, Γ̃ = QTΓQ (45)

B̃ = QTB, Ĩ = IQ, (46)

This reduced system, obtained as a result of the one-sided projection, matches up to

q moments of the original system’s transfer function.

4.3.1 Passivity and Reciprocity

The issue of passivity presents a significant problem in model order reduction methods

and therefore its definition is now presented.

Definition 2 : For the impedance matrix, Z(s) to be passive, it has to satisfy the

following conditions [56, 69]:

1. Z(s) is a rational function of s.

2. Z(s∗) = ZT (s)∗.

3. z∗(Z(s) + Z∗(s))z ≥ 0, ∀z ∈ C, and ∀s ∈ C with ℜ(s) > 0.
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In the case of the susceptance element equivalent circuit model governed by (22), the

impedance response is given as

Z(s) = BT

(

G+Cs+
Γ

s

)

−1

B. (47)

Condition 1 is easily satisfied since the inverse of a rational function, (47), is also

rational. With G, B and Γ being real-valued, condition 2 is also readily satisfied,

since it involves only the conjugates of s. As stated in [60], proof for Condition 3 can

be obtained by rewriting it as

z∗BT
{

Υ−1 + (Υ−1)∗
}

Bz ≥ 0, (48)

where, Υ = G+Cs+ Γ/s. This can be rewritten as

z∗BT (Υ−1)∗ {Υ∗ +Υ}Υ−1Bz ≥ 0. (49)

Substituting for Υ with its constituent terms, taking s = α + jω and η = Υ−1Bz,

η∗
{

(G+GT ) + α(C+CT ) +
α

s2
(Γ + ΓT )

}

Bη ≥ 0. (50)

If the matrices G,C, and Γ are positive semidefinite, the above condition holds true.

A similar proof for first order reduction can be found in [48], along with proof that

one-sided projection of matrices will not change this requirement. However, this

reduced system may not be passive due to discretization and/or roundoff errors. To

provide an additional check, as in [9], the scattering parameters obtained from the

reduced model are noted and checked for the unitary boundedness condition

STS− I ≤ 0, (51)

where, S ∈ C
p×p is the scattering parameter matrix and I is the p×p identity matrix.

Theorem 2 : The application of the improved efficient nodal order reduction algo-

rithm also preserves reciprocity, an important property of the transfer functions of

passive networks.

This is true, since in the impedance response given by (47), G, C, and Γ are

symmetric, making Z(s) reciprocal among its ports.
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4.3.2 Projection Matrix Calculation

The calculation of electric field moments presents a computational challenge. Conven-

tional means employed for model order reduction employ direct methods such as LU

decomposition or QR factorization, which for sparse matrices work very well. How-

ever, the required memory scales very quickly as the problem size increases. Keeping

in mind the need for fast frequency sweep and the fact that many electromagnetic

problems would be typically large, it is best to opt for an iterative solution. Here the

biconjugate gradient process, QMR [20], is used. Due to its conjugate gradient-like

memory requirements of O(Nlog(N)), where N is the number of unknowns, it is pos-

sible to address larger problems. As compared to the generalized minimal residual

(GMRES) method [58], QMR offers advantages of 1) storing only three vectors in

memory for the recursive calculation of the basis, as against all basis vectors and

2) use of look-ahead strategies to avoid cases of near-breakdown. Near breakdown

is said to occur when, though the vector calculated in current iteration might be

nearly zero, the vectors in successive iterations are well-behaved. More details can

be found in [20]. The iterative process can be accelerated through the use of suitable

preconditioners. Consider a linear equation of the form

Ax = b. (52)

Then the introduction of a preconditioner, M, modifies this equation to be of the

form

M−1Ax = M−1b, (53)

which converges to a solution faster, since the condition number of the coefficient

matrix M−1A is much smaller than that if A. The main properties of an effective

preconditioner are that it should be as close to the original system matrix as possible,

and it should be computationally inexpensive. It is observed that the system matrix

used for the calculation of the moment vectors is essentially similar to the Helmholtz

47



0 2 4 6 8 10

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Square Matrix Dimension, N

T
im

e 
/ F

re
qu

en
cy

 P
oi

nt
 (

se
c)

Figure 44: The time taken per iteration by the solver as the matrix dimension
increases.

operator. Preconditioner for the Helmholtz operator is a well studied field [36, 42].

The complex space shifted diagonal preconditioner is used, which is a simple, yet

stable and effective preconditioner for the Helmholtz operator. The advantage of using

the shifted diagonal preconditioner is primarily two-fold: 1) The cost of calculating

the preconditioner is trivial, and 2) the introduction of the imaginary shift prevents

any clustering or crossing of the eigenvalues of the preconditioned matrix around

zero. Detailed discussions about the use of the complex shifted preconditioner and its

effects on the eigenvalues of the preconditioned matrix, and therefore the stability and

convergence properties of the iterative solution can be found in [42]. An imaginary

shift of 0.5 is chosen for the test cases presented in this thesis. The scalability of the

solver on a 32-bit platform in a MATLAB environment is shown in Fig. 44. The

computational complexity of conjugate gradient type processes is O(rNz(A)), where

r is the number of iterations of the solver, Nz(A) is the number of non-zeros in the

system matrix A.
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Figure 45: The impedance response of the 13mm plane structure obtained from the
reduced model compared to the full-wave SEEC model.

4.4 Numerical Test Cases

In this section the efficiency and scalability of the imp-ENOR algorithm for SEEC

models is demonstrated with test cases.

4.4.0.1 Power Plane

The first test case considered is the 13 mm power plane structure shown in Fig.

31. The improved-ENOR algorithm is applied and the model-order is reduced to a

system of order 10. Fig. 45 shows a favorable comparison of the reduced model and

the full-wave 3D SEEC model. The average time per frequency point for the full 3D

simulation was of the order of 20 s, whereas that for the reduced-order system was

on the order of tenths of milliseconds.

4.4.0.2 Power Ground Structure with Via

To verify the accuracy of the equivalent-circuit based full-wave simulation followed

by the improved ENOR approach, a power-ground structure, as shown in Fig. 46, is
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Figure 46: The (a) cross-section and (b) top-view of the power-ground structure
connected by a via.

simulated. Two 15mm × 15mm thin metal planes connected by a via are considered,

placed in a homogeneous medium of dielectric constant 4.5, enclosed in a PEC box of

dimensions 25 mm × 25 mm × 80 µm. A unit cell of 0.5 mm × 0.5 mm × 10 µm

was used to discretize the structure shown in Fig. 46. The imp-ENOR algorithm is

applied and the model-order is reduced to 15. Fig. 47 shows a favorable comparison

of the reduced model and the full-wave 3D SEEC model simulation. The average

time per frequency point for the full 3D simulation was of the order of 120 s, whereas

the reduced-order system response took on the order of tenths of milliseconds per

frequency point.
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Figure 47: The impedance response of the power-ground structure shorted by a via,
obtained from the reduced model and the full-wave SEEC model.

4.4.0.3 Test Structure - Power Ground Structure with Aperture

To demonstrate the convergence of the solution as the order of the reduced system

is increased, a three-metal plane structure with aperture on the top plane, as shown

in Fig. 33 is considered. The improved-ENOR algorithm is then applied, with the

number of poles varying as 2, 5 and 10 poles. Fig. 48 and 49 shows the self and

transfer impedance response of the two-port system for this set-up. As can be seen,

as the number of poles is increased the system response converges to the full-wave

simulation. Whereas the 2-pole system is inadequate, the 5-pole system starts to

diverge at frequencies above 4.5GHz. The 10-pole reduced order system shows a

good match with the full-wave simulation results. The average time per frequency

point for the full 3D simulation was of the order of 180 s, whereas for the reduced-order

system response took on the order of tenths of milliseconds.
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Figure 48: The self impedance of the three plane power ground structure with aper-
ture, obtained from the reduced model compared to the full-wave SEEC model.
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Figure 49: The transfer impedance of the three plane power ground structure with
aperture, obtained from the reduced model compared to the full-wave SEEC model.

4.4.0.4 Test Structure - 2.4GHz Band-pass Filter

The test structure now considered is that of a 2.4 GHz band-pass filter structure

shown in Fig. 50. It is a multilayer structure in a homogeneous medium of dielectric

52



constant, ǫr = 3.51. The structure on metal layer M0 is repeated on metal layer M1.

The linewidth of the larger inductor is 150 µm and the spacing is 100 µm and its

dimensions are 1200 µm× 950 µm. The smaller inductor has a linewidth of 200 µm

and a spacing of 100 µm and its dimensions are 900 µm×700 µm. The larger capacitor

has dimensions of 1050 µm × 300 µm and the smaller capacitor has dimensions of

1200 µm × 100 µm. The square vias are 100 µm × 100 µm. The entire structure

enclosed in a PEC box is discretized using a unit cell of 50 µm × 50 µm × 20 µm

resulting in a total of 220, 000 unknowns. The SEEC model is then extracted from

this discretization as described in Section II. Then the passive reduction process using

a single point of expansion is applied to this model. A comparison of the insertion

loss of the reduced model as compared to the original full-wave model is shown in

Fig. 54. The corresponding comparison for the return loss is shown in Fig. 55. The

frequency at which the expansion is done is 2.5 GHz. The electric field distribution of

the structure along the x-, y- and z- directions is shown in Fig. 51, Fig. 52, and Fig.

53, respectively. A very close representation of the full-wave model is obtained and

therefore the accuracy of the reduction process is validated. The computational cost of

reduction is primarily comprised of the solutions to the twenty linear equations during

the recursive calculation of the projection matrix. This is however, a considerably

lower cost as compared to running a fine frequency sweep of the original full-wave

model.

4.4.0.5 Test Structure - 5GHz Band-pass Filter

Consider a multilayer 5 GHz bandpass filter enclosed in a PEC box of dimensions

4 mm × 4 mm × 280 µm shown in Fig. 56. The box is filled with a homogeneous

medium with dielectric constant 3.8. Discretizing the structure using a unit cell of

dimensions 0.05mm× 0.05mm× 20 µm results in approximately 300, 000 unknowns.

It is a multilayer structure in a homogeneous medium of dielectric constant, ǫr = 3.51.
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Figure 50: The (a) cross-section and (b) the top-view of the layout of the M0 layer
of 2.4 GHz band-pass filter structure.

The structure on metal layer M0 is repeated on metal layer M1. The inductors,

capacitors, and vias have the same feature dimensions as in the previous test case.

The insertion loss response of the structure for the original and the reduced system is
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Figure 51: Electric field distribution along the x- direction of the band-pass filter
structure at 2 GHz.

shown in Fig. 57. The corresponding comparison for the return loss of the structure

for the original and reduced system is shown in Fig. 58. A high level of accuracy is

obtained with the passive reduced order model over a frequency range from 1 GHz

to 8 GHz.

For all the test cases described above, it is to be noted that if a factorization

for the Υ matrix is available, the total time and memory overhead is corresponds to

just one solution of the linear system. However, when such a factorization cannot be

calculated, the time and memory overhead is equal to that associated with q solutions

of the system equations.

