
 
 

MODELING AND SIMULATION OF 

EMBEDDED PASSIVES USING RATIONAL 

FUNCTIONS IN MULTI-LAYERED 

SUBSTRATES 
 

 

A Thesis  

Presented to 

The Academic Faculty 

 

 

By 

 

 

Kwang Lim Choi 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Doctor of Philosophy in Electrical and Computer Engineering 

 

 

Georgia Institute of Technology 

August 1999 



 ii

 
 

MODELING AND SIMULATION OF 

EMBEDDED PASSIVES USING RATIONAL 

FUNCTIONS IN MULTI-LAYERED 

SUBSTRATES 
 

 

 

      Approved: 

 

      _______________________________ 

      Madhavan Swaminathan, Chairman 

 

      _______________________________ 

      Abhijit Chatterjee 

 

      _______________________________ 

      David R. Hertling 

 

      _______________________________ 

      David C. Keezer 

 

      _______________________________ 

      Suresh K. Sitaraman 

 

      Date Approved __________________ 



 iii

 

DEDICATION 

 

To God, the creator of the universe and all the physical laws in it, 

who is my source of divine wisdom, 

for 

"fear of the Lord is the beginning of knowledge...,"  (Proverbs 1:7) 

 

And to Jesus Christ, my Master,  

who is my source of freedom. 

 



 iv

 

CONTENTS 

 

DEDICATION         iii 

CONTENTS          iv 

LIST OF FIGURES         vii 

LIST OF TABLES         xii 

 

1 INTRODUCTION        1 

 1.1 Packaging Technology      2 

  1.1.1 Low Temperature Cofired Ceramic (LTCC)   4 

1.1.2 High Temperature Cofired Ceramic (HTCC)   6 

1.1.3 Thin-Film Packaging      7 

 1.2 Asymptotic Waveform Evaluation     8 

  1.2.1 Algorithm       8 

  1.2.2 Stability       10 

  1.2.3 Enhancements to AWE     12 

1.3 Technically Challenging Issues in Realizing Embedded Passives 14 

1.4 Proposed Research       15 

1.5 Dissertation Outline       16 

 

2 EXTRACTION OF THE FREQUENCY RESPONSE OF EMBEDDED  

PASSIVES USING LIMITED DATA     17 

2.1 Accuracy of Full Wave EM solvers     17 

2.2 Acceleration Algorithm      20 

2.3 Determining the Required Minimum Number of Data  22 

2.4 Interpolation Results and Evaluation of Simulation Time Saving 23 



 v

2.5 Reliability of Interpolation      28 

2.6 Data Sampling        30 

 2.6.1 Inductor       31 

 2.6.2 Capacitor       34 

 2.6.3 Resistor       35 

 

3 TRANSIENT SIMULATION OF EMBEDDED PASSIVES USING 

MACROMODELS        37 

 3.1 Generating A Function with Real Coefficient Polynomials  40 

3.2 Generating Functions with Common Poles for Multiple-port Structures 

         42 

 3.3 Generating Lossless Functions     45 

 3.4 Minimum Number of Data Needed     46 

 3.5 Stability        47 

 3.6 Implementation in SPICE      49 

 3.7 Simulation of SPICE Macromodels and Measurement Correlation  

          51 

 3.8 Embedded Resistors in High-speed Digital Circuits   59 

 

4 EQUIVALENT CIRCUIT SYNTHESIS     62 

4.1 Synthesizable Rational Functions Synthesizable Rational Functions 

64 

4.2 Synthesis of One-port Network     65 

4.3 Examples of Equivalent Circuits for One-port Structures  71 

  4.1.1. Inductor       71 

  4.1.2 Capacitor       76 

  4.1.3 Resistor       77 

 4.4 Synthesis of Two-port Networks     79 

 4.5 Examples of Equivalent Circuits for Two-port Structures  88 



 vi

  4.2.1 Inductor       89 

  4.2.2 Capacitor       90 

  4.2.3 Resistor       92 

 4.6 More Examples of Equivalent Circuits for Thin-film Structures 95 

 

5 STABILITY ENFORCEMENT ALGORITHM    98 

 5.1 Stability Algorithm       99 

 5.2 Results of Stability Enforcement Algorithm    101 

  5.2.1 Inductor       101 

  5.2.2 Capacitor       103 

  5.2.3 Resistor       106 

 5.3 Application of the Stability Enforcement Algorithm   108 

 

6 SIMULATION OF EMBEDDED CIRCUITS USING MACROMODELS 

AND EQUIVALENT CIRCUITS      111 

 6.1 Digital Application       112 

 6.2 Analog and RF Application      119 

 

7. CONCLUSION AND FUTURE WORK     125 

 7.1 Conclusion        125 

 7.2 Future Work        128 

 7.3 Publications        129 

 7.4 Awards        130 

 

APPENDIX          131 

REFERENCES         142 

VITA           148 



 vii

 

LIST OF FIGURES 

 