4.5 Summary

A model order reduction scheme, the imp-ENOR method, has been successfully ap-

plied to the SEEC model, resulting in a smaller reduced system. By virtue of its
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Figure 52: Electric field distribution along the y- direction of the band-pass filter
structure at 2 GHz.

application to the second order form of SEEC model, properties of passivity and reci-

procity are well preserved. To check for passivity violations due to round-off error,

the scattering parameters are checked for the unity boundedness. Application of the

algorithm to power ground and a band-pass filter structure were shown, where the

reduction in size translated to a much smaller frequency sweep time (of the order of

milliseconds).
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Figure 53: Electric field distribution along the z- direction of the band-pass filter
structure at 2 GHz.
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Figure 54: The insertion loss of the reduced model of order 20 compared to the
original full-wave simulation of the band-pass filter structure layout
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Figure 55: The return loss of the reduced model of order 20 compared to the original
full-wave simulation of the band-pass filter structure layout
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Figure 56: The (a) cross-section and (b) the top-view of the layout of the M0 layer
of 5 GHz band-pass filter structure.
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Figure 57: The insertion loss of the reduced model of order 20 compared to the
original full-wave simulation of the 5 GHz band-pass filter structure layout.
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Figure 58: The return loss of the reduced model of order 20 compared to the original
full-wave simulation of the 5 GHz band-pass filter structure layout.
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CHAPTER V

MULTI-POINT EFFICIENT NODAL ORDER

REDUCTION

5.1 Introduction

In the previous chapter, the focus was to apply an existing MOR method to the SEEC

model. In this chapter, the focus is to improve on the MOR approach itself. To mo-

tivate this discussion, consider the concept of approximation achieved by expanding

around a single frequency point, as shown in Fig. 59.

Figure 59: The single point expansion based model order reduction.

It works by increasing the accuracy of approximation as the order of the reduced

model is increased. However, to achieve satisfactory levels of accuracy at points

further away from the point of expansion, a much larger increase is needed in the order

of the reduced model. Instead, if multiple points of expansion are used, as shown in

Fig. 60, the same level of accuracy can be achieved over the entire bandwidth with
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Figure 60: The multiple point expansion based model order reduction.

a much smaller reduced model. In the following sections, the multi-point expansion

scheme will be developed further, demonstrating its superiority over the algorithm

presented in the previous chapter.

5.2 Multi-point Efficient Nodal Order Reduction (MPENOR)
Scheme

In this section, the multi-point extension scheme to a second order model order re-

duction method is presented. We start with the set of expansion points φ0, φ1, ...., φq.

This set, in turn, can contain repeated instances of a given set of expansion points s0,

s1, ...., sr. The objective then is to find the reduced-state such that the impedance

matrices of the original and reduced state satisfy the relation [30]

∂k−1

∂sk−1
Z(sl) =

∂k−1

∂sk−1
Z̃(sl), (54)

1 ≤ k ≤ νl, 1 ≤ l ≤ r,

where νl corresponds to the reduced order at a given local subspace Ksl . This ensures

that through multiple local expansions, a more global approximation for the original

system is obtained. The main algorithm for this is described in Fig. 61. It works

by generating the union of the Krylov subspaces Ks0 , Ks1 , ..., Ksr corresponding to

the points of expansion. The recurrence relation given by (39) is maintained here,

with the summation limited to two terms. The inner iteration loop ensures the
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proper generation of orthogonal basis vectors. The check for equality of successive

φi values establishes the transition from one expansion point sl, to the next. This

directly corresponds to the transition from generating the Krylov subspace Ksl , to

the subspace Kslmax
. Also, as previously with the single point algorithm, convergence

is determined through a predefined tolerance level and on-the-fly deflation is done

during the orthogonalization process. When a single point of expansion is chosen,

the algorithm becomes the same as in the improved efficient nodal order reduction

approach. In addition to a predetermined tolerance at a given point, in the case of

multi-point reduction, a maximum order of expansion, νl, may be set for each local

Krylov subspace. The choice of subsequent expansion points can be done by looking at

two factors: 1) determining the values of frequencies where the minimum deviation is

observed in successive iterations and 2) the frequencies at which the maximum relative

error is observed. This process can be repeated if necessary. Thus an accurate control

over the relative error is achieved in the entire frequency bandwidth of interest. The

relative error is given as

ǫrel(s) =
|SFull−wave(s)− SModel(s)|

|SFull−wave(s)|
. (55)

The tolerance, δtol, is measured in terms of the relative change in the frequency

response between two successive iterations, similar to (67). A representative algorithm

to check for a transition from one Krylov subspace to the next, and to check for

the global convergence of the solution is shown in Fig. 62. For each of the distinct

expansion point sl, one can choose a minimum number of expansion order after which

a check for transition to another subspace is performed. This is shown in the algorithm

with the set of values ζ0, ζ1, . . ., ζr. The set of points over which the tolerance is

checked is ϕ0, ϕ1, . . ., ϕn, with n usually being much greater than r. In addition,

acceptable values for the relative error and tolerance are defined as defErr and

defTol, respectively.

The reduced state equation obtained through the multi-point efficient nodal order
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Input: G, C, Γ, B, I, s0, s1, . . ., sr
Output: G̃MP , C̃MP , Γ̃MP , B̃MP , ĨMP

Require: q > 0
Ensure: size(C) = size(Γ), rows(C) = rows(B),

cols(B) = rows(I)
if G 6= 0 then

Ensure: size(G) = size(C)
end if

convF lag = 0
l = 0
iterCount = 0
φ0 = s0
Solve: (G+ φ0C+ Γ/φ0)U0 = BI

W0 = orth(U0)
U

−1 = 0
k = 1
φk = s0
while k ≤ q do

if φk 6= φk−1 then

Solve: (G+ φkC+ Γ/φk)Uk = BI

W = [W Uk]
W = orth(W)
Uk−1 = 0
φk+1 = sl
k = k + 1

end if

iterCount = iterCount+ 1
T = CφkUk−1 − (Γ/φk)(Uk−1 +Uk−2)
Solve: (G+ φkC+ Γ/φk)Uk = T

W = [W Uk]
W = orth(W)
G̃MP = WTGW, C̃MP = WTCW,
Γ̃MP = WTΓW, B̃MP = WTB, ĨMP = IW

checkConvergence (See Fig. 4)
if convF lag = 1 then

Break

end if

k = k + 1
end while

Figure 61: Pseudocode for the multi-point efficient nodal order reduction algorithm.
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Input: ϕ0, ϕ1, . . ., ϕn, ζ0, ζ1, . . ., ζr, defTol,
defErr

errMax = max [ǫrel(s0), ǫrel(s1), . . . , ǫrel(sr)]
Find lmax such that ǫrel(slmax) = errMax
tolMax = max [δtol(ϕ0), δtol(ϕ1), . . . , δtol(ϕn)]
if errMax < defErr and tolMax < defTol then

convF lag = 1
else

if iterCount ≥ ζl and ǫrel(φk) < defErr then

if ǫrel(slmax) > defErr and δtol(ϕlmax) >
defTol then

φk+1 = slmax

iterCount = 0
l = lmax

end if

else

φk+1 = sl
end if

end if

Figure 62: Pseudocode for the “checkConvergence” algorithm used in Fig. 61.

reduction scheme is then given as

(

G̃MP + sC̃MP +
Γ̃MP

s

)

Ṽ = B̃MP ĨMP , (56)

G̃MP = WTGW, C̃MP = WTCW, Γ̃MP = WTΓW, (57)

B̃MP = WTB, ĨMP = IW. (58)

5.2.1 Passivity and Reciprocity

The proof for passivity follows the pattern described in the previous chapter.

5.2.2 Moment Matching Property

The transfer function of the second order system in (22) can be written as

H(s) = BT

(

G+Cs+
Γ

s

)

−1

B, (59)
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which in turn can be rewritten in first order form as

H(s) = BT
a (G + sC)−1 Ba, (60)

where,

G =







Gσ Dh

De 0






, (61)

,

C =







Cǫ 0

0 Lµ






, (62)

and,

Ba =







B

0






. (63)

The matrices in right hand side of (61) and (62) take the same meaning as in (9).

Similarly, for the reduced system in (56), The transfer function is of the form

Hq(s) = B̃
T

a

(

G̃ + sC̃
)

−1

B̃a, (64)

where, the matrices G̃, C̃, and B̃a take the reduced order definitions corresponding

to the matrices defined in (61), (62) and (63), respectively. In the form given by

(60) and (64), [48] already presents us with proof that moment matching property

is maintained with any one-sided projection transformation. The interested reader is

referred to [3], where a mathematically rigorous treatment for moment matching by

second order reductions is presented by using the same logic as above - converting

the second order transfer function to a first order form and then proceeding to show

the moment matching property. In the case of multipoint reduction, the projection

matrix can be written in terms of individual Krylov subspaces at given expansion

points s0, s1, ..., sr as

W = [Q0 Q1 . . . Qr]. (65)

This is equivalent to matching moments at each of the expansion points as stated in

(54) as long as it is ensured that [24] [30]:
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1. The projection matrix W is full rank, due to its orthonormal generation, and

2. The union of Krylov subspaces generated through the multi-point expansion

scheme satisfies the relation

m
⋃

l=0

Ksl ⊆ span {W} . (66)

5.3 Numerical Test Case

In this section the limitation of model order reduction by expanding at only one

frequency point is shown by means of a numerical example, thus motivating the need

for multi-point efficient nodal order reduction algorithm, and show its application.

5.3.0.1 Test Structure - Electromagnetic Band-gap Structure

The example considered is that of an electromagnetic bandgap (EBG) structure,

which have been used to provide electrical isolation in RF/microwave structures,

reducing the adverse effect of noise. The structure under consideration is shown in

Fig. 63. Each metal patch has a dimension of 14 mm× 14 mm and the metal branch

size is 1 mm×1 mm.The structure is enclosed in a PEC box and is discretized using a

unit cell of dimensions 0.5 mm× 0.5 mm× 10 µm, resulting in approximately 42 000

unknowns. The perfect electric conductor box is filled with a homogeneous medium

with dielectric constant ǫr = 4.5. The SEEC model is extracted from this layout and

model reduction with single point expansion is applied to it. The response of the

reduced order model with a single point of expansion is shown in Fig. 64. It is seen

that though at lower frequencies the response matches well with that of the full-wave

solution at the test-points, at higher frequency there is a considerable deviation. To

quantify this deviation the relative error of the model, defined as

Relative Error =
|SFull−wave − SModel|

|SFull−wave|
, (67)

is considered.
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Figure 63: The (a) cross-section and (b) top-view of the layout of the EBG structure
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Figure 64: The response of the reduced model of order 24 compared to the original
full-wave simulation of the EBG structure layout
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The semilogarithmic plot of relative error in the magnitude of insertion loss as a

function of frequency is shown in Fig. 65. Here we can clearly see the local nature

of the Krylov subspace reduction process, wherein the relative error is least in the

vicinity of the point of expansion. As we increase the model order from q = 8 to

q = 16, the reduction in relative error is again localized near the point of expansion.

Increasing the reduced order to 24 results in a much better representation at the

beginning of the frequency range. However, near the upper limits of the bandwidth,

we see that a considerable amount of error remains. Specifically, above 8.5 GHz, the

relative error is more than 10−1 even for the case of q = 24, which is clearly seen in

the deviation from the full-wave simulation in Fig. 64. This is further corroborated

by the stem plot of the convergence behavior as the order of the reduced model is

increased as shown in Fig. 66. The tolerance is measured in terms of the relative

change in the frequency response between two successive iterations, similar to (67).

At 10 GHz the tolerance value is still large for q = 24, whereas at 7 GHz, acceptable

convergence has been obtained much earlier.

Keeping the large deviation at the lower and upper limits of the frequency band-

width, the MPENOR algorithm with the imaginary points of expansion s0, s1 and

s2 corresponding to the frequencies 2.5 GHz, 5.5 GHz and 9 GHz and ν = {6, 8, 14}

is applied, resulting in a three-point MPENOR algorithm of reduced order, q = 28.

First we look at the convergence behavior in terms of the stem plot shown in Fig. 67.

By the time the expansion order at 9 GHz reaches 13, we observe acceptable toler-

ance at 10 GHz. Fig. 68 shows the actual insertion loss response of the three-point

MPENOR reduced model as compared to the full-wave solution of the EBG struc-

ture at test points. Fig. 69 shows the comparison of the return loss for the original

and the three-point reduced model obtained through multi-point efficient nodal order

reduction. The application of the MPENOR algorithm results in an accurate match

at reduced computational cost.
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Figure 65: The semilogarithmic plot of relative error with respect to frequency for
orders of reduction 8, 16 and 24.
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Figure 66: The tolerance values as the model order is increased for single point
expansion at 5.5 GHz.

The relative error values of this model are compared to that of the reduced model

with single point of expansion, with varying orders. This is shown in Fig. 70. Clearly
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Figure 67: The tolerance values as the model order at 9 GHz is increased for the 3
point multi-point efficient nodal order reduction algorithm.

see that the multi-point scheme results in a more accurate representation over the

entire bandwidth. In contrast, even with the reduced order increasing to q = 32,

the relative error is still greater than 10−1 at 10 GHz. To achieve nearly the same

level of accuracy as the three-point MPENOR algorithm at the upper bounds of

frequency bandwidth, the reduced order for the single point expansion scheme has to

be increased to q = 40. The computational saving of the MPENOR algorithm is thus

clearly in terms of reducing the number of linear equations to be solved during the

recursive calculation of the projection matrix. In quantitative terms, the time taken

for model generation and the full frequency sweep from 1 GHz to 10 GHz with a

step of 0.01 GHz is shown in Table 3. All simulations were carried out on a personal

computer with a Intel Core 2 Duo E4500 processor and 2 gigabytes of memory.
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Figure 68: The comparison of the insertion loss response of the 3-point reduced
model of order 28 compared to the original full-wave simulation of the electromagnetic
bandgap structure layout

Table 3: The performance of algorithms in terms of time.

Algorithm Model Generation Frequency Sweep

Full-wave 5 sec. 22.5 hrs.

q=40 1 hr. 49 min. 2 sec.

MPENOR(q=28) 1 hr. 14 min. 2 sec.

5.4 Summary

The 3D full-wave analysis is a computationally intensive process, and in this work

an attempt has been made to solve the problem in a fast, memory efficient manner.

The MOR of SEEC model extracted from discretized form of Maxwell’s equation has

been shown to be a computationally efficient process enabling fast frequency sweep

of complex RF/microwave structures. In addition to the savings in computational

time and memory by operating on a second order system instead of a linear system,
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Figure 69: The comparison of the return loss response of the 3-point reduced model of
order 28 compared to the original full-wave simulation of the electromagnetic bandgap
structure layout

it is noted that the MPENOR algorithm gives rise to a passive and reciprocal sys-

tem without the need for additional passivity enforcement algorithms. Further, the

calculation of the projection matrix stabilized by the use of a complex-space shifted

diagonal preconditioner enables the solution of problems without the need for addi-

tional storage of the factorized matrix. It is to be noted, however, that in case of

smaller problems, such a factorization may be computationally advantageous.

The advantage of the MPENOR algorithm over the single point expansion scheme

has been clearly demonstrated in terms of reduced computational cost. This becomes

particularly useful when the system response is fairly complex. Though the single

point scheme can also reach the same levels of accuracy, the reduced order may be

significantly more. This ties in to the localized nature of Krylov subspace projection

process. Increasing the order of the reduced model in turn means that more moments

of the transfer function of the reduced system are matched to the moments of transfer
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Figure 70: The semilogarithmic plot of relative error with respect to frequency for
imp-ENOR algorithm with orders of reduction 24, 32 and 40 compared to that of
MPENOR algorithm of order 28.

function of the original system. With increasingly more moments matched, the con-

tribution of states not necessarily dominant at the given expansion point can be taken

into account, thus providing better accuracy over a wider frequency bandwidth. In

contrast, by creating a union of Krylov subspaces at multiple points in the MPENOR

algorithm, the projection matrix thus formed is more globally representative and can

swiftly account for various dominant states in the response of the SEEC model. How-

ever, for extremely large systems, the generation of a large projection matrix with

linearly independent vectors may become the limiting factor. In such cases, one may

be left with options of (a) multiple multi-point expansions, (b) multiple single-point

expansions, or (c) iterative solution at each discrete frequency point. Among the

limitations of the process are the fact that at extremely low frequencies the reduced

model is no longer accurate. This happens due to the fact that

lim
s→0

(

Γ

s

)

= undefined. (68)
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But keeping in mind that quasi-static lumped element models can be easily obtained

at considerably less computational cost due to various approximations that can be

made to the Maxwell’s equation, the proposed MPENOR algorithm remains an ex-

tremely efficient option for fast frequency sweep at higher frequencies where these

approximations may no longer be valid. An added advantage of the multi-point

approach is that it enables the use of parallel processing, resulting in reduced com-

putational time.
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CHAPTER VI

BILINEAR CONFORMAL TRANSFORMATION BASED

REDUCED ORDER MODELING

6.1 Introduction

The MOR methods explored so far rely primarily on approximating the transfer

function of the linear system in the frequency domain, without any error bounds.

An error bound second order model reduction scheme is formulated in this section

through bilinear conformal transformation (BCT).

6.2 Bilinear Conformal Mapping and Error Bound

The bilinear transformation is defined to be a conformal mapping such that the

Laplace domain variable,

s = c
1− z−1

1 + z−1
, (69)

c being the constant of transformation. The bilinear transform maps the imaginary

axes in the Laplace domain to the unit circle in z-domain. The left half of the Laplace

domain is mapped to the interior of the unit circle, and the exterior of the unit circle

corresponds to the right half of the Laplace domain. This is shown in Fig. 71.

The BCT was first demonstrated for the first order MOR of a linear system in

[10]. If X(s) is a given transfer function reduced to X̃(s), the error bound is given as

[10]:

|ǫ(t)|2 ≤
2(2N − 3)π2Γ(N − 3

2
)

3Γ(N − 1)

∫ π

−π

∣

∣

∣
X(ejθ)− X̃(ejθ)

∣

∣

∣

2

dθ, (70)

where, ǫ(t) is the time domain error between the original and the reduced system

transfer functions, N is the number of zeros of X ′(z) when z = −1.

76



Figure 71: The mapping obtained from bilinear conformal transformation

6.3 Nodal Order Reduction via Bilinear Conformal Trans-

formation (NORBCT) Algorithm

In this section the model order reduction scheme for second order systems through

bilinear transformation is introduced. By using the bilinear transformation (82) in

the SEEC nodal equations (22), we get the nodal equations in the z-domain as

(

G+ c
1− z−1

1 + z−1
C+

(1 + z−1)Γ

c(1− z−1)

)

V(z) = BU(z) (71)

Following a few steps of mathematical manipulation and expanding V(z) and U(z)

in powers of z, it is possible to show that a recursive relation can be obtained for

the various Vk(z). These vectors correspond to the voltage moments of the transfer

function of the second order system in the z-domain. The vectors thus calculated can

be used to form a projection matrix, Q ∈ C
N×q, which in turn can be used to reduce

(22) through congruent transformation resulting in:

(

G̃+ C̃s+
Γ̃

s

)

Ṽ = B̃Ũ (72)
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Solve: (G+ cC+ Γ/c)V0 = BU

V0 = orth(V0)
Solve: (G+ cC+ Γ/c)V1 = 2 (cC− Γ/c)V0

Orthonormalize V1 against V0,V1

T = 2 (cC− Γ/c)V1 + (G− cC− Γ/c)V0 −BU

Solve: (G+ cC+ Γ/c)V2 = T
Orthonormalize V2 against V0,V1,V2

k = 3
while k ≤ q do

T = 2 (cC− Γ/c)Vk−1 + (G− cC− Γ/c)Vk−2

Solve: (G+ cC+ Γ/c)Vk = T
Orthonormalize Vk against V0,V1,. . ., Vk

k = k + 1
end while

Q = [V0,V1, . . . ,Vq]

G̃ = QTGQ, C̃ = QTCQ,
Γ̃ = QTΓQ, B̃ = QTB, Ũ = UQ

Figure 72: The nodal order reduction via bilinear conformal transformation (NOR-
BCT) algorithm

where,

G̃ = QTGQ, C̃ = QTGQ, Γ̃ = QTΓQ

B̃ = QTB, Ũ = UQ.

The process of obtaining the projection matrix is shown in Fig. 72. During the

recursive calculation of the vectors, orthogonalization with on-the-fly deflation is done

to ensure the generation of a full-rank projection matrix. The process can be suitably

stopped once a predefined tolerance level is achieved.

6.3.1 Passivity and Reciprocity

Passivity is an important consideration for such systems and is defined to be a state

where no net energy is generated by the system [56]. More rigorously it can be stated

that for a system to be passive, its transfer function, H(s), must obey the following
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rules:

1. H(s) is analytic in s.

2. H(s∗) = HT (s)∗

3. z∗(H(s) +H∗(s))z ≥ 0, ∀z ∈ C, and ∀s ∈ C with ℜ(s) > 0

The use of congruence transformation preserves the passivity of the system [48][60].

Also, by working with the second order system, i.e. the nodal analysis framework,

the reciprocity of the reduced system is preserved [60].