1.1 Passive integration.        2 

1.2 Parasitic and lossy effects of a typical embedded spiral inductor.  3 

1.3 Different types of embedded inductors.     5 

1.4 Parallel plate capacitor.       5 

1.5 Interdigitated capacitor.       5 

1.6 A typical resistor structure.       6 

1.7 Thin-film floating capacitor.       7 

1.8 Thin-film resistor.        7 

2.1 The inductor structure.  All dimensional units are in mils.   19 

2.2 Reactance of inductor.       19 

2.3 Q of inductor.         19 

2.4 |λmin| of the inductor structure in Figure 2.1.     23 

2.5 The capacitor structure.  All dimensional units are in mils.   24 

2.6 Imag (Zin) of the inductor.       26 

2.7 Q of the inductor.        26 

2.8 Error of Imag (Zin) in %.       26 

2.9 Error of Q in %.        26 

2.10 Mag (S21) of the capacitor.       27 

2.11 Phase (S21) of the capacitor.       27 

2.12 Error of Mag (S21) in %.       27 

2.13 Error of Phase (S21) in %.       27 

2.14 Error of Imag(Zin) and Q of varying inductor.  All dimensional units  

are in mils.         29 

2.15 Inductor structure used for sampling.      32 



 viii

2.16 Frequencies where data points were sampled for the inductor structure. 32 

2.17 The interpolated response of the inductor as the number of data increases. 

Dashed dot - P=2 & Q=3, Solid - P=3 & Q=4, Dashed - P=4 &Q=5, 

Dotted - P=5 & Q=6.        33 

2.18 Full set of SONNET data and interpolated response of the inductor using 

minimum order P = 4 and Q = 5.  Dotted - SONNET, dashed - rational 

function.         33 

2.19 Frequency where data points were sampled for the capacitor structure. 34 

2.20 The interpolated response of the capacitor as the number of data 

increases.  Dash dot - P=0 & Q=1, solid - P=1 & Q=2, 

dashed - P=2 & Q=3 (minimum order), dotted - P=3 & Q=4.  35 

2.21 Frequencies where data points were sampled for the resistor structure. 36 

2.22 The interpolated response of the resistor as the number of data increases. 36 

3.1 Macromodeling.        38 

3.2 TDR / TDT measurement setup.      52 

3.3 Top and side view of the 26 Ω resistor structure.  The dimensional 

units are in mils.        52 

3.3 Top and side view of the 858 Ω resistor structure.  The dimensional 

units are in mils.        53 

3.5 Pole-zero plot of y11 of 26 Ω resistor.     53 

3.6 Admittance parameters of the 26 Ω resistor.     54 

3.7 TDR response of 26 Ω resistor.      56 

3.8 TDT response of 858 Ω resistor.      57 

3.9 Capacitor structure.  All dimensional units are in mils.   57 

3.10 Response of SONNET and the equivalent circuit of the capacitor.  58 

3.11 TDT response of the capacitor.      58 

3.12 Transient response of a transmission line terminated with matching  

impedance of embedded resistor.      59 

3.13 Transient response of 858 Ω resistor.      61 



 ix

3.14 Transient response of 26 Ω resistor for a step input with 35 ps rise time. 61 

4.1 Equivalent circuit after synthesis of Zin(s) in (4.2).    70 

4.2 Example of non-ladder circuit.      70 

4.3 Metal dimensions of the inductor.  The dimensional units are in mils. 72 

4.4 S11 response of SONNET (square) and the equivalent  

circuit (circle) of the inductor structure L1 in Table 4.1.   73 

4.5 A capacitor structure.  All dimensional units are in mils.   76 

4.6 Equivalent circuit of the 1-port capacitor in Figure 4.5.   77 

4.7 Response of SONNET (square) and the equivalent circuit (circle) of the 

capacitor in Figure 4.5.       77 

4.8 A resistor structure.  All dimensional units are in mils.   78 

4.9 Equivalent circuit of the 1-port resistor in Figure 4.8.   78 

4.10 Equivalent circuit that matches z11 and zeros z21 in (4.10) before the z21 

scaling.         81 

4.11 Equivalent circuit with z11, z21 and z22 matched for (4.10).  83 

4.12 The equivalent circuit of (4.19) before z21 scaling and z22 matching. 85 

4.13 The equivalent circuit of (4.23) before y21 scaling and y22 matching. 87 

4.14 Equivalent circuit of (4.26) before y21 scaling and y22 matching.  88 

4.15 An embedded inductor structure.  All dimensional units are in mils.  89 

4.16 Equivalent circuit of the 2-port inductor in Figure 4.15.   89 

4.17 Equivalent circuit of the 2-port capacitor structure in Figure 4.5.  91 

4.18 Response of SONNET (square) and the lossless equivalent  

circuit (circle) of the 2-port capacitor structure in Figure 4.5.  91 

4.19 Lossy equivalent circuit of the capacitor structure in Figure 4.8.  92 

4.19 Equivalent circuit of the resistor structure in Figure 4.8.  Losses  

(resistors) were optimized by an optimizer in MDS.    93 

4.20 Response of SONNET (square) and the equivalent lossless  

circuit (circle) of the 2-port resistor in Figure 4.8 before optimization. 94 

4.21 Response of SONNET (square) and the lossy equivalent circuit (circle) 



 x

of the 2-port resistor in Figure 4.8 after optimization.   94 

4.23 Lossy equivalent circuit of the resistor structure in Figure 4.8.  95 

4.24 SLIM one-port inductor structure.      96 

4.25 Equivalent circuit for the SLIM inductor structure shown in Figure 4.24. 96 

4.26 SLIM two-port capacitor structure.      97 

4.27 The equivalent circuit for the capacitor structure.    97 

5.1 The inductor structure.  All dimensional units are in mils.   102 

5.2 Response of SONNET and the stable function. Dotted - SONNET,  

dashed - the stable function, x - data points used to update residues.  102 

5.3 Capacitor structure.  All dimensional units are in mils.   104 

5.3 Response of SONNET and the stable function.  Dotted - SONNET,  

dashed - the stable function.       105 

5.4 Top and side view of the 26 Ω resistor structure.  The dimensional units 

are in mils.         107 

5.5 Input impedance generated by SONNET and the stable function.   

Dotted - SONNET, dashed - the stable function, x - data points used to 

update residues.        107 

5.6 SLIM resistor structure.  All dimensional units are in mils unless stated  

otherwise.         110 

5.8 Equivalent circuit of the resistor structure in Figure 5.7.   110 

6.1 Schematic of the digital circuit for test.     113 

6.2 The 150 Ω resistor structure.  All dimensional units are in mils.  114 

6.3 Equivalent circuit of the resistor structure shown in Figure 6.2.  114 

6.4 Response of each modeling method for the circuit shown in Figure 6.1. 

Dashed - macromodel, dotted - equivalent circuit, solid - ideal lumped  

resistor.         116 

6.5 Schematic of the digital circuit.      117 



 xi

6.6 Response of each modeling method for the circuit shown in Figure 6.5.   

Dashed - macromodel, dotted - equivalent circuit, solid - ideal lumped  

resistor.         118 

6.7 Bandpass filter using ideal lumped elements.     119 

6.8 Filter using empirical models in ADS.     121 

6.9 Macromodel for the filter.       123 

6.10 Equivalent circuit for the filter.      124 

6.11 |S21| response of the filter.       124 

 



 xii

 

LIST OF TABLES 

 

1.1 Advantages and disadvantages of embedded passives.   3 

2.1 Comparison of simulation time required with and without the method. 28 

2.2 Minimum eigenvalue of the inductor structure as the order increases. 33 

2.3 Minimum eigenvalue for the capacitor structure.    34 

2.4 Minimum eigenvalue for the resistor structure.    36 

3.1 Macromodel for 1-port structure using input admittance.   49 

3.2 Macromodel for 1-port structure using input impedance.   50 

3.3 2-port macromodel using y-parameter functions.    50 

3.4 Two-port macromodel using z-parameter functions.    50 

4.1 Equivalent circuits as material and physical parameters of the  

inductor were varied.  All dimensional units are in mils.   74 

6.1 Electrical and physical parameters for the embedded passives.  120 

6.2 Embedded passive structures.  All dimensional units are in mils.  120 

 
 
 
 

 
 
 

 
 
 

 
 



 xiii

 
CHAPTER 1 

 
 
 

INTRODUCTION 
 
 
 
 The trend in portable wireless electronics is to combine digital and RF circuits 

into a compactly packaged mixed signal module.  Examples of such electronics are 

pagers, cellular phones, transceivers, and global positioning systems that typically 

function in the RF frequency range.  Integral passives represent an emerging technology 

that has the potential for increased reliability, improved electrical performance, size 

shrinkage, and reduced cost.  Using this technology, surface-mount passive components 

can be integrated into the substrate on multiple layers.  Both organic and inorganic 

approaches are being investigated around the world for embedded passive technology.  

This chapter is divided into five sections.  The first section deals with currently available 

packaging technology with examples of embedded structures.  The second section 

discusses Asymptotic Waveform Evaluation, which approximates the response of a large 

order system using only a few dominant poles and zeros.  AWE deserves a serious 

attention since it provides a standard of merit for comparison with the modeling 

techniques presented in this dissertation, which also require a low order approximation.  

The third section discusses technically challenging problems in realizing the embedded 

passives.  The forth section proposes research needed to answer the issues addressed in 

the third section.  The fifth section describes the remainder of this dissertation. 
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1.1 Packaging Technology 

 
 Today's rapid growth of RF wireless products has turned our attention to reduced-

size and cost-effective packaging technology.  Design of RF circuits requires packaging 

that is highly reliable and superior in electrical performance to accommodate its 

wideband frequency operation.  An adequate solution is provided by "passive 

integration."  The aim is to integrate the passive components such as inductors, 

capacitors, and resistors in a single substrate.  Figure 1.1 illustrates the basic concept 

behind passive integration. 

 

R L C 

R L C 

Passive Elements 

Chip Chip 

 

Figure 1.1: Passive integration. 

 

 There are several advantages of embedding passive elements over the 

conventional technique of component mounting on the surface of the board.  Embedded 

passives require no assembly to its board, yielding lower cost.  Soldering is not required; 

thus, solder-joint failure is nonexistent, which translates to better reliability.  Other 
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advantages include improved efficiency and better electrical performance.  However, the 

frequency behavior of the embedded components is dictated by parasitics, losses, and 

electromagnetic interference.  Figure 1.2 illustrates common parasitic and lossy effects 

with a typical embedded spiral inductor.  Dedicated tools or advanced modeling 

techniques are needed to predict their behavior.  The advantages and challenging issues 

of embedded components are outlined in Table 1.1. 

 

 

Figure 1.2: Parasitic and lossy effects of a typical embedded spiral inductor. 

 

Table 1.1: Advantages and disadvantages of embedded passives. 

Advantages of Embedded Passives  Disadvantages of Embedded Passives 

1. Reduced cost    1. Frequency behavior dictated by  

2. Better reliability    parasitics, losses, and  

3. Improved electrical performance  electromagnetic interference 

4. Improved packaging efficiency 

5. Separate packaging not required 
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 Ceramic packaging has been considered the best solution to serve all the noted 

demands due to its electrical, thermal, and dimensional stability.  Laminated ceramic 

packaging technologies, Low Temperature Cofired Ceramic (LTCC) and High 

Temperature Cofired Ceramic (HTCC) provide the most suitable solution to the full 3-D 

passive integration and are given the most attention.  Another packaging technique under 

consideration for embedded passives is thin-film packaging technology, which has 

advantages over thick-film ceramic packaging, as will be discussed later. 

 

1.1.1 Low Temperature Cofired Ceramic (LTCC) 

 LTCC is a young technology, introduced in the 1980s.  Attracted by its unique 

ability to integrate passive components, researchers in the microelectronics community 

have been vigorously investigating this technology for electronic packaging [3].  

Utilizing this thick-film printing technique, its multilayered ceramic structure allows 

burying of complex parts with flexible dimensional control.  The significance of LTCC 

lies on low-cost, shrinkage in size, high reliability, and high-density interconnects.  It also 

offers low losses, low permittivity, and duplicable sheet thickness [4].  These 

characteristics are relevant in the design of RF circuits, making LTCC a desirable 

technique. 

 The passive components include inductors, capacitors, and resistors.  There are a 

number of ways to realize passive components in LTCC.  A few examples of each type of 

component will be discussed.  The structures presented in this section are in no way the 

only solution to realize the embedded passives but serve as a guide to provide conceptual 
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knowledge as they have been adopted by some manufacturers. 

 Figure 1.3 shows various inductor structures.  The inductor types (a) and (b) are 

realizable on a single layer.  The metal can be on the surface or embedded between 

dielectric layers.  Type (c) shows an inductor that has one turn on each layer.  To reduce 

parasitic capacitance between the metals in each layer, each turn may be slightly 

misaligned, as shown in (d). 

 

 

    

    (a)        (b)         (c)     (d) 

Figure 1.3: Different types of embedded inductors. 

 

 

 (a)        (b) 

   

 Figure 1.4: Parallel plate capacitor.           Figure 1.5: Interdigitated capacitor. 
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 Figure 1.4 shows two examples of a parallel plate capacitor in 3-D and its cross-

section.  The capacitor in (a) is a two-plate capacitor and the one in (b) is a three-plate 

capacitor.  The capacitance varies with the plate dimensions, εr of the dielectric layers, 

the distance between the plates, etc.  Figure 1.5 shows a top-down view of an 

interdigitated capacitor.  It has relatively small capacitance compared with the size it 

occupies.  The number of fingers and εr of the material largely determine its capacitance. 