6.3.2 Relation to Generalized Laguerre Functions

The relationship between the bilinear conformal transformation and the generalized

Laguerre functions was shown in [37]. We first start with the Laguerre polynomials

defined as:

ln(t) =
et

n!

dn

dtn
(e−ttn). (73)

The scaled time-domain Laguerre functions are then given as:

Φα
n(t) =

√

(2α)e−αtln(2αt), n = 0, 1, 2 . . . (74)

where, α is a positive scaling factor. The frequency domain Laguerre functions can

be found by taking the Laplace transform of (74), and are given as:

Φα
n(s) =

√

(2α)

s+ α

(

s− α

s+ α

)n

, n = 0, 1, 2 . . . (75)

The scaled Laguerre functions form an orthonormal basis, and any transfer function

H(s) can be expanded as:

H(s) =
∞
∑

0

FnΦ
α
n(s) (76)

which can be rewritten as:

H(s) =
∞
∑

0

Fn

(

s− α

s+ α

)n

(77)
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We also know that the passive Pade’ approximant found through NORBCT in-

herently approximates the original transfer function given in the form :

H(z) =
∑

Bnz
n (78)

where,

z =
s− c

s+ c
(79)

From (77), (80), and (79) we can determine that the NORBCT algorithm in the

z-domain directly corresponds to finding a passive Laguerre approximant of the the

original second order system in the Laplace domain.

6.3.3 Numerical Test Cases

We now look at results to demonstrate the use of the NORBCT projection approach

to actual test cases.

6.3.3.1 Power ground structure with apertures

The first test case we consider is a four metal layer power ground plane structure. The

dimensions of the structure are as shown in the Fig. 73. The metal plate size is 14 mm

and the size of the aperture is 6 mm. The vertical distance between the metal plates is

20 µm. Discretizing the structure using a unit cell of 0.5mm×0.5mm×10 µm results

in approximately 72, 000 unknowns. The PEC box is filled with a homogeneous

material with dielectric constant 4.5. Fast frequency sweep of the power-ground

structure is done from 1 GHz to 10 GHz using the NORBCT algorithm. In Fig. 74,

we see response of the original system compared to reduced system obtained after

applying the NORBCT algorithm. The full-wave simulation of the original system is

done at discrete points for comparison.

6.3.3.2 Split power plane structure

The next example we consider is the split power plane structure shown in Fig. 75.

Discretizing the structure using a unit cell of 0.5 mm × 0.5 mm × 30 µm results
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Figure 73: The (a) cross-section and (b) top-view of the layout of the power-ground
structure with apertures

in approximately 100, 000 unknowns. The PEC box is filled with a homogeneous

material with dielectric constant 4.4. The NORBCT algorithm is applied to obtain the

fast frequency sweep of the power-ground structure. The frequency range of interest is

from 1 GHz to 5 GHz. In Fig. 76, we see insertion loss of the original system compared

to reduced system of order 15 obtained after applying the NORBCT algorithm. Fig.

77 shows the corresponding comparison of the return loss for the original and the

reduced models. The full-wave simulation of the original system is done at discrete

points for comparison.

6.3.3.3 Split Power Island

A power ground structure with a split on the top plane, as shown in Fig. 78, is

considered. The structure is enclosed in a PEC box of dimensions 22mm× 22mm×
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Figure 74: The response of the reduced model of order 20 (solid line) compared to the
original full-wave simulation (circles) of the power-ground structure with apertures
structure layout.

80µm. Discretizing the whole structure using a unit cell of dimensions 0.5mm ×

0.5mm × 10µm results in approximately 51, 000 unknowns. The medium in the

box has a dielectric constant of 3.8. The NORBCT algorithm is applied to obtain

a reduced model of order 10. Fig. 79 shows a comparison between the reduced

order model and the full-wave simulation. As can be seen from the plot, an accurate

match is obtained over the entire frequency range under investigation, thus proving

the accuracy of the algorithm to address electromagnetic simulations.

6.4 Choice of Laguerre Parameter

For a given bandwidth, BW, it is stated that the range of values over which α can be

chosen is

4× BW ≤ α ≤ π2 ×BW. (80)

The above inequality holds true for a system, where the frequency range of interest
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Figure 75: The (a) cross-section and (b) top-view of the layout of the split power
plane structure

is [0, fmax], and the usual choice for the Laguerre parameter is,α = BW = 2πfmax.

For a system with frequency range of interest [fmin, fmax], the usual choice of the

Laguerre parameter is π(fmax + fmin), which corresponds to the mid-point of the

frequency range. Further, it is stated in [37] that the Laguerre parameter, α, is also

related to the reciprocal of the time constant of the system. Since the time constant of

a finite difference solution is related to the discretization, one can say that a Laguerre

parameter based on the upper frequency bound will be better able to capture the

physical dynamics of the system.

6.4.0.4 Power-island Structure

A power-ground structure with a power-island is shown in Fig. 80. The dimension of

the island is 6mm×6mm and with the gap being 1mm. The structure is enclosed in a
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Figure 76: The insertion loss of the reduced model of order 15 (solid line) compared
to the original full-wave simulation (circles) of the split power plane structure layout.

perfect electric conductor box of dimensions 26mm× 26mm× 400µm and discretized

using a unit cell of 0.5mm × 0.5mm × 50µm. To characterize the structure for a

range up to 5 GHz, the nodal order reduction via bilinear conformal transformation

is used with Laguerre parameters corresponding to - 1) the mid frequency value,

2π×2.5e9, 2) a value outside the suggested range, 2π×1.5e9, 3) the values π2×2.5e9

and 4) 2π × 5e9. A comparison of these reduced models, each of order 10, with the

original full-wave response is shown in Fig. 82 and Fig. 81. We see that for Laguerre

parameters,α = 2π × 1.5e9, which is outside the range of suggested values, there is

a definite convergence issue. For α = 2π × 2.5e9, the convergence is better, and for

α = π2 × 2.5e9, the convergence is the best. For α = 2π × 5e9, there is a lack of

convergence towards the beginning of the frequency range.

Further, we see that the choice of the Laguerre parameter has a definite effect on
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Figure 77: The return loss of the reduced model of order 15 (solid line) compared to
the original full-wave simulation (circles) of the split power plane structure layout.

the speed of convergence of the reduced model to the original full-wave response. An-

other perspective on the choice of Laguerre parameter is in terms of the time constant

of the system under consideration [37]. For finite difference based governing equa-

tions, this may is related to the upper bound of analysis frequency, which determines

the discretization (based on the wavelength). We also know that the overall conver-

gence of the process is dictated by the poles near the end points of the frequency

range. Moving the Laguerre parameter very close to either of these points may result

in longer time for convergence of results at the other end point. Also, an additional

requirement is that the Laguerre parameter should be of the same order as the band-

width of the system. A balancing act is needed between the radius of convergence,

determined by the value of Laguerre parameter, and the order of the solution, which

is determined by the proximity of the Laguerre parameter to the end points of the

frequency range. Keeping all these factors in mind, for a range of interest [fmin, fmax],
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Figure 78: The (a) cross-section and (b) top-view of the layout of the split power
island structure

it is best to choose the Laguerre parameter as: π(fmax + fmin) ≤ 2α < 2πfmax This

choice of Laguerre parameter between the mid-point and the upper frequency bound,

keeps the required reduced order lower, and at the same time provides enough radius

of convergence.

6.5 Multi-point Reduction via Bilinear Conformal Trans-
formation

The derivation starts with the second order nodal analysis equations described below

(

G+ sC+
Γ

s

)

V(s) = BU(s) (81)
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Figure 79: The insertion loss of the reduced model of order 10 (solid line) compared
to the original full-wave simulation (circles) of the split power island structure layout.

The advantage of using these equations, apart from solving for only half the num-

ber of unknowns, is that they retain passivity and reciprocity when a congruent trans-

formation based reduction is applied on them [60]. We then proceed to define a set

of expansion points, si, i = 0, 1, ..., n, for which the bilinear conformal transformation

may be defined as,

s = si
1− z−1

1 + z−1
, (82)

By using the above transformation (82) in (22), we get the nodal equations in the

z-domain as
(

G+ si
1− z−1

1 + z−1
C+

(1 + z−1)Γ

si(1− z−1)

)

V(z) = BU(z) (83)

After expanding V(z) and U(z) in powers of z, and then equating like powers, a

recursive relation can be obtained for the column vectors which form the basis for

projection matrix.
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Figure 80: The layout of the power island structure.

The process of obtaining the multi-point second order bilinear conformal trans-

formation based projection matrix is shown in Fig. 83.

At each expansion point si, the recursive calculation is carried out for an order,

ri. Orthogonalization, with on-the-fly deflation of the basis vectors is carried out to

ensure to ensure the generation of a full-rank projection matrix. In the z-domain, the

first q(=
∑

i ri) moments of the transfer function of the reduced system match the

first q moments of the original system’s transfer function. To preserve the passivity

of the system after reduction, its reduced transfer function, H̃(s), must obey the

following rules:
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Figure 81: The transfer impedance response for the power island structure obtained
using full-wave model (circles), and reduced order models with Laguerre parameters
1) 2π × 2.5e9 (triangle), 2) 2π × 1.5e9 (squares), and 3) π2 × 2.5e9 (solid).

1. H̃(s) is analytic in s.

2. H̃(s∗) = H̃T (s)∗

3. z∗(H̃(s) + H̃∗(s))z ≥ 0, ∀z ∈ C, and ∀s ∈ C with ℜ(s) > 0

As has been discussed before in [48][60], the use of congruence transformation pre-

serves the passivity of the system. In addition, the reciprocity of the system is also

preserved by working on second order systems [60]. This projection matrix can then

be used to reduce (81) through congruent transformation, to a reduced system of

equations as shown below,

(

G̃+ C̃s+
Γ̃

s

)

Ṽ = B̃Ũ (84)
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Figure 82: The transfer impedance response for the power island structure obtained
using full-wave model (circles), and reduced order model with Laguerre parameters
2π × 5e9 (solid).

6.5.1 Numerical Test Cases

In this section we will first prove the efficiency of the model order reduction process

with single point expansion and then proceed to a second test case showing the

limitation of expanding at only one frequency point, thus motivating the application

of the multi-point efficient nodal order reduction algorithm.

6.5.1.1 Transmission Line

The first example considered is that of a single transmission line. The transmission

line is composed of 40 subsections of conductance (G), inductance (L), and capaci-

tance (C), respectively.The coupling capacitance between the two lines is assumed to

be Cc. This is illustrated in Fig. 84. The system of equations to solve for the nodal

voltages can be written as in (22). The multi point second order bilinear conformal
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k = 1
i = 0
while k ≤ ri do

if k == 1 then

Solve: (G+ siC+ Γ/si)V0 = BU

V0 = orth(V0)
Solve: (G+ siC+ Γ/si)V1 =
2 (siC− Γ/si)V0

Orthonormalize V1 against V0,V1

T = 2 (siC− Γ/si)V1 +
(G− siC− Γ/si)V0 −BU

Solve: (G+ siC+ Γ/si)V2 = T
Orthonormalize V2 against V0,V1,V2

end if

k = 3
T = 2 (siC− Γ/si)Vk−1 +
(G− siC− Γ/si)Vk−2

Solve: (G+ siC+ Γ/si)Vk = T
Orthonormalize Vk against V0,V1,. . ., Vk

if i ≤ n && k < ri then
k = k + 1

end if

if i < n && k == ri then
k = 1
i = i+ 1

end if

end while

Q = [V0,V1, . . . ,Vq]

G̃ = QTGQ, C̃ = QTCQ,
Γ̃ = QTΓQ, B̃ = QTB, Ũ = UQ

Figure 83: The second order multi-point reduced order modeling algorithm using
bilinear conformal transformation

transformation based reduction is then applied to suitably reduce the system. The

respective values used in the simulation are G = 4 S, L = 0.125 nH, C = 0.375 pF

and Cc = 0.0375 pF. The ports one and two are defined across the ends of the trans-

mission line. Fig. 85 shows the results, comparing the original simulation, with those

obtained from the multi-point expansion scheme described above. Fig. 86 shows an
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Figure 84: The transmission line represented by a distributed model with 40 sections.
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Figure 85: Comparison of the magnitude of the transfer function across ports one
and two for the original and reduced models.

accurate match in the phase information obtained from the reduction with the phase

of the original transfer function.