 Figure 1.6 shows a typical resistor structure.  Its DC resistance is mainly 

determined by resistivity of the lossy metal and its dimensions. 

 

 

Figure 1.6: A typical resistor structure. 

 

1.1.2 High Temperature Cofired Ceramic (HTCC) 

 HTCC is similar to LTCC in concept, but there are a few notable differences.  

Typically 1600
o
 C firing temperature is required in HTCC as opposed to 850

o
 C in 

LTCC.  HTCC generally yields higher loss because of its use of refractory-conducting 

metals such as tungsten, molybdenum, and manganese.  Between 85% and 96% of the 

ceramic content of HTCC is made up of alumina, while LTCC's alumina content is only 

40%-60% [5].   HTCC shares the general advantages of LTCC. 
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1.1.3 Thin-film Packaging 

 Thin film often implies coating layer thicknesses of a few micrometers although 

thicknesses up to 50 µm may also be considered thin film.  Typical dimensions of 

conductors and dielectrics range from 2 µm to 25 µm, compared with the order of 100s of 

µm in thick-film ceramic packaging such as LTCC [1].  The most commonly used 

dielectric material is polyimide.  The following lists some advantages of thin-film 

technology compared with thick-film technology. 

 

Thin-film Advantages 

1. Size shrinkage with higher density 

2. Improvement in interconnect reliability 

3. Lighter weight desirable for portable microcomputers and communication devices 

4. Ability to use much longer length of film than those in thick-film 

 

 As it is a new field, one of the few passive structures found is from the works of 

the High Density Electronic Center, University of Arkansas and Packaging Research 

Center, Georgia Tech.  Figure 1.7 shows a side view of a thin-film floating capacitor [6].  

Figure 1.8 shows a side view of a thin-film resistor [7]. 

 

  

 Figure 1.7: Thin-film floating capacitor. Figure 1.8: Thin-film resistor. 
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1.2 Asymptotic Waveform Evaluation 

 
Asymptotic Waveform Evaluation (AWE) has a relatively short history but has 

been discussed in a large number of paper [21].  It is a technique that approximates 

frequency and time domain responses of a large order system in a rational function with a 

reduced order.  This is possible because the response of a large order system is often 

dominated by the effect of a few dominant poles.  As the order of approximated poles 

increase, the approximation approaches the actual response.  AWE has often been used 

for analysis of linearized lumped circuits but can also be applied to distributed-element 

networks as well. 

 Despite so much favorable attention by many researchers, AWE has its own 

drawbacks [46].  First, it is very difficult to determine the best reduced order of poles in 

advance since the number of dominant poles are unknown.  Second, stability is not 

guaranteed.  It may produce the poles on the right half plane in the s-domain.  A few have 

addressed the latter problem, which is discussed in this section. 

 

1.2.1 Algorithm 

 The AWE algorithm can be divided into two parts.  The first part is moment 

generation from a time-domain signal.  The second part is moment matching which is 

recognized as Pade' approximation.  The generated moments are matched to a reduced 

order rational function using Pade' approximation. 

 Consider a time domain impulse response f(t).  Using Laplace transform,  
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After Taylor series expansion about s=0, F(s) can be rewritten as 
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     (5) 
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with the numerator order, P, and the denominator order, Q, which is only half the order of 

F(s).  Usually P=Q-1 but it is not required.  Let H(s) and F(s) be equal, then it gives 

 

a0
.a1 s .a2 s2 ... .aP sP

1 .b1 s .b2 s2 ... .bQ sQ
mo

.m1 s .m2 s2 ...

.   (6) 

 

Multiplying both sides with the denominator of H(s) will yield a set of equations which 

allows one to find all the coefficients, a0, a1,..aP, b1, b2, ..bQ.  More details about solving 

the equation above can be found in [22].  After partial fraction expansion, H(s) can be 

rewritten as 

 

H( )s

= 1

q

i

ki

s pi .     (7) 

 

The time domain response is obtained from (7). 

 

1.2.2 Stability 

 One of the most significant concerns raised by AWE is its stability.  AWE does 

not guarantee stability and can produce unstable poles.  The paper [21] addresses stability 

with search of the Pade' Table which is shown in Table 1.1.  The Hpq is an AWE 

approximation with numerator order of p and denominator order of q.  The idea is to 
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search the table until satisfactory poles are obtained.  Although the search can be made 

for every approximation, the most efficient way is to search either by diagonal sequence 

or horizontal sequence.  Diagonal search is performed by searching H's which has p = q-1 

along the diagonal of the table.  For horizontal search, q is fixed and p is swiped from 0 

to maximum order of P.  As p is increased, all the poles of H will converge to those that 

are nearest to the origin [23].  The lowest poles are most accurate since the Taylor series 

expansion is performed at s = 0.  Poles will become inaccurate as their distance is 

increased from the expansion point, s = 0.  When a desired number of accurate left half 

plane poles are obtained, then their corresponding residues can be found. 

 

H00 H01 H02 ... H0Q 

H10 H11 H12 ... H1Q 

 ...     ...    ...    ...   ... 

HP0 HP1 HP2 ... HPQ 

Table 1.1:  Pade' Table. 

 

 Anastasakis, Gopal, Kim and Pillage present another approach to stabilize the 

approximation [46].  Unstable poles are produced by small effects of inaccurate high 

frequency poles which results in inaccurate low order moments.  High order moments 

tend to emphasize the effect of low frequency poles and vice versa [21].  The inaccurate 

low order moments can be avoided by exciting an input that has less power at the high 

frequency region to nullify the dominance of high frequency pole effect.  This is done by 
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using step, ramp, or even a quadratic input response.  In case a ramp input is used, the 

resulting response is 

 

a0
.a1 s .a2 s2 ... .aP sP

b0
.b1 s .b2 s2 ... .bQ sQ

As

s

Ar

s2

m0

s2

m1

s
m2

.m3 s .m4 s2 ... .m2Q s2Q

. (8) 

 

The low order moments are used to solve the particular solution while the higher order 

moments are used to solve the poles.  This yields stable poles with greater accuracy.  

 Although efforts can be spend to search for accurate and stable poles, the 

techniques presented in this section do not increase the accuracy of the approximated 

response.  The accuracy of response must be insured by separate means. 

 

1.2.3 Enhancements to AWE 

 A disadvantage of conventional AWE is its approximation from a single point 

Taylor expansion.  Approximated response will only be accurate close to the expansion 

point (s = 0) but accuracy will degrade as the distance from the expansion point increases.  

The dominant poles in the higher frequency region of interest may not be detected.  To 

address this issue, Chiprout and Nakhla have introduced a new technique, Complex 

Frequency Hopping (CFH) [47].  Unlike the original AWE, CFH approximates a function 

using multiple expansion points with a binary search technique.  The accurate poles 

generated from each expansion point will be collected.  The poles are considered accurate 

when they are within a radius of accuracy around the expansion point.  The distance of a 
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common pole from each expansion point serves as radii of accuracy for each expansion 

point.  The further expansion at new frequency will stop when a common pole is 

detected.  Due to expansion at the maximum frequency of interest, even the poles at the 

high frequency region are detected accurately which is unavailable in conventional AWE. 

 The following example will clarify its algorithm.  Given a Laplace transform of a 

time domain signal, the expansion is applied at s = 0.  Another expansion is applied at 

highest frequency of interest on imaginary axis.  If there is a common pole produced by 

two expansions, then the poles within the constraints will be collected and their 

corresponding residues are found.  No further expansion is necessary.  If there is no 

common pole, then a new expansion is performed at a frequency between the two 

previous expansion frequencies.  The procedure will continue in the same manner. 

 Later, Celik, Ocali and Tan claimed a better enhancement to AWE, Multipoint 

Pade' Approximation (MPA) [48].  Unlike CFH, which extracts poles at different 

frequency separately, MPA finds poles while all the expansion points are taken into 

consideration at once.  Given the system function F(s), Taylor series expansion is applied 

at certain frequency s = sk as 

 

F( )s

= 0

∞

i

.m ,k i s sk
i

    (9) 

 

where mk,i is an i-th shifted moment at sk.  Then the following multipoint moment 

matching is computed, 
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a0
.a1 s .a2 s2 ... .aP sP

1 .b1 s .b2 s2 ... .bQ sQ
m ,k 0

.m ,k 1 s sk ... .m ,k nk 1 s sk

nk 1
O s sk

nk

 

and k = -n, ...,0, ...,n     (10) 

 

where n is a number of moments from each expansion at s = sk.  Once all the coefficients 

are found, a standard partial fraction expansion is performed to obtain poles and residues.  

The details of formulation can be found in [48]. 

 

1.3 Technically Challenging Issues in Realizing Embedded Passives 

 
 Although much work can be found concerning packaging technology and analysis 

techniques, the designers of embedded components are still faced with many unanswered 

challenges.  First, there is no fast way to accurately simulate the embedded passive 

structures.  Although empirical models found in advanced RF/microwave simulators may 

be fast, they are only limited to certain fixed geometry for simple embedded structures.  

Moreover, they are available for mature technologies and are not relevant for new 

processes.  Only EM solvers are suitable for a wide range of complex structures.  

However, even with today's rapid advancement in computer processors, currently 

available EM tools are still very slow.  Second, currently, embedded passives may be 

analyzed only in expensive RF/microwave simulation tools.  It is very desirable to make 

the analysis available in general circuit simulators such as SPICE.  Third, a sound 
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approach to extract a lumped model for embedded structure is yet to be found.  James 

Rautio has presented an approach to synthesize equivalent lumped models using 

scattering parameter data [16].  However, it has been reported that it is difficult to 

produce a synthesized model that has a good agreement with high-frequency 

measurements [14].  Forth, undesirable effects of the embedded components in RF 

frequency are not well understood.  A sound technique is needed to study the effects of 

parasitics, losses, electromagnetic interference, coupling, and frequency dependence, 

which are of great concern when embedded passive components are operated in RF 

frequency. 

 

1.4 Proposed Research 

 
 Considering the technically challenging issues in the design and modeling of 
embedded passives, the following research is proposed. 
1. Development of an interpolation method that captures the response of embedded 

passive structures from limited frequency data.  This enables the speedup of EM 
solvers for simulating complex structures. 

2. Development of a method for simulating embedded passives using macromodels.  
This enables the use of frequency-dependent models in a transient simulation.  
This requires the modification of the rational functions by enforcing the stability 
condition with complex conjugate poles on the left half plane.  Macromodels in 
SPICE reduce the transient simulation time for complex structures. 

3. Although macromodels can be embedded in a SPICE simulation, design kits may 
require equivalent circuits for RF design.  A method is presented that extracts 
equivalent circuits from rational functions.  An important constraint that has been 
enforced is to ensure that the equivalent circuits correlate with the physical 
structure. 

4. Development of an algorithm that reliably generates stable functions at all times.  
The interpolation technique in (2) produces a stable solution for most embedded 
structures.  However, the technique does not guarantee a stable solution and may 
generate rational functions with unstable poles, especially when a high order 
approximation is performed.  An algorithm that guarantees stability is desired. 
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5. Simulation of circuits that consists of multiple embedded passives using the 
modeling technique developed in (2) and (3) and evaluation of their response. 

 
1.5   Dissertation Outline 
 

The remainder of this dissertation is organized as follows.  Chapter 2 presents an 
interpolation technique to extract frequency response of embedded structures using a 
limited sampled data.  In Chapter 3, a SPICE macromodeling technique is discussed.  In 
Chapter 4, equivalent circuits are synthesized for embedded structures.  In Chapter 5, a 
stability enforcement algorithm is applied to unstable rational functions.  In Chapter 6, 
macromodeling technique and equivalent circuit synthesis are applied to circuits that 
consist of multiple embedded components.  Finally, Chapter 7 concludes this dissertation 
and recommends future work. 



 xxix

 

CHAPTER 2 
 

EXTRACTION OF THE FREQUENCY 
RESPONSE OF EMBEDDED PASSIVES USING 

LIMITED DATA 
 

The acceleration algorithm presented in this paper combines the accuracy of EM 

solvers with an interpolation technique based on Cauchy's method [17][18] to 

approximate the behavior of embedded passives using limited data.  The approximated 

function is represented as a ratio of two polynomials.  This technique saves a significant 

amount of EM simulation time since the solution requires sampling at limited frequency 

points. 

 

2.1 Accuracy of Full-wave EM Solvers 

 
Three critical parameters are often used to design embedded passive components 

(resistors, inductors, and capacitors) in RF circuits, namely the variation of 

resistance/reactance with frequency, the variation of quality factor (Q) with frequency, 

and the resonance behavior of the component.  Numerous methods are available to 

analyze these structures such as the partial element equivalent circuit (PEEC) approach 

[9][10][19][20], empirical techniques (Series IV), and full-wave electromagnetic (EM) 

methods (SONNET, HFSS) [7][8] to name a few.  Since the accuracy of the response 
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over a large bandwidth is critical in designing RF circuits, the appropriate method has to 

be applied for the analysis.  Full-wave EM techniques provide accurate solutions over a 

large bandwidth since they solve Maxwell's equations directly with the appropriate 

boundary conditions.  As an example, the variation of reactance with frequency for a one-

port embedded RF spiral inductor realized using Low Temperature Cofired Ceramics 

(LTCC), shown in Figure 2.1, is plotted in Figure 2.2.  Both Series IV and SONNET 

provided good correlation with measured results, while the PEEC method provided a less 

accurate solution.  Though the reactance behavior was captured by Series IV, it produced 

a less accurate Q variation in Figure 2.3, which is a measure of the loss in the structure.  

Hence, only SONNET, which is an integral equation-based solver, produced accurate 

results.  This is because all the retardation and loss effects were captured accurately in 

SONNET as compared with either Series IV or PEEC. 

 The problem with most full-wave EM solvers is the long analysis time required, 

which could be hours for a simple structure.  The next section shows the mathematical 

details of the acceleration algorithm.  This method combines the accuracy of full-wave 

EM solvers with an interpolation technique to reduce the simulation time for embedded 

passive components. 
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Figure 2.1: The inductor structure.  All dimensional units are in mils. 

 

 

  

Figure 2.2: Reactance of inductor.      Figure 2.3: Q of inductor. 
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2.2 Acceleration Algorithm 

 
Consider a function in the frequency domain, which can be represented as 

 

H ( )s = = 0

P

k

.a k s k

= 0

Q

l

.b l s l

,    (2.1) 

 

where s = j⋅ω, ω is the angular frequency, and ak and bl are complex coefficients.  

Function H(s) could be impedance, admittance, or scattering parameters.  Equation (2.1) 

can be rewritten as 

 

= 0

P

k

.ak sk .H( )s

= 0

Q

l

.bl sl =  0  

,    (2.2) 

 

which can be represented in a matrix form [17], 

 

[A] [x] = 0,     (2.3) 

 

where 
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  (2.4) 

 

and [x] is a solution vector that contains all the coefficients of H(s) as follows: 

 

[x] = [ a0 a1 ... aP b0 b1 ... bQ]
T
.    (2.5) 

 

The variable 'm' is the number of available data points with m  P + Q + 2, where P and 

Q are the orders of the numerator and denominator, respectively, in (2.1).  In general, the 

order of the polynomials in (2.1) is chosen such that Q = P + 1 although it is not a 

required condition.  The data points need not be equally spaced in frequency.  The 

usefulness of setting up the matrix equation as in (2.3) is the nonrequirement for the 

derivatives of the function H(s) at a given frequency point using the Taylor series 

expansion [20][21][22][23].  Since equation (2.3) is generated through a set of partial 

data points and does not involve any derivatives, the equation can be readily applied to 

compute the response of passive components using commercial EM solvers.  Once the 

orders, P and Q, of the polynomials are determined, the coefficients, ak and bl, can be 

computed by solving λmin of the equation [24]: 

 

[A]
H
 [A] [x] = λmin[x],    (2.6) 
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where [x] is found by solving the eigenvector corresponding to the λmin (or eigenvalue 

closest to zero) [18] of [A]
H
[A] in equation (2.6).  The superscript 'H' denotes the 

complex conjugate transpose of the matrix [A].  Since no condition is enforced on the 

coefficients, ak and bl, and since the matrix [A]
H
[A] is complex, the eigenvectors are 

complex.  Hence, the coefficients, ak and bl, are complex.  However, equation (2.6) 

allows one to interpolate the response by determining the coefficients, ak and bl, once the 

order of the polynomial (P and Q) is determined.  

 

2.3 Determining the Required Minimum Number of Data 

 
To determine the minimum number of data points required for the interpolation, 

the λmin of the matrix [A]H[A] is observed as the order of the polynomial, P and Q, is 

increased.  The value of λmin decreases to a point where any further decrease is not 

significant.  The value of P and Q used at that point is the minimum order of the 

polynomial.  To construct [A] in (2.4) and solve (2.6), the required minimum number of 

data points is P+Q+2.  The minimum order, P and Q, (or minimum number of data 

points, P+Q+2) is found only once for a class of structure.  The same order of the 

polynomial can be subsequently used for the same class of structures. 

As an example, Figure 2.4 shows how |λmin| of the matrix [A]H[A] of the inductor 

structure, shown in Figure 2.1, varies with the value of P+Q+2.  For P+Q+2 = 6, |λmin| 

approaches zero and does not significantly decrease thereafter, showing that the 

minimum order of the solution is four and the minimum number of data points required is 
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six.  Since P+Q = 4, the order P=2 and Q=2 should be used.  However, for the 

experiments presented in this chapter, P+Q+2 is chosen to be seven (unless stated 

otherwise) to keep P less than Q.  In this way, the order P=2 and Q=3 may be used. 

 

P+Q+2 λλλλmin
3 0.11994617
4 0.01702592
5 0.01426480
6 0.00010006
7 0.00007488
8 0.00007763
9 0.00007541
10 0.00007697
11 0.00008048
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Figure 2.4: |λmin| of the inductor structure in Figure 2.1. 

 

2.4 Interpolation Results and Evaluation of Simulation Time Saving 

 
Two embedded passive components were tested to evaluate the validity of the 

acceleration algorithm.  The technique was applied to an embedded one-port spiral 

inductor, shown in Figure 2.1, and an embedded two-port parallel plate capacitor, shown 

in Figure 2.5. 
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Figure 2.5: The capacitor structure.  All dimensional units are in mils. 