6.5.1.2 Test Structure - Electromagnetic Band-gap Structure

An electromagnetic band-gap structure as shown in Fig. 63 is considered. The metal

patch has a dimension of 14 mm × 14 mm and the metal branch size has a dimension

of 1 mm × 1 mm. Perfect electric conductor boundary conditions are assumed. The

structure is discretized using a unit cell of dimensions 0.5 mm × 0.5 mm × 10 µm,
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Figure 86: Comparison of the phase of the transfer function across ports one and
two for the original and the reduced model obtained through multi-point nodal order
reduction via bilinear conformal transformation.

resulting in approximately 42 000 unknowns. A homogeneous medium of dielectric

constant, ǫr = 4.5 is assumed throughout. Using the the SEEC model, a second

order system of equations can be obtained to describe the structure. Fig. 88 shows

the transmission coefficient of the structure obtained using full-wave and the reduced

models. The inset clearly shows that the bilinear conformal transformation based

approach is better at approximating the original system.

The reason for better properties is the fact that, in the improved efficient nodal

order reduction method, an approximation is made while obtaining the recurrence

relation for the basis vectors. The summation equation (corresponding to (13) in

[80]) is shown below

Vk = PVk−1 +Q
i=0
∑

k−1

Vi, k > 0, (85)
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Figure 87: The (a) cross-section and (b) top-view of the layout of the electromagnetic
band-gap structure

wherein, P and V are coefficient matrices determined by the admittance matrices of

the system. This summation is terminated at the second term resulting in an altered

recurrence relation as shown below,

V ′

k = PV ′

k−1 +QV ′

k−1 +QV ′

k−2, fork > 0. (86)

However, for the bilinear conformal transformation based second order reduction

method, no such summation arises. The calculation of the basis vectors in an iteration

is thus free of any numerical noise due to termination of a series.

6.5.1.3 Coupled Transmission Line

The next example considered is that of a capacitively coupled transmission line pair.

Each of the transmission lines is through 40 subsections of conductance (G), induc-

tance (L), and capacitance (C) respectively. The coupling capacitance between the

two lines is assumed to be Cc. This is illustrated in Fig. 89. The system of equations

to solve for the nodal voltages can be written as in (22). The multi point second order

bilinear conformal transformation based reduction is then applied to suitably reduce
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Figure 88: The comparison of the insertion loss response for the original and reduced
models.

the system. The respective values used in the simulation are G = 4 S, L = 0.125 nH,

C = 0.375 pF and Cc = 0.0375 pF. The ports one and two are defined across the

first transmission line, and ports three and four are defined across the other line. Fig.

90 shows the results, comparing the original simulation, with those obtained from

the multi-point expansion scheme to the single point reduction scheme [46], with the

order of expansion, q, varying as 10, 15, and 20. As shown in the zoomed-in portions

of the simulation (insets of Fig. 90) , the reduced system of order 16 obtained by the

multipoint expansion approach is able to better approximate the original simulation,

than the reduced system of order 20 obtained from the method in [46]. Fig. 91 shows

an accurate match in the phase information obtained from the reduction with the

phase of the original transfer function.
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Figure 89: The coupled transmission line pair with 40 sections.
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Figure 90: Comparison of the magnitude of the transfer function across ports one
and three for the original and reduced models..

In conclusion, the multi-point second order reduced order modeling via bilinear

conformal transformation has been shown to be an effective tool in approximating

transfer functions of electromagnetic systems, with improved properties over the cor-

responding single point approximation as well as the improved efficient nodal order
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Figure 91: Comparison of the phase of the transfer function across ports one and
three for the original and the multi-point nodal order reduction via bilinear conformal
transformation.

reduction algorithm.

6.5.1.4 Stripline Via Transition

A stripline via transition structure as shown in Fig. 92 and Fig. 93. The symmetric

stripline structure has a width of 400 µm with a dielectric thickness of 500 µm and

dielectric constant of 4.4. The dimension of the via is 200 µm × 400 µm with a via

hole of size 400 µm × 800 µm. The structure is simulated using the SEEC model with

a unit cell of size 100 µm × 200 µm × 500µm, as well as the multi-point nodal order

reduction via bilinear conformal transformation algorithm. Results of the simulation

are shown in Fig. 94 and Fig. 95, illustrating an accurate match between the reduced

(q = 10) and the original simulation.
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Figure 92: Top-view of the stripline via transition structure.

Figure 93: Cross-sectional view of the via transition structure.

6.5.1.5 Five Layer Structure with Apertures

Further, the model order reduction for a large size example was carried out. A five

layer stack-up of metal planes as shown in Fig. 96 was considered. The number

of unknowns resulting from the discretization was approximately 4.6 millions. The

multipoint nodal order reduction via bilinear conformal transformation algorithm was

applied to the layout and a reduction to order 12 was obtained. The Laguerre shifts

were chosen to be 2 GHz and 4 GHz. Fig. 97 shows an accurate comparison between

the original SEEC model and the reduced order model.

98



0 1 2 3 4 5
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

S
11

 (
dB

)

0 1 2 3 4 5
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 94: The return loss of the stripline via transition structure for the original
(circles) and the reduced (solid) model.

6.6 Electromagnetic/Lumped-element Model Order Reduc-
tion

The model order reduction of lumped elements in combination with the electromag-

netic Yee field cells is not straightforward. If we were to add these elements in terms of

an equivalent admittance, the resulting equations have order greater than two render-

ing it impossible to use the afore-mentioned second-order reduction methods. A way

to overcome this was described in [11], wherein for lumped elements, the correspond-

ing equations for electromagnetic field values are calculated for the nodes in direct

relation to the additional lumped elements. Consider the addition of the decoupling

capacitor shown in Fig. 36 to the SEEC model of the power plane. The easiest way

to do this is to write out the equivalent admittance of the decoupling capacitor as

Ydecap =
jωC

1− ω2LC + jωRC
. (87)
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Figure 95: The insertion loss of the stripline via transition structure for the original
(circles) and the reduced (solid) model.

and then substitute this in the SEEC model equation (given by (22) for the power

plane pair, resulting in

(

G+ sC+
Γ

s

)

V+YV = BI (88)

where Y contains entries at nodes corresponding to where the decoupling capacitor

has been added. However, as can be seen the SEEC structure of the original equation

(22) is broken in (88). A way around this is to treat each node of the decoupling

capacitor equivalent circuit separately, and map the current voltage relationship at

each of those nodes to the electric field equations of the SEEC model, as shown in

Fig. 98

This combined framework is then used for model order reduction allowing the use

of second order reduction methods.
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Figure 96: The layout of the five layer structure showing port placement.

6.6.1 Numerical Test Case

6.6.1.1 Power Plane with Decoupling Capacitors

Finally, we consider an example of full-wave SEEC/ lumped circuit element co-

simulation with reduction. The example shown in Fig. 40 is considered. Additional

nodal equations are written for the lumped circuit elements, and then the NORBCT

algorithm is applied. A comparison of the impedance response for the original and

reduced systems, for cases with and without decoupling capacitors is shown in Fig.

99. The original system with 15, 000 unknowns is reduced to order, q = 10. The

computational time per iteration is reduced from 26 second to 0.2 milliseconds.

6.7 Summary

A second order reduced order modeling scheme based on bilinear conformal trans-

formation has been developed, resulting in improved performance over the reduction

method based on linear transformation. The corresponding multi-point version of the
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Figure 97: Results of the impedance response showing accurate match between the
reduced and original model.

Figure 98: The mapping of electric field equation at additional nodes of the decou-
pling capacitor.

algorithm showed, as expected, greater efficiency in capturing the network response

accurately, as compared to the single point version. The algorithm was successfully

applied to lumped elements, as well as to the SEEC model. Further, electromag-

netic/lumped circuit element co-simulation through the application of the NORBCT

algorithm has also been shown. The difficulty in applying the model order reduction

technique directly to electromagnetic/lumped circuit element cosimulation has been
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Figure 99: The impedance response of the power plane pair, with and without
decoupling capacitors, for the original and the reduced systems.

overcome by applying nodal analysis to write equations for electromagnetic fields

corresponding to the added lumped circuit elements.
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CHAPTER VII

CONCLUSION

The drive in the integrated circuits industry towards miniaturization and multi-

functional platforms is leading to complex multiscale geometries, with mixed signal

effects at high operating frequencies. While transistor scaling has kept pace, the

package and interconnect design may turn out to be the bottleneck in meeting these

requirements. The efficient design of packages for such platforms requires efficient

ways of modeling and analyzing the package geometries, to capture the electromag-

netic effects accurately, as well as efficiently. Efficiency here being defined in terms

of being able to solve very large problems by using less memory and within a reason-

able amount of time. Indeed, accurate fast methods for electromagnetic simulation

become absolutely critical to reduce the burden on the design cycle time, as well as

improving yield of the manufacturing process. Both the afore-mentioned features,

design cycle time and yield, ultimately affect the cost of production, and thus the

accuracy and speed of simulation become all the more relevant in a commercial sense

as well. The contribution of this thesis pertains to this aspect - fast methods for

efficient electromagnetic simulation.

7.1 Contribution

7.1.1 Susceptance Element Equivalent Circuit Model

Firstly, the susceptance element based equivalent circuit electromagnetic solver has

been developed. In respect of the previous work in this domain, this is significant in

two aspects - 1) it is second order in nature, and therefore gives rise to very useful

properties, which can be capitalized for model order reduction, and 2) it is differential

equation based, and thus solves for all field components, and therefore by virtue of
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discretization over the entire volume, is easily able to capture complex geometries of

varied shapes, as well as the various electromagnetic phenomena arising therefrom.

In terms of designing packages, an equivalent circuit based solver makes it easier for

the engineer to relate physical phenomena directly to a passive network element, in

terms of inductance, resistance, capacitance or current sources.