 

The spiral inductor was based on the LTCC ground rules supplied by National 

Semiconductor, while the high-frequency RF capacitor was also realized using LTCC-M 

technology.  For both the inductor and the capacitor, the polynomial order of P = 2 and Q 

= 3 was used.  SONNET [25] was used to simulate the structures to extract S-parameter 

data at seven frequency points.  These frequency points were arbitrarily chosen over the 

frequency band of interest.  In the case of the inductor, s-parameter data was interpolated 

to generate the following function: 

 

S11( )s =
a0

.a1 s .a2 s2

b0
.b1 s .b2 s2 .b3 s3

=a

0.2038 0.2263i

0.356 + 0.2012i

0.1332 0.0078i

=b

0.2032+ 0.2391i

0.2936+ 0.5493i

0.051 + 0.4663i

0.0627+ 0.1093i , (2.7) 

 

which was later converted to input impedance 
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Z11( )s  = .
c0

.c1 s .c2 s2 .c3 s3

d0
.d1 s .d2 s2 .d3 s3

50 =c

6 10 4 + 0.0128i

0.6496+ 0.7505i

0.0822+ 0.4585i

0.0627+ 0.1093i

=d

0.407 + 0.4654i

0.0624+ 0.3481i

0.1842+ 0.4741i

0.0627+ 0.1093i . (2.8) 

 

The equations (2.7) and (2.8) are normalized functions with a frequency scaling factor of 

1010.  Figures 2.6 and 2.7 show the imaginary part of Z11 and Q of the inductor, 

respectively.  The equation (2.8) has the following poles: 

 

=poles

2.2029+ 3.3559i

0.3213 1.1997i

0.012 + 0.984i ,    (2.9) 

 

which contain the resonant frequency.  As can be seen from the figures, equation (2.8) 

captured the resonant frequency very accurately even though no data point was chosen at 

the resonant frequency.  The error of Imag (Z11) and Q between the full set of SONNET-

generated data and the interpolated response (equation (2.8)) is shown in Figure 2.8 and 

2.9, respectively.  The largest error was less than 3%, demonstrating the accuracy of this 

interpolation technique. 

 In case of the capacitor, Figures 2.10 and 2.11 compare the magnitudes and 

phases, respectively, of the full set of SONNET data and the interpolated response using 

only seven data points.  Figures 2.12 and 2.13 show the error of the magnitude and phase, 

respectively.  As shown, the error was less than 0.4% in the worst case, again suggesting 

that the interpolation method is well suited for modeling embedded passive components. 

translates to 1.57 GHz 
after frequency scaling 
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Figure 2.6 Imag (Zin) of the inductor.  Figure 2.7: Q of the inductor. 
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Figure 2.8: Error of Imag (Zin) in %.       Figure 2.9: Error of Q in %. 
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    Figure 2.10: Mag (S21) of the capacitor.        Figure 2.11: Phase (S21) of the capacitor. 

 

 

      Figure 2.12: Error of Mag (S21) in %.        Figure 2.13: Error of Phase (S21) in %. 
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The technique described in this paper saves a significant amount of time in predicting the 

accurate response of embedded passive components in RF circuits.  Table 2.1 

summarizes savings in simulation time for the inductor and the capacitor structure 

analyzed using a high-end Sun Workstation with 512MB RAM.  As shown in Table 1, 

the interpolation technique is useful for complicated multilayered structures, such as 

capacitors, and provides a means for significant reductions in computation time. 

 

Table 2.1: Comparison of simulation time required with and without the method. 

SONNET Present Method
Type Frequency Band Data Points Simulation Time Data Points Simulation TimeSimulation Time

Inductor DC - 2.2 GHz 24 15.2 minutes 7 4.4 minutes4.4 minutes
Capacitor DC - 4 GHz 40 3.7 hours 7 39 minutes39 minutes  

 

2.5 Reliability of Interpolation 

 
To ensure that the minimum number of data points do not change for similar 

classes of structures, the response of the spiral inductor was extracted using the 

interpolation algorithm for varying physical parameters.  The metal winding is shown in 

Figure 2.1 and its physical variations are indicated in Figure 2.14.  The interpolation 

algorithm used six equally spaced data points over 4 GHz bandwidth, and its result was 

compared with the frequency response obtained using 40 data points equally spaced with 

0.1 GHz intervals.  The error between the actual response and the interpolated response is 

shown in Figure 2.14, where the error is less than 6 %. 

 



 xli

0.3 

H 

W 

S 

H εr = 7.8 
σ = 3e7 S/m 

tanδ = 0.0035 
 

 

 

 

 

Figure 2.14: Error of Imag(Zin) and Q of varying inductor.  All dimensional units are in 

mils. 
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2.6 Data Sampling 

 
In Section 2.3, an eigenvalue method was used to determine the required 

minimum order using a full set of data.  Once the minimum order, P and Q, is found by 

evaluating the eigenvalues, the same order can be used for similar classes of structures as 

shown in Section 2.5.  With a known order, the required minimum number of data may 

be sampled with equally spaced intervals.  However, equal spacing is not a required 

condition and it is only sought for simplicity. 

In this section, a sampling method is presented to illustrate data sampling and 

ensure the minimum number of samples are used for a new structure.  When a full set of 

data is not available for a new structure with an unknown order, a minimum number of 

data may still be used to find the minimum order by choosing data points selectively.  

This method is useful since a significant reduction in simulation time is still achieved 

with a new structure.  The following procedure describes one of the sampling methods. 

 

1. A minimum of three data points are required for interpolation since the smallest 

order a rational function can have is P = 0 and Q = 1.  Once a desired frequency 

band is determined, obtain three data points at the lowest frequency, the highest 

frequency, and the frequency in the middle.  Obtain the minimum eigenvalue of 

[A]H[A]. 

2. Obtain a data point between the two data points that are located closest in (1).  

Repeat to obtain another data point symmetrically from the center (or the 

frequency point in the middle in (1)).  Two more data points are obtained in this 
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step.  Use all the data points obtained in (1) and (2) for interpolation and find the 

minimum eigenvalue of [A]H[A]. 

3. If the interpolated response in (1) agrees closely to the interpolated response in 

(2), the responses have converged. The order associated with the number of data 

points in the previous step is used.  If they do not agree, the step (2) is repeated 

until the convergence occurs.  The convergence is easily determined by observing 

the minimum eigenvalues.  If λmin in (1) and λmin in (2) are close, λmin has 

converged.  If λmin in (1) and λmin in (2) are significantly different, repeat step (2) 

until λmin converges to the λmin of the previous step. 

 

The method is illustrated in the following examples.  This approach was applied 

to an inductor, a capacitor, and a resistor structure and the following subsections discuss 

the results. 

 

2.6.1 Inductor 

The sampling method was applied to an inductor structure shown in Figure 2.15.  

The data points were obtained using SONNET and the response of input impedance was 

interpolated up to 10 GHz.  The data points were sampled as shown in Figure 2.16.  As 

the order was increased by two, additional two data points were simulated at the 

frequency points shown in Figure 2.16.  Table 2.2 shows the minimum eigenvalue 

corresponding to the order.  Figure 2.17 shows the interpolated response for each order.  

The response converged when the value of P+Q+2 was 11 and 13, which shows that the 
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minimum number of data points required for interpolation up to 10 GHz is eleven.  

Figure 2.18 shows the interpolated response with 11 data points and the full set of the 

SONNET-generated data.  It shows good agreement. 
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Figure 2.15: Inductor structure used for sampling. 
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Figure 2.16: Frequencies where data points were sampled for the inductor structure. 
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Table 2.2: Minimum eigenvalue of the inductor structure as the order increases. 
P Q P+Q+2 λmin
0 1 3 0.473955847
1 2 5 0.473955847
2 3 7 0.497262499
3 4 9 0.036331996
4 5 11 3.12502E-06
5 6 13 1.72215E-07  
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Figure 2.17: The interpolated response of the inductor as the number of data increases. 

Dashed dot - P=2 & Q=3, Solid - P=3 & Q=4, Dashed - P=4 &Q=5, Dotted - P=5 & Q=6. 
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Figure 2.18: Full set of SONNET data and interpolated response of the inductor using 

minimum order P = 4 and Q = 5.  Dotted - SONNET, dashed - rational function. 



 xlvi

2.6.2 Capacitor 

The sampling method was applied to the capacitor structure shown in Figure 2.5.  

The full-wave EM solver SONNET was used to generate data.  Figure 2.19 shows the 

frequency points where data was sampled as the order was increased.  Table 2.3 shows 

the corresponding minimum eigenvalues.  Figure 2.20 shows the interpolated response of 

input admittance.  The response converged when P+Q+2 reached 7 and 9, showing that 

the minimum number of data required for interpolation up to 4 GHz is seven. 
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Figure 2.19: Frequency where data points were sampled for the capacitor structure. 

 

Table 2.3: Minimum eigenvalue for the capacitor structure. 

P Q P+Q+2 λmin
0 1 3 1.342775E-06
1 2 5 2.213852E-05
2 3 7 3.965071E-09
3 4 9 1.719493E-13  
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Figure 2:20: The interpolated response of the capacitor as the number of data increases. 

Dash dot - P=0 & Q=1, solid - P=1 & Q=2, dashed - P=2 & Q=3 (minimum order), 

dotted - P=3 & Q=4. 

 
2.6.3 Resistor 

 The resistor structure shown in Figure 4.8 was interpolated using the data points 
as indicated in Figure 2.21.  The data points were obtained using SONNET.  Table 2.4 
shows the corresponding minimum eigenvalues.  Figure 2.22 shows the interpolated 
response of the input admittance as the order increases.  The convergence occured when 
P+Q+2 reached 5 and 7.  The minimum number of data needed for interpolation up to 4 
GHz was five. 
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Figure 2.21: Frequencies where data points were sampled for the resistor structure. 
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Table 2.4: Minimum eigenvalue for the resistor structure. 

P Q P+Q+2 λmin
0 1 3 1.993034E-04
1 2 5 1.710009E-08
2 3 7 8.770335E-11  
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Figure 2.22: The interpolated response of the resistor as the number of data increases. 

Solid - P=0 & Q=1, dashed - P=1 & Q=2 (minimum order), dotted - P=2 & Q=3. 
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CHAPTER 3 
 

TRANSIENT SIMULATION OF EMBEDDED 
PASSIVES USING MACROMODELS 

 

Consider a linear system  

 

H(s) X(s) Y(s) 

 
that consists of an input X(s) and output Y(s).  The output is related to the input through a 
transfer function 

)s(X
)s(Y)s(H = . 

Macromodels capture the H(s) behavior of any structure, which can then be represented 
as a black box in a SPICE simulation.  Figure 3.1 illustrates the concept for a two-port 
embedded structure. 
 

 
Macromodel 

Port 1 Port 2 Port 1 Port 2 

Embedded structure  
Figure 3.1: Macromodeling. 

 
To implement macromodels in SPICE, the polynomial representation of the 

embedded structures is incorporated using Laplace function [39].  The previous chapter 
discusses an acceleration algorithm that interpolates a minimum number of data points 
and approximates the function as a ratio of two polynomials.  However, the interpolation 
technique based on Cauchy's method in Section 2.2 does not generate rational functions 
that are suitable to be implemented in SPICE as a macromodel.  The rational function 
must satisfy the following conditions for a passive circuit. 
 



 l

1. All the coefficients of the polynomials must be real.  This results in real and 

complex conjugate poles and zeros that translate into sine, cosine, and exponential 

functions during convolution for time domain analysis.  If poles (and zeros) are 

not complex conjugates of each other, inverse Laplace transform results in 

imaginary terms in time domain. 

2. Polynomial functions representing the behavior of two-port or multiple port 

structures must have common poles for each function associated with each port. 

3. All the poles of the polynomial function must be located on the left half plane.  

Otherwise, inverse Laplace transform results in unbounded exponential functions 

as its time variable approaches infinity. 

4. The order of the numerator polynomial P must be less than or equal to the order of 

the denominator Q.  If P is greater than Q, partial fraction expansion results in the 

following unwanted terms, 
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which translates to unrealizable derivatives of impulse response δ(t) (Dirac delta 

function) in time domain [36][37]. 

5. Rational function must be a positive real function.  A function is a positive real 

function if the following two properties are satisfied [15][49]: 

i) Zin(s) (or Yin(s)) is real if s is real. 
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ii) Real[Zin(s)] ≥ 0 if real[s] ≥ 0. 

 For embedded passives, this is not a serious condition because only a few 

dominant poles are required.  See Section 4.1 in Chapter 4 for details. 

 

To meet the required conditions above, some modification in the interpolation 

technique is required.  Realization of the first condition is discussed in Section 3.1 while 

Section 3.2 discusses realization of the second condition.  The third and forth condition 

are related to stability and is discussed in section 3.5. 

This chapter discusses a method for generating the macromodel.  These 

macromodels are SPICE compatible and can be used in transient simulation.  The results 

have been compared with TDR / TDT measurements [27] to show the accuracy and 

importance of the macromodels.  The behavior of embedded passives in high-speed 

digital circuits has been discussed using simple examples [28].  The polynomial-

generating technique described in this chapter was used by Dr. Heebyung Yoon (Ph.D, 

Georgia Tech) to perform pole/zero analysis in his fault detection and diagnosis 

technique for embedded passive components [40]. 

 

3.1 Generating A Function with Real Coefficient Polynomials 

 
The resulting function from the interpolation algorithm in the previous chapter 

has complex coefficient polynomials.  Some modification is necessary in the method to 
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generate real coefficients.  They can be obtained by enforcing the condition that the 

coefficients, ak and bl, are real in (2.1).  Consider a real coefficient polynomial function: 

 

H ( )s = = 0

P

k

.a k s k

= 0

Q

l

.b l s l

,    (3.1) 

 

where s = j⋅ω, ω is the angular frequency and ak and bl are real coefficients.  The real 

coefficient function (3.1) is obtained by modifying (2.2) to the form 

 

= 0

P

k

.ak Re sk

= 0

Q

l

.bl Re .H( )s sl =   0  

    (3.2a) 

= 0

P

k

.ak Im sk

= 0

Q

l

.bl Im .H( )s sl =   0  

    (3.2b) 

 

or in a matrix form 
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  (3.3) 

 

and solving the equation: 

 

[A][x] = 0.     (3.4) 

 

Least squares method may be used to solve (3.4) [24].  The equation is rewritten as 

 

[A]H[A][x] = λmin[x].    (3.5) 

 

The solution vector [x] is obtained by finding the eigenvector corresponding to λmin (or 

eigenvalue that is closest to zero) of the matrix [A]H[A].  The matrix [A] in (3.3) consists 

of real numbers.  Thus, the elements of eigenvector of [A]H[A] is also real.  The solution 

vector [x] contains the real coefficients as follows: 

 

[x] = [ a0 a1 ... aP b0 b1 ... bQ]
T
.   (3.6) 
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3.2 Generating Functions with Common Poles for Multiple-port 

Structures 

 
The discussion in the previous section is based on generating a single function.  It 

is useful for one-port structures that only require Zin, Yin or S11 etc.  For multiple-port 

structures, either the admittance (y) parameter or impedance (z) parameter is 

approximated and represented by polynomial functions that have common poles.  The 

technique in the previous section can be readily extended to two-port or other multiple-

port networks.  For example, a two-port structure has the admittance parameters y11, 

y12, y21, and y22.  This can be represented in equation form as 

 

I1

I2

= .
y11

y21

y12

y22

V1

V2 ,     (3.7) 

 

where 
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Q

l
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P2

k
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Q

l
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k
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Q

l

.bl sl

. (3.8) 

 

In (3.8), the admittance parameters have a common denominator and hence the same 

poles.  This constraint is enforced since the poles of a system cannot change and have to 
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remain constant for multiple ports.  This also simplifies the enforcement of the stability 

condition.  The coefficients, an,k and bl, are obtained by solving (3.5) where [A] is the 

matrix 
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 (3.9) 

 

and 'n' is the number of parameters to be solved for a common denominator.  In the case 

of a two-port embedded structure, the value of 'n' is 3 and the functions H1, H2, and H3 

correspond to y11, y21, and y22, respectively.  (The y12 is not considered since it is the 

same as y21 for the passive structures.)  The solution vector [x] contains the numerator 

coefficients, an,k, for each parameter along with the common denominator coefficients, bl, 

as follows: 
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[x]   = [a1,1 a1,2 .. a1,m  : a2,1 a2,2 .. a2,m : .. : an,1 an,2 .. an,m : b1 b2 .. bm]
T
. (3.10) 
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3.3 Generating Lossless Functions 

 
Lossless functions may be generated if the loss of the structure is small and 

negligible.  Lossless functions are desirable since they can be used to synthesize 

equivalent circuits that physically correlate with fewer number of elements, as will be 

demonstrated in the next chapter. 

Lossless functions are derived in the form of a ratio of an even-powered 

polynomial to an odd-powered polynomial or vice versa.  To illustrate the generation of 

such functions, the matrix [A] is represented with the following submatrices: 
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and 
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In the case of a one-port structure, the matrix [A] in (3,3) can be rewritten as 
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To generate lossless functions, the matrix [A] in (3.3) is constructed with even columns 

of [B] and odd columns of [C] or vice versa.  In the case of a two-port structure, the 

matrix [A] in (3.9) can be rewritten as 
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where [B11] and [C11] are matrix [B] in (3.11) and [C] in (3.12), respectively, constructed 

using z11 data.  [B21] and [C21] are constructed using z21 data, etc.  To generate lossless 

functions, the matrix [A] in (3.14) is constructed using even columns of [B] and odd 

columns of [C] or vice versa.  All [C] matrices must have the same Q. 

 

3.4 Minimum Number of Data Needed 

 
To develop rational functions with real coefficients, it is important to note that 

higher-order polynomials are required as compared with complex coefficient 

polynomials.  Therefore, solving for a higher-order polynomial further requires more data 

points, which translates to more simulation time if directly coupled to an EM solver such 

as SONNET.  To minimize the number of data points and hence minimize the EM 
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simulation time to obtain a suitable polynomial representation, interpolation can be first 

performed by computing the matrix [A] in (2.4) and the complex coefficient function 

(2.1), which can then provide the required number of data points to solve for the real 

coefficient function.  Once the complex coefficient function is found, a larger matrix [A] 

in (3.3) is created with higher P and Q and m from the complex coefficient function.  