7.1.2 Second Order Reduced Order Modeling

Secondly, in terms of fast methods, an already existing second order reduced order

modeling method, the improved efficient nodal order reduction algorithm, was success-

fully applied showing a significant reduction in the simulation time. Subsequently, the

multipoint efficient nodal order reduction algorithm was developed, which was shown

to have considerable performance improvements over the single point expansion ver-

sion. Further investigation was done into using bilinear conformal transformation,

instead of the linear transformation used in the previous two methods, resulting in

the nodal order reduction via bilinear conformal transformation algorithm. Investiga-

tion into the choice of the Laguerre parameter was done, and it was also shown that

this algorithm intrinsically removed an approximation associated with the improved

efficient nodal order reduction method. The corresponding multipoint expansion al-

gorithm based on bilinear conformal transformation was developed as well. All of the

above algorithms were successfully applied on the suscpetance element equivalent cir-

cuit model resulting in significant reduction in the size of the problem, and therefore

the simulation time. By using a second-level preconditioned Krylov subspace process,

the memory requirement was also kept low.

7.2 Publications

Journal

• Narayanan T.V. , Madhavan Swaminathan, ”Preconditioned Second Order Multi-

point Passive Model Order Reduction for Electromagnetic Simulations,” IEEE
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Trans. Microwave Theory Tech., vol. 58, no. 11, 2010, pp. 2856-2866.

• Narayanan T.V. , Madhavan Swaminathan, ”Second Order Reduced Order
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crowav. Comp. and Lett. (submitted)

Conference

• Narayanan T.V. , Krishna Srinivasan, Madhavan Swaminathan, ”Fast Memory-

Efficient Full-Wave 3D Simulation of Power Planes,” IEEE International Sym-

posium on Electromagnetic Compatibility, 2009.

• Narayanan T.V., Sung-Hwan Min, Madhavan Swaminathan, ”Accelerated Fre-

quency Domain Analysis by Susceptance-Element Based Model Order Reduc-

tion of 3D Full-wave Equations,” 18th conference on Electrical Performance of

Electronic Packaging and Systems, 2009.

• Narayanan T.V. , Madhavan Swaminathan, ”Nodal Order Reduction via Bilin-
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ductor Research Council TECHCON, 2010.
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ter in nodal order reduction via bilinear conformal transformation,” 19th con-

ference on Electrical Performance of Electronic Packaging and Systems, 2010.
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CHAPTER VIII

FUTURE WORK

While the work in this thesis addresses concerns of fast electromagnetic simulation,

it also provides scope for future work in various aspects described below:

8.1 Domain Decomposition

When dealing with multiscale structures, meshing the entire volume of discretization,

with fine and large geometries, at the same time and then applying the reduction

methods is ineffcient. This can be improved by using domain decomposition tech-

nique. The idea being to separate the different scales of geometries in different regions

of analysis. Each region is then solved separately, the crucial part being accounting

for the solution at the interface of these regions. The process is illustrated in Fig.

100.

Figure 100: The concept of domain decomposition for multiscale structures.
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8.2 Low Frequency Solution

As described earlier, the second order equations face a problem in solving for the

fields at low frequencies (in the order of a few kilo Hertz or lower). While there is

work in existing literature, which rely on quasi-static simulations [7] or on the co-

tree splitting technique for the finite element scheme [39], these methods face issues

with respect to generality of their applications. In this respect, a recent work based

on an eigenvalue solution for overcoming the low frequency breakdown issue [81]

showed improved performance, both in terms of accuracy and generality. This was

implemented for the purely lossless case for the SEEC model. A 16 mm × 16 mm

thin metal plane was considered, placed at the center of a dielectric box of dimensions

24 mm× 24 mm× 60 µm, similar to the structure shown in Fig. 31. The dielectric

constant of the homogeneous medium enclosed in the PEC box is 3.8. Fig. 101 shows

the reponse obtained though this implementation, seamlessly joining with the normal

SEEC simulation at higher frequencies. To improve on the generality of the SEEC

model, a similar effort could be made to solve the SEEC model at lower frequencies

for problems involving conductor and dielectrics.

8.3 Three Dimensional Structures

To truly capture the three dimensional nature of future packages, the simulation

of through silicon vias (TSV) becomes imperative. However, the meshing of these

structures would result in a large increase in the number of unknowns. To over come

this computational burden, a hybrid approach is proposed, wherein, an in-house solver

based on cylindrical conduction mode basis function [25] is used in combination with

the SEEC model. Once the two-port network of the TSV is obtained, the aim is

to map the data to equivalent current density sources in the SEEC model. This is

illustrated in Fig. 102, where these current density terms are added to the SEEC

model. The simulation of a transition of a microstrip line through a TSV was carried
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Figure 101: The response of the structure using the low frequency eigenvalue based
solver (solid) seemalessly joining the SEEC model response (circles).

out as proof-of-concept. The structure is the same as shown in Fig. 102. The

structure is enclosed in a PEC box of dimensions 2 mm × 1.2 mm × 340 µm, where

above and below the microstrip line, there is air for 100 µm. The through silicon

via has dimensions of 20 µm radius and 100 nm oxide thickness. The thickness of

the silicon layer (ǫr = 11.9 and σ = 10 S/m) is 100 µm and the dielectric RXP layer

(ǫr = 2.5) is 20 µm and the response obtained is shown in Fig. 103. However, to use

model order reduction on these structures is not straightforward due to the associated

losses. Therefore,to account for frequency dependent losses in the framework of the

reduction methods presented in this thesis, parametrization needs to be introduced.

Parametric model order reduction has been applied to account for the skin effect

losses in [2]. A conceptual illustration of the future work is shown in Fig. 104, where
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Figure 102: The stamping of TSV conduction mode basis solver [25] in the SEEC
model.
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Figure 103: The response of the microstrip to microstrip transition through a TSV.

λ represents the set of variables being parametrized.
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Figure 104: The conceptual flow of the parametrized model order reduction, as
compared to the work in the present thesis.
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APPENDIX A

LUMPED ELEMENT MODELING OF EMBEDDED

PASSIVES

A.1 Introduction

During the initial phase of this dissertation, numerical methods to model embedded

passives simulation results obtained from a commercial tool were explored. The idea

was to move from electromagnetic simulation results to a physical lumped element

model, capturing the inherent parasitics accurately. In view of the development of

the SEEC model, it is proposed that the two methodologies be suitably combined.

The following text discusses the lumped element modeling technique.

Modeling of embedded passives has been explored in recent past, with special

significance attached to spiral inductors. Since spiral inductors form an important

component in many RF applications - filters, baluns, voltage controlled oscillators,

etc., the design of such modules requires an accurate spice-compatible model over

a wide range of frequencies. Traditionally, the methodology for modeling has been

either a physics-based lumped-element modeling or a state-space based “black-box”

macromodeling, as shown in Fig. 105.

Figure 105: The two types of modeling techniques for embedded passives.
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A.1.1 Physics-based Element Modeling

A.1.1.1 Lumped Element Models

Simple lumped element models have been used for modeling embedded passive com-

ponents. Such schemes basically start by modeling the physical phenomena present

in embedded components in terms of lumped elements, e.g, modeling the conductor

by means of a resistor and inductor, and the dielectric part through a capacitor. The

main disadvantage of such models is an inability to account for variations, especially

in terms of substrate and conductor loss parasitics. Simple lumped element models

are unable to model effects like current crowding, substrate coupling etc.

A.1.2 Black-box Modeling

The idea behind black-box modeling is to treat the simulation/measured response

as a black-box, and then model it purely by approximating the terminal network

parameters through a suitable mathematical technique, finally resulting in a circuit

equivalent representation. However, this equivalent circuit has no correspondence to

the physical phenomena of the structure, and is purely a realization of the mathe-

matical approximation obtained.

A.1.2.1 Simple Augmentation

At the very basic level, both the simple lumped element model obtained as discussed

in the previous section, and the structure being modeled are taken as black boxes.

To model for the extra parasitics which may not be captured by the simple lumped

element models, terminal augmentation is added. This is represented in Fig. 106. The

idea here is to account for any difference between the two port network parameters

of the simple model and the simulation/measured response by adding more lumped

components at the model terminations to account for the difference.
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Figure 106: A simple augmentation technique working only on the terminal entries.

Figure 107: The concept of rational modeling for generation of equivalent circuit
models for embedded passives.

A.1.2.2 Rational Function Method

There is considerable literature devoted to the area of macromodeling [1] [40]. Fig.

107 shows the basic concept of rational function modeling.
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Figure 108: The concept of augmentation showing the ability to add lumped elements
at any arbitrary node.

A.2 Linear-least squares Augmentation

The circuit augmentation technique has been recently proposed as an effective means

of modeling embedded passives [49]. The augmentation method itself is based on

circuit-partitioning or tearing scheme [55]. The technique followed in this paper is

similar to the method outlined in [49], but the difference is in the lies the way aug-

mentation elements are synthesized by selecting from a from a pre-designed SPICE-

equivalent library, thus avoiding the explicit need for a causality and passivity check.

The fundamental idea behind the approach is to find the perturbing element, which

when introduced into the simple-lumped circuit model (S-LCM), closes the gap be-

tween the measured/electromagnetic solver results and the lumped circuit model. The

augmentation approach has been previously demonstrated as an effective technique

limited, in its choice of augmented nodes, to the ports of the S-LCM. The approach

taken here affords augmentation at arbitrary nodes in the LCM, thus providing a

means for faster convergence.

The technique is based on a modified nodal analysis (MNA) framework, wherein

an electrical network is represented in a matrix equation form as

Ax = Bv (89)
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where, A ∈ CN×N is the MNA matrix, x ∈ CN×1 is the column vector containing

the unknown variables, B ∈ RN×m is the binary selector matrix mapping the network

port voltages to the MNA space, and v ∈ CN×1 contains the terminal voltages in the

network. The algorithm works next by extracting Y-parameters from the (1) as

Y = BTA−1B. (90)

The addition of an element added between two arbitrary nodes m and n, repre-

sented by zAUG
mn , should minimize the difference between the extracted and target pa-

rameters. Therefore, an error function is defined in terms of the target Y-parameters

and the updated LCM Y-parameters (after the inclusion of augmented element), as

shown below

ǫ = ‖Ytarget −Y′‖ =
∥

∥Ytarget −BTA′−1B
∥

∥ . (91)

where Y′ and A′ represent the admittance parameters and the MNA matrix with

the inclusion of the augmentation element. Thus, by establishing a direct relation

between the augmentation impedance zAUG
mn and the error function the model is able to

better represent the frequency response of the passive component , in each successive

iteration.