Based on experience, the order of P and Q for a real coefficient function is one more than 

that required for a complex coefficient function for the classes of embedded structures 

considered in this chapter. 

However, it should be noted that it is not necessary to compute the solution of 

complex coefficients before computing the solution of real coefficients.  The values of P 

and Q found by observing the λmin (as discussed in Chapter 2) are the minimum 

polynomial orders required to approximate a complex coefficient function using the 

minimum number of data points, P+Q+2.  When the number of available data from EM 

solver is much larger than P+Q+2, the matrix [A] in (3.3) for a one-port structure or the 

matrix [A] in (3.9) for a multiple-port structure can be directly created from EM-

generated data, bypassing the computation of complex coefficient solution.  However, 

this is done at a cost of more EM simulation time. 

 

3.5 Stability 

 
Other than the real coefficient function and common pole (for multiple-port) 

requirements, the SPICE macromodel also requires two additional conditions related to 
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stability.  The first condition is that all the poles of the function must be located on the 

left half plane.  Another required condition is that the order of the numerator must be less 

than the order of the denominator. 

The algorithm shown in the previous section does not guarantee a stable solution.  

The resulting function may have poles located in the right half plane.  If the resulting 

function is stable with P < Q, no additional work is needed.  If the resulting function has 

unstable poles, the following actions must be taken [27]. 

 

1. Change P and Q until a stable function is obtained.  For example, if the function 

has one unstable pole, reduce the denominator order Q by one.  The unstable pole 

may disappear.  If there are many unstable poles, Q may be too high.  Reduce Q 

appropriately and try again.  Too much difference between the order P and Q may 

also be a cause for unstable poles.  If Q is reduced, P may need to be reduced to 

some degree accordingly. 

2. As P and Q are changed, be sure to keep P less than Q as it is also one of the 

required conditions.  If it is not possible to produce an accurate curve-fitting 

function while maintaining P less than Q, a different parameter should be pursued.  

For example, if a function approximating input impedance Zin is not satisfactory 

while keeping P less than Q, then, input admittance Yin should be approximated 

instead. 
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3. A reasonable scaling factor should be used to generate an accurate solution.  The 

optimum scaling factor was determined by checking the spread in the eigenvalues.  

A large spread may indicate that a more adequate scaling factor is needed. 

 

By following the above guidelines, a stable solution could be always obtained for all the 

embedded passive components tested. 

 

3.6 Implementation in SPICE 

 
In the case of a one-port structure, a polynomial function representing either an 

input admittance or input impedance is needed.  For the case of one-port structures, Table 

3.1 shows a SPICE macromodel using input admittance (Yin) and Table 3.2 using input 

impedance (Zin).  For two-port structures, Table 3.3 shows SPICE macromodel using 

admittance (y) parameter functions and Table 3.4 using impedance (z) parameter 

functions.  The coefficients are defined in ‘.param’ section. 

 

Table 3.1: Macromodel for 1-port structure using input admittance. 

.macro nport1 1 reference 
g11 1 reference LAPLACE 1 reference  a0,a1, ... ap / b0,b1, ... bq 
.eom nport1 
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Table 3.2: Macromodel for 1-port structure using input impedance. 

.macro nport1 port1 reference 
v1 port1 1 0 
f1 cnt1 0 v1 -1.0 
r1 cnt1 0 1.0 
e11 1 reference LAPLACE cnt1 0  a0, a1, ... ap / d0, d1, ... dq 
.eom nport1 

 

 

 Table 3.3: 2-port macromodel using y-parameter functions. 

.macro nport2 1 2 reference 
g11 1 reference LAPLACE 1 reference a0,a1, ... ap1 / d0,d1, ... dq 
g12 1 reference LAPLACE 2 reference b0,b1, ... bp2 / d0,d1, ... dq 
g21 2 reference LAPLACE 1 reference b0,b1, ... bp2 / d0,d1, ... dq 
g22 2 reference LAPLACE 2 reference c0,c1, ... cp3 / d0,d1, ... dq 
.eom nport2 

 

 

Table 3.4: Two-port macromodel using z-parameter functions. 

.macro nport2 port1 port2 reference 
v1 port1 1 0 
f1 cnt1 0 v1 -1.0 
r1 cnt1 0 1.0 
v2 port2 2 0 
f2 cnt2 0 v2 -1.0 
r2 cnt2 0 1.0 
e11 1 1_1 LAPLACE cnt1 0                       a0,a1, ... ap1 / d0,d1, ... dq 
e12 1_1 reference LAPLACE cnt2 0        b0,b1, ... bp2 / d0,d1, ... dq 
e21 2 2_1 LAPLACE cnt1 0                       b0,b1, ... bp2 / d0,d1, ... dq 
e22 2_1 reference LAPLACE cnt2 0        c0,c1, ... cp3 / d0,d1, ... dq 
.eom nport2 
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3.7   Simulation of SPICE Macromodels and Measurement Correlation 

 
The SPICE macromodels were simulated in the time domain and correlated with 

time-domain reflectometry (TDR) and time-domain transmission (TDT) measurements.  

The measurement setup consisted of Tektronix 11801B digital sampling oscilloscope, 

SD-24 (20 GHz bandwidth) sampling heads with dual channels, Cascade Microtech G-S-

G probes, Cascade Microtech probe station, and high-frequency Gore cables.  Figure 3.2 

shows the measurement setup where R is the resistor under test and ZS and ZI are 

terminating impedance of the digital sampling oscilloscope.  A 250 mV step with a rise 

time of 35 ps was propagated on the structure and both the reflected and transmitted 

pulses were measured.  The TDR and TDT measurement locations are indicated in Figure 

3.2.  Suitable SPICE models were developed of the setup to enable a macromodel to 

measurement correlation. 

The technique was applied to two two-port embedded resistors shown in Figures 

3.3 and 3.4.  The structures were realized by LTCC technology.  In Figures 3.3 and 3.4, 

metallization connecting to ports 1 and 2 provided access to the resistors through a 

coplanar transition.  To develop SPICE macromodels for the resistors that had DC 

resistance of 26 Ω and 858 Ω, the polynomial orders P=2 and Q=3 were used to 

approximate the admittance parameters using complex coefficients, while P=3 and Q=4 

were needed to represent the same response using real coefficients.  A frequency scaling 

factor of 10^9 was used.  The pole-zero plot of the 26 Ω resistor is shown in Figure 3.5 

for the admittance parameter y11 represented using the rational function.  As can be seen 
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from the figure, the poles are on the LHP.  Figure 3.6 shows the frequency response of 

the 26 Ω resistor generated by SONNET [25] and the interpolated results indicating that 

the agreement is very good. 

 

ZS 
MTDR 

Vin 

R 

ZI 

MTDT 
ZL 

 

Figure 3.2: TDR / TDT measurement setup. 
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Figure 3.3: Top and side view of the 26 Ω resistor structure.  The dimensional 

units are in mils. 
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Figure 3.4: Top and side view of the 858 Ω resistor structure.  The dimensional units are 

in mils. 
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Figure 3.5: Pole-zero plot of y11 of 26 Ω resistor. 
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Figure 3.6: Admittance parameters of the 26 Ω resistor. 
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 Figure 3.7 shows the measured and simulated TDR response of the 26 Ω 

embedded resistor.  The initial negative peak represents the capacitance parasitic 

(between resistor and ground plane), which has been captured accurately by the 

macromodel.  Figure 3.8 shows the measured and simulated TDT response for the 858 Ω 

resistor.  Figure 3.8 consists of four waveforms, namely the measured TDT response, 

response using a simple resistor model, response using the macromodel, and a DC 

compensated macromodel response.  Small positive peaks shown in the simulation using 

the simple lumped resistor model is due to high impedance (>50 ohm) transition in the 

test vehicle.  The simulations using macromodels show good agreement with 

measurements in all cases as compared with the simple resistor model, clearly revealing 

frequency dependence and parasitics.  The effect of rounding the pulse because of high 

frequency effects can be clearly seen in Figure 3.8 for the 858 Ω resistor, which has been 

captured accurately by the macromodel.  The rounding and slanting of the pulse 

introduces appreciable delay at the 50% level, which cannot be duplicated using a simple 

resistor model.  The 5mV difference in DC levels between measured values and 

simulated values in the TDT response can be attributed to the DC resistance of the 

resistor.  The modeled resistance value of 858 Ω (specification) was measured to have a 

resistance of 868 Ω using an LCR meter.  By adjusting the a1,0, a2,0, and a3,0 terms in 

(3.8), the agreement between model and measurement was improved, as shown in Figure 

3.8.  This method of adjusting the low-frequency coefficients of the macromodel based 

on measurements has been called DC compensation in Figure 3.8. 
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Figure 3.7: TDR response of 26 Ω resistor. 