A.2.1 Calculation of augmentation impedance

The augmentation impedance value is calculated as shown in [4] by calculating the

open circuit voltage and then determining the change in MNA variable matrix x due

to the introduction of an element between nodes m and n,

∆x = −textbfA−1ξ
ξTA−1Bv

zAUG − ξTA−1ξ
(92)

where ξ is a connection vector with values of +1 and -1 at its mth and nth row

respectively, and zeros elsewhere in case of a shunt augmentation and it has a +1 in

the mth row and zeros elsewhere in case of a series augmentation at the mth node,

similar to introducing an inductive element in the MNA matrix [71].
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The change in the Y parameters with the augmentation is given by the expression

∆Y = BTA−1ξ(ξTA−1B)γAUG (93)

where γAUG is related to the augmentation impedance as

γAUG = zAUGξ
TA−1ξ (94)

for the shunt augmentation, and

γ−1
AUG = ξTA−1ξz−1

AUG (95)

in case of series augmentation. Furthermore, for a 2-port network it can be derived

that

∆Y = BTA−1ξ1(ξ
T
1 A

−1B)γ1
AUG+BTA−1ξ2(ξ

T
2 A

−1B)γ2
AUG+BTA−1ξ3(ξ

T
3 A

−1B)γ3
AUG

(96)

where γi
AUG represents the ΓAUG column vector corresponding to the network

parameters Ypq, p, and q indexing the ports of the network. Since we are solving for

a passive component, due to the symmetric nature of the network parameters, the

number of augmentation elements that can be simultaneously solved for, is limited

by the rank of the Y matrix.

The basic crux of the approach may be summarized in the following steps:

1. The SLCM and the target results serve as inputs.

2. A set of nodes are selected for augmentation

3. The type of augmentation is selected - series/shunt.

4. The augmentation impedance value is calculated.

5. The Y parameter matrix of the model is updated

6. The error criterion is checked. If it is not met, the process is repeated from step

1 with the new augmented model serving as the simple lumped circuit model.
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Figure 109: The inductance of the augmented equivalent circuit model of a multi-
level embedded spiral inductor compared with that of the simulation.

A.2.2 Simple Lumped Element Model

To construct the augmented model of an embedded passive component, however, first

the simple lumped element model needs to be constructed. A way to extract simple

model from the network parameter data was shown in [41]. Consider the two port

network shown in Fig. 109 with admittance elements Ya, Yb, and Yc. For this network,

the two port admittance parameters can be written as

Y11 = Ya + Yc, (97a)

Y12 = Y21 = −Yc, (97b)

Y22 = Yb + Yc. (97c)

Based on the above, the constitutive elements of the admittance parameters may

be extracted easily. For example the inductive component,Lc, of Yc can be extracted

from measurement/simulation data as

Lc =
imag( 1

Y21(meas)
)

2π × f
(98)
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Figure 110: A simple equivalent circuit model of a spiral inductor.

Figure 111: The augmented equivalent circuit model of an embedded spiral inductor.

where, f is the frequency of the measurement/simulation data, Y21(meas). Simi-

larly the resistive component, Rc of Yc is given as

Rc = real(
1

Y21(meas)
) (99)

The capacitive component of Ya and Yc are given as

Ca =
imag(Y11(meas) + Y21(meas))

2π × f
, and (100)

Cb =
imag(Y22(meas) + Y12(meas))

2π × f
, (101)

respectively. This approach can be easily modified to generate the one port lumped

element model. Thus a simple equivalent model of any embedded passive component

can be built.
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Figure 112: The layout of the embedded spiral inductor.

A.2.3 SEEC Model and Lumped Element Modeling

It is proposed that the augmentation approach described earlier in this chapter be

combined with the SEEC model. This would then provide for a fast method char-

acterizing an embedded passive component. As proof-of-concept, simulations of an

embedded spiral inductor with a linewidth of 150 µm, as shown in Fig. 112, were

carried out using the SEEC model. The plot of inductance in Fig. 113 shows an

accurate match between the SEEC model and the lumped element model obtained

through augmentation.
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Figure 113: The inductance of the augmented equivalent circuit model of the em-
bedded spiral inductor compared with that of the original SEEC model.

121



REFERENCES

[1] Achar, R. andNakhla, M., “Simulation of high-speed interconnects,” Proc.in
IEEE, vol. 89, no. 5, pp. 693–728, 2001.

[2] Ahmadloo, M. and Dounavis, A., “Parameterized model order reduction
of electromagnetic systems using multiorder arnoldi,” IEEE Trans. Advanced
Packaging, vol. 33, no. 4, pp. 1012–1020, 2010.

[3] Bai, Z. and Su, Y., “Dimension reduction of second-order dynamical systems
via a second-order arnoldi method,” SIAM J. on Scientific Computing, vol. 26,
no. 9, pp. 1692–1709, 2005.

[4] Banerjee, K. and Mehrotra, A., “Analysis of on-chip inductance effects
for distributed rlc interconnects,” IEEE Trans. Computer-Aided Design, vol. 21,
no. 8, pp. 904–915, 1997.

[5] Beattie, M. and Pileggi, L., “Efficient inductance extraction via windowing,”
Proc. Design Automation and Test in Europe, pp. 430–436, 2001.

[6] Beggs, J., Luebbers, R., Yee, K., and Kunz, K., “Finite-difference
time-domain implementation of surface impedance boundary conditions,” IEEE
Trans. Antennas and Propagation, vol. 40, pp. 49–56, 1992.

[7] Beker, B., Cokkinides, G., and Templeton, A., “Analysis of microwave
capacitors and ic packages,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 9,
pp. 1759–1764, 1994.

[8] B.Young, Digital Signal Integrity: Modeling and Simulation with Interconnects
and Packages. Prentice Hall PTR, 2000.

[9] Cangellaris, A., Celik, M., Pasha, S., and Zhao, L., “Electromagnetic
model order reduction for system-level modeling,” IEEE Trans. Microwave The-
ory and Tech., vol. 47, no. 6, pp. 840–850, 1999.

[10] Chen, C.-P. and Wong, D., “Error bounded pade approximation via bilinear
conformal transformation,” Proc. of 36th Annual ACM/IEEE Design Automa-
tion Conference, pp. 7–12, 1997.

[11] Chiprout, E. and Nakhla, M. S., “Analysis of interconnect networks us-
ing complex frequency hopping,” IEEE Trans. Computer-Aided Design, vol. 14,
no. 8, pp. 186–200, 1995.

122



[12] Craddock, I. J., Railton, C. J., and McGeehan, J. P., “Derivation and
application of a passive equivalent circuit for the finite difference time domain
algorithm,” IEEE Microwave and Guided Wave Lett., vol. 6, no. 1, pp. 40–42,
1996.

[13] Darve, E., “The fast multipole method: Numerical implementation,” Journal
of Computational Physics, vol. 160, no. 1, pp. 195–240, 1997.

[14] Davis, J. A. andMeindl, J. D., “Compact distributed rlc interconnect models
- single line transient, time delay, and overshoot expressions,” IEEE Transactions
on Electron Devices, vol. 47, no. 11, pp. 2068–2077, 2000.

[15] de Menezes, L. and Hoefer, W., “Accuracy of tlm solutions of maxwell’s
equations,” IEEE Trans. Microwave Theory and Tech., vol. 44, no. 12, pp. 2512–
2518, 2006.

[16] Devgan, A., Ji, H., and Dai, W., “How to efficiently capture on-chip induc-
tance effects: Introducing a new circuit element k,” Proc IEEE International
Conference on Computer Aided Design, pp. 150–155, Nov. 2000.

[17] Donepudi, K., Jin, J.-M., and Chew, W. C., “A higher order multilevel
fast multipole algorithm for scattering from mixed conducting/dielectric bodies,”
IEEE Trans. on Antennas and Prop., vol. 51, no. 10, pp. 2814–2821, 2003.

[18] Engin, A. E., Bharath, K., and Swaminathan, M., “Multilayered finite-
difference method (mfdm) for modeling of package and printed circuit board
planes,” IEEE Trans. Electromagnetic Compatibility, vol. 49, no. 2, pp. 441–447,
2007.

[19] Feldmann, P. and Freund, R. W., “Efficient linear circuit analysis by pade’
approximation via the lanczos process,” IEEE Trans. Computer-Aided Design,
vol. 14, pp. 639–649, 1995.

[20] Freund, W. R. and Nachtigal, N. M., “Qmr: A quasi-minimal resid-
ual method for non-hermitian linear systems,” SIAM Journal: Numer. Math.,
vol. 60, pp. 315–339, 1991.

[21] Gal, L., “On-chip crosstalkthe new signal integrity challenge,” Proc. CICC,
pp. 251–254, 1995.

[22] Gallivan, K., Grimme, E., and Dooren, P. V., “A rational lanczos method
for model reduction,” Numerical Algorithms, vol. 12, no. 8, pp. 33–63, 1996.

[23] Greengard, L. and Rokhlin, V., “A new fdtd algorithm based on alternative
direction implicit method,” J. Comput. Phys., vol. 73, pp. 325–348, 1987.

[24] Grimme, E., Krylov projection methods for model reduction. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 2007.

123



[25] Han, K. J., Swaminathan, M., and Bandyopadhyay, T., “Electromagnetic
modeling of through-silicon via (tsv) interconnections using cylindrical modal
basis functions,” IEEE Trans. Advanced Packaging, vol. 33, no. 4, pp. 804–817,
2010.

[26] Harrington, R. F., Field Computation by Moment Methods. Wiley-IEEE
Press, 1993.

[27] Heeb, H., Ruehli, A. E., Bracken, J. E., and Rohrer, R. A., “Three
dimensional circuit oriented electromagnetic modeling for vlsi interconnects,”
IEEE International Conf. on Computer Design, vol. 17, no. 8, pp. 645–=653,
1992.

[28] Hoefer, W. J. R. and Itoh, E. T., The transmission line matrix (TLM)
method, in Numerical Techniques for Microwave and Millimeter Wave Passive
Structures. New York: Wiley, 1989.

[29] Hoefer, W., “The transmission-line matrix method–theory and applications,”
IEEE Trans. Microwave Theory and Tech., vol. 33, no. 10, pp. 882–893, 1985.

[30] I.M.Elfadel and Ling, D., “A block rational arnoldi algorithm for multipoint
passive model-order reduction of multiport rlc networks,” Proc. of IEEE/ACM
International Conf. on Computer-Aided Design, pp. 66–71, 1997.

[31] Ismail, Y., Friedman, E., and Neves, J., “Equivalent elmore delay for rlc
trees,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 83–97, Jan. 2000.

[32] Jin, J., The Finite Element Method in Electromagnetics. Wiley, 1993.

[33] Kahng, A. B. and Muddu, S., “An analytical delay model for rlc intercon-
nects,” IEEE Trans. Computer-Aided Design, vol. 16, no. 12, pp. 1507–1514,
1997.

[34] Kamon, M., Tsuk, M. J., and White, J., “Fasthenry: A multipole-
accelerated 3-d inductance extraction program,” Proc. Design Automation Con-
ference, pp. 678–683, 1993.

[35] Kao, W., Lo, C.-Y., Basel, M., and Singh, R., “Parasitic extraction: Cur-
rent state of the art and future trends,” Proc. of IEEE, vol. 89, pp. 729–739,
May 2001.

[36] Kechroud, R., Soulaimani, A., Saad, Y., and Gowda, S., “Precondition-
ing techniques for the solution of the helmholtz equation by the finite element
method,” Mathematics and Computers in Simulation, vol. 56, no. 4–5, pp. 303–
321, 2004.

[37] Knockaert, L. and Zutter, D. D., “Laguerre-svd reduced-order modeling,”
IEEE Trans. on Microwave Theory Tech., vol. 48, no. 9, pp. 1469–1475, 2000.

124



[38] Kulas, L. and Mrozowski, M., “Reduced order models of refined yee’s cells,”
IEEE Microwav. Comp. and Lett., vol. 13, no. 4, pp. 164–166, 2003.

[39] Lee, S. and Jin, J., “Application of the tree-cotree splitting for improving
matrix conditioning in the full-wave finite-element analysis of highspeed circuits,”
Microwave Optical Technol. Lett., vol. 50, no. 6, pp. 1476–1481, 2008.

[40] Min, S. H. and Swaminathan, M., “Efficient construction of two-port passive
macromodels for resonant networks,” IEEE Proc. of 10th Topical Meeting of
Electrical Performance of Electronic Packaging, pp. 229–232, 2001.

[41] Min, S.-H., Seo, C.-S., Lapushin, S., Carastro, L., Dalmia, S., White,

G., and Swaminathan, M., “Parasitic-aware rf design via parameterization of
embedded passives on multilayer organic substrates,” IEEE Proc. of Conf. on
Electrical Performance of Electronic Packaging, pp. 107–110, 2007.

[42] monga Made, M. M., Beauwens, R., and Warzee, G., “Preconditioning
of discrete helmholtz operators perturbed by a diagonal complex matrix,” Com-
munications in Numerical Methods in Engineering, vol. 16, no. 11, pp. 801–817,
2000.

[43] Nabors, K. and White, J., “Fastcap: A multipole accelerated 3d capacitance
extraction program,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 1447–
1459, 1991.

[44] Namiki, T., “A new fdtd algorithm based on alternative direction implicit
method,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003–2007, Aug.
1999.

[45] Namiki, T. and Ito, K., “Accuracy improvement technique applied to non-
uniform fdtd cells using high-order implicit scheme,” Proc. of IEEE Antennas
and Propagation Society International Symposium, vol. 1, pp. 56–59, 2001.

[46] Narayanan, T. V., Min, S.-H., and Swaminathan, M., “Nodal order re-
duction via bilinear conformal transformation,” Proc. of IEEE 14th Wkshp. on
Signal Propagation on Interconnects, pp. 73–76, 2010.

[47] Narayanan, T. V., Min, S.-H., and M., S., “Accelerated frequency domain
analysis by susceptance-element based model order reduction of 3d full-wave
equations,” Proc. of IEEE 18th Conference on Electrical Performance of Elec-
tronic Packaging and Systems, pp. 141–144, 2009.

[48] Odabasioglu, A., Celik, M., and Pileggi, L., “Prima: passive reduced or-
der interconnect macromodeling algorithm,” IEEE Trans. Computer-Aided De-
sign, vol. 17, no. 8, pp. 645–653, 1998.

[49] Paul, D., Nakhla, M. S., Achar, R., and Weisshaar, A., “A passive algo-
rithm for modeling frequency-dependent parameters of coupled interconnects,”

125



IEEE Proc. of 10th Topical Meeting of Electrical Performance of Electronic Pack-
aging, pp. 185–188, 2006.

[50] Phillips, J. R., Chiprout, E., and Ling, D. D., “Efficient full-wave electro-
magnetic analysis via model-order reduction of fast integral transforms,” Proc.
of 33rd ACM/IEEE Design Automation Conference, pp. 377–382, June 1996.

[51] Phillips, J., Daniel, L., and Silveira, L. M., “Guaranteed passive balancing
transformations for model order reduction,” Proc. of 39th Design Automation
Conference, pp. 52–57, 2002.

[52] Phillips, J., Daniel, L., and Silveira, L., “Guaranteed passive balancing
transformations for model order reduction,” IEEE Trans. Computer-Aided De-
sign, vol. 22, no. 8, pp. 1027–1041, 2003.

[53] Pierantoni, L., Tomassoni, C., and Rozzi, T., “A new termination condi-
tion for the application of the tlm method to discontinuity problems in closed
homogeneous waveguide,” IEEE Trans. Microwave Theory and Tech., vol. 50,
no. 11, pp. 2513–2518, 2002.

[54] Pillage, L. T. and Rohrer, R. A., “Asymptotic waveform evaluation for
timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 352–366, 1990.

[55] Rohrer, R. A., “Circuit partitioning simplified,” IEEE Trans. Circuits and
Systems, vol. 35, no. 1, pp. 2–5, 2002.

[56] Ruehli, A. E. and Cangellaris, A. C., “Progress in the methodologies for
the electrical modeling of interconnects and electronic packages,” Proceedings of
the IEEE, vol. 89, no. 5, pp. 740–771, 2001.

[57] Ruehli, A., “Equivalent circuit models for three dimensional multiconductor
systems,” IEEE Trans. Microwave Theory and Tech., vol. 22, pp. 216–221, 1974.

[58] Saad, Y. and Schultz, M. H., “Gmres: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.,
July 1986.

[59] Sakurai, T., “Closed-form expressions for interconnection delay, coupling, and
crosstalk in vlsis,” IEEE Trans. Electron. Devices, vol. 40, pp. 118–124, 1993.

[60] Sheehan, B. N., “Enor: model order reduction of rlc circuits using nodal
equations for efficient factorization,” Proc. of 36th Annual ACM/IEEE Design
Automation Conference, pp. 17–21, 1999.

[61] Silveira, M., Kamon, M., Elfadel, I., and White, J., “A coordinate-
transformed arnoldi algorithm for generating guaranteed stable reduced-order
models of rlc circuits,” Proc. of 33rd Annual ACM/IEEE Design Automation
Conference, pp. 288–294, 1996.

126



[62] Song, J., Lu, C.-C., and Chew, W. C., “Multilevel fast multipole algorithm
for electromagnetic scattering by large complex objects,” IEEE Trans. on An-
tennas and Prop., vol. 45, no. 10, pp. 1488–1493, 1997.

[63] Srinivasan, K., Yadav, P., A.E., E., M., S., and Ha, M., “Fast em/circuit
transient simulation using laguerre equivalent circuit (sleec),” IEEE Trans. Elec-
tromagnetic Compatibility, vol. 51, no. 3, pp. 756–762, 2009.

[64] Sullivan, D. M., “Exceeding the courant condition with the fdtd method,”
IEEE Microwave and Guided Wave Lett., vol. 6, no. 8, pp. 289–291, 1996.

[65] Sun, D.-K., Lee, J.-F., and Cendes, Z., “Alps-a new fast frequency-sweep
procedure for microwave devices,” IEEE Trans. Microwave Theory and Tech.,
vol. 49, no. 2, pp. 398–402, 2001.

[66] Swaminathan, M. and Engin, E., Power integrity modeling and design for
semiconductors and systems. Prentice Hall PTR, 2007. 1st ed.

[67] Sylvester, D. and Hu, C., “Analytical modeling and characterization of deep
submicrometer interconnect,” Proc. of IEEE, vol. 89, pp. 634–664, 2001.

[68] Taflove, A. and Hagness, S. C., Computational electrodynamics: The finite-
difference time-domain method. Artech House, 2000.

[69] Triverio, P., Grivet-Talocia, S., Nakhl, M., Canavero, F., and
Achar, R., “Stability, causality, and passivity in electrical interconnect mod-
els,” IEEE Trans. on Advanced Packaging, vol. 30, no. 4, pp. 795–808, 2007.

[70] Tutuianu, B., Dartu, F., and Pileggi, L., “An explicit rc-circuit delay
approximation based on the first three moments of the impulse response,” Proc.
of 33rd ACM/IEEE Design Automation Conference, vol. 89, pp. 611–616, June
1996.

[71] Vlach, J. and Singhal, K., Computer methods for circuit analysis and design.
New York: Van Nostrand Reinhold, 1983. 1st ed.

[72] White, M. J., Iskander, M. F., andHuang, Z., “Development of a multigrid
fdtd code for three-dimensional applications,” IEEE Trans. Antennas and Prop.,
vol. 45, no. 10, pp. 1512–1517, 1997.

[73] White, M. J., Yun, Z., and Iskander, M. F., “A new 3d fdtd multigrid
technique with dielectric traverse capabilities,” IEEE Trans. Microwave Theory
and Tech., vol. 49, no. 3, pp. 422–430, 2001.

[74] Wu, D. and Chen, J., “Application of model order reduction techniques to
compact fdfd method for guided wave structures,” IEEE Antennas and Propa-
gation Society International Symposium, vol. 2, pp. 636–639, 2003.

127



[75] Wu, H., Cangellaris, A., and Kuo, A.-Y., “Application of domain decom-
position to the finite-element electromagnetic modeling of planar multi-layered
interconnect structures and integrated passives,” Proc. of IEEE Conf. on Elec-
trical Performance of Electronic Packaging, pp. 281–284, 2004.

[76] Wu, H. and Cangellaris, A. C., “Model-order reduction of finite-element
approximations of passive electromagnetic devices including lumped electrical-
circuit models,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 9,
pp. 2305–2312, 2004.

[77] Xu, F., Wu, K., and Hong, W., “Domain decomposition fdtd algorithm com-
bined with numerical tl calibration technique and its application in parameter
extraction of substrate integrated circuits,” IEEE Trans. Microwave Theory and
Tech., vol. 54, no. 1, pp. 329–338, 2006.

[78] Yee, K. S., “Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media,” IEEE Trans. on Antennas and Propa-
gation, vol. 17, pp. 585–589, 1996.

[79] Zheng, H., Krauter, B., Beattie, M., and Pileggi, L., “Window-based
susceptance models for large-scale rlc circuit analyses,” Proc. Design Automation
and Test in Europe, pp. 628–633, 2002.

[80] Zheng, H. and Pileggi, L., “Robust and passive model order reduction for
circuits containing susceptance elements,” Proc. of IEEE/ACM International
Conf. on Computer-Aided Design, pp. 761–766, 2002.

[81] Zhu, J. and Jiao, D., “A theoretically rigorous full-wave finite-element-based
solution of maxwell’s equations from dc to high frequencies,” IEEE Trans. Ad-
vanced Packaging, vol. 33, no. 4, pp. 1043–1050, 2010.

128



VITA

Narayanan T.V. was born in Ghatshila, Jharkhand (then Bihar) and did his schooling

in Kendriya Vidalayas - Surda (in Ghatshila) and Ballygunj (in Kolkata). He com-

pleted his Bachelors in Electrical and Electronic Engineering from Sri Venkateswara

College of Engineering, University of Madras. He then completed a Master of Science

in Advanced Materials for Micro- and Nano- Systems in Singapore-MIT Alliance.

During this time, he completed his Masters project in Institute of Microelectronics,

Singapore. After working as a Research Associate with the Singapore-MIT Alliance

Innovation in Manufacturing Science and Technology program, he joined doctoral

studies in the School of Electrical and Computer Engineering at Georgia Institute of

Technology. After graduation, he will join Intel as a Packaging Engineer.

129