 

 The macromodeling technique was next applied to a two-port embedded 

capacitor.  Figure 3.9 shows the capacitor structure that was realized using LTCC 

technology.  To develop the capacitor macromodel, the impedance parameters were 

approximated with P=2 and Q=3 using complex coefficients and P=3 and Q=4 using real 

coefficients.  A frequency scaling factor of 10^9 was used.  Figure 3.10 shows the 

SONNET-generated data and the rational function response for z11 in the frequency range 

DC - 4 GHz.  The TDT response of the capacitor is shown in Figure 3.11.  As can be 

clearly seen, the macromodel agrees very well with the measured TDT response, 

indicating that all the EM effects associated with the structure have been accurately 

captured. 
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Figure 3.8: TDT response of 858 Ω resistor. 
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Figure 3.9: Capacitor structure.  All dimensional units are in mils. 
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Figure 3.10: Response of SONNET and the equivalent circuit of the capacitor. 
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Figure 3.11: TDT response of the capacitor. 

 

Solid : Measured 
Dashed: Simulated with a macromodel 
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 It is important to note that although the input pulse with a rise time of 35 ps has a 

20 GHz bandwidth, a rational function that provided an accurate response in the 

frequency range DC - 4 GHz was sufficient to provide an accurate response in the time 

domain.  This greatly simplifies and reduces the analysis of such structures. 

 

3.8 Embedded Resistors in High-speed Digital Circuits 

 
This section discusses the use of embedded resistors (as an example) in high 

speed digital circuits [28].  Simple circuits have been used to elaborate the importance of 

parasitics and frequency dependence on the behavior of embedded resistors and similar 

embedded passive structures.  All results in this section are based on macromodels 

embedded in a SPICE simulation and have been used to generate the results. 

 

 
Figure 3.12: Transient response of a transmission line terminated with matching 

impedance of embedded resistor. 

Transmission line Embedded 
resistor 
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 To study the effect of terminating digital transmission lines using embedded 

resistors, a 50 Ω transmission line terminated with a 50 Ω embedded resistor was 

simulated using a step with a 35 ps rise time.  Because of the capacitive and inductive 

nature of the resistor, the ringing in the reflected response can be seen in Figure 3.12, 

which can cause problems in high speed circuits.  This ringing would be absent with an 

ideal resistor.  Next, two voltage divider networks (typically used in Analog-Digital 

converters) using two embedded resistors and two ideal resistors were simulated using a 

35 ps rise time pulse, as shown in Figures 3.13 and 3.14.  In Figure 3.13, the 858 Ω 

resistor divider network causes a considerable slow down of the rise time, while the 26 Ω 

resistor network causes oscillations, as shown in Figure 3.14.  In both Figures 3.13 and 

3.14, the response at the output is shown and is substantially different from the ideal 

resistor response.  Hence, though a simple divide-by-two voltage divider network has 

been used, the response is largely dependent on the physical structure and the associated 

parasitics.  Thus, considerable emphasis in designing embedded resistors is necessary for 

high-speed circuits. 
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Figure 3.13: Transient response of 858 Ω resistor. 

 

 

Figure 3.14: Transient response of 26 Ω resistor for a step input with 35 ps rise time. 

Solid: response using a ideal lumped 
resistor 
Dashed: response using a macromodel 
 (embedded resistor) 

Solid: response using an ideal lumped 
resistance 
Dashed: response using a macromodel 
 (embedded resistor) 

858 ohms 
 

858 ohms 
 

26 ohms 
 

26 ohms 
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CHAPTER 4 

 

Equivalent Circuit Synthesis 
 

The design of circuits with integral components such as resistors, inductors and 

capacitors is nontrivial because of the electromagnetic interactions causing parasitics, 

leading to nonideal frequency behavior.  For example, a spiral inductor integrated into the 

substrate may resonate at discrete frequencies, thus limiting its frequency of operation, as 

shown in Figure 2.6.  The quality factor (Q) of the inductor may also degrade because of 

the conductor losses in the structure.  Hence, accurate models of integral components at 

RF frequencies are required. 

Most RF design systems require an equivalent circuit to capture the response of a 

device.  Though these systems have the capability to accept scattering parameters (s-

parameters) directly, equivalent circuits are often preferred since they help in fine tuning 

the manufacturing process.  The current practice for the derivation of a lumped model for 

an embedded passive structure involves a careful selection of a trial lumped model based 

on the physical layout and the skill of the designer.  The value of each element is then 

optimized to give a best fitting response [14].  If the chosen lumped model does not 

produce satisfying results for the frequency bandwidth of interest, the model is 

abandoned and a new trial model is selected.  This method obviously has many 

disadvantages.  First, this is a very tedious and time consuming process and is heavily 

dependent on the skill of the designer.  Second, the effects of the parasitics often tend to 
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increase as the size of the structure becomes larger.  A lumped model selected for a small 

size structure may not produce reliable result for the same structure of larger size.  Third, 

this method is more suitable for simple structures at low frequencies and can produce 

erroneous results at RF frequencies where tight tolerance of the specifications is required. 

In this chapter, a method is presented to synthesize lumped-element circuits of RF 

components.  Though integral passives have been analyzed in this paper, the method 

developed is general and can be applied to any passive structure.  In Chapter 2, an 

interpolation technique was discussed which used a small number of data points to 

generate the broadband response of a RF component [19].  The method used data from an 

electromagnetic (EM) simulator to generate a rational function.  The technique was 

modified in Chapter 3 to generate a rational function with real coefficients [27],[29].  The 

polynomial function was used to obtain the transient response using a SPICE simulator.  

In this chapter, the rational functions with real coefficients have been used to synthesize 

lumped element equivalent circuits.  Careful attention has been paid to ensure that the 

equivalent circuits contain mainly positive components that correlate with the physical 

layout of the structure.  The circuit topology generated by the circuit synthesis technique 

provides ground work in developing scalable models.  The equivalent circuits provide 

connectivity between the physical parameters of the structure and the electrical 

parameters of the circuit, which may be analyzed to develop scalable models [41].  

Scalable models may be incorporated in a design kit as discussed in [35].  Design kits 

provide an iterative technique that uses a library of components for designing a circuit 

and takes a minimum simulation time due to use of scalable models.  Once the models 
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are available, they could be incorporated into a Hewlett Packard’s Series IV (Libra) type 

framework.  Design kits play a critical role in the design of precision RF components 

since this provides a CAD framework for RF designers to gain access to accurate models 

to be able to predict electrical performance prior to fabrication.   

 

4.1 Synthesizable Rational Functions 

 
The rational functions are synthesizable into networks only if it is a positive real 

function, which has the following properties [15][49]: 

 

1) Zin(s) (or Yin(s)) is real if s is real. 

2) Real[Zin(s)] ≥ 0 if real[s] ≥ 0. 

 

The following properties are implied by the properties of positive real function [15][49]: 

 

1) A rational function must have real coefficients.  This condition is enforced 

in (3.2) by separating the real and imaginary parts of the matrix [A]. 

2)  All poles and zeros of the rational function lie on the left half plane.  This 

condition results in a rational function with all positive coefficients.  This 

condition is enforced by retaining the left half plane poles and updating 

the corresponding residues, as discussed in Section 5.1. 
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3) If the function has any pole on the jω axis, it must be simple and have a 

real and positive residue.  Same condition must hold for the reciprocal of 

the rational function. 

4) The real part of the rational function must never be less than zero.  This is 

obtained by bandlimiting the response and testing the response over the 

frequency band of interest.  Since the circuits are used for RF simulation, 

this is an acceptable condition. 

 

These properties need to be observed to verify a rational function generated by the 

interpolation technique is synthesizable. 

 

4.2 Synthesis of One-port Network 

 
Equivalent circuits for 1-port integral passive structure are obtained by 

synthesizing a rational function approximating the input impedance or admittance of the 

structure.  Chapter 3 discusses the details on generating the required function. 

Consider a synthesizable and frequency-normalized function which represents the 

driving-point input impedance or admittance of a 1-port network, 

 

H ( )s = = 0

P

k

.a k s k

= 0

Q

l

.b l s l

,    (4.1) 
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where all the coefficients are real and positive.  From H(s), an equivalent circuit is 

synthesized through subtraction of certain functions or a constant which can then be 

realized using lumped components such as inductors, capacitors and resistors.  Continual 

subtraction reduces the order of the polynomial until no more subtractions are possible.  

The following steps outline the procedure of the synthesis technique for 1-port structure. 

 

1. Given H(s), if the numerator has less coefficients than the denominator, invert 

H(s) for further processing.  For example, if Z(s) (z-parameter) has P=3 and Q=4, 

convert it to Y(s) by inversion.  No subtraction is performed unless the number of 

coefficients in the numerator is greater than or equal to the denominator. 

2. One of the following subtractions is performed to remove either the first or last 

coefficient term in the numerator. 

 

Function to be subtracted has What to subtract (ohm or mho) Component 

Pole at s=∞ x⋅s L in ohm or C in mho

Pole at s=0 1/( x⋅s) C in ohm or L in mho

No pole at either s=∞ or 0 X R 

 

The value of ‘x’ is either the first term of the numerator over the first term of the 

denominator or the last term of the numerator over the last term of the 

denominator.  When a resistor is subtracted, four ways to choose ‘x’ are possible.  
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The value ‘x’ is chosen by ensuring that the remainder has all positive coefficients 

since positive components are desired in the equivalent circuit. 

3. After the subtraction, the coefficients of the remainder are examined.  A 

requirement for non-negative components in the equivalent circuit is that all the 

coefficients after subtraction have the identical sign (say all positive).  Steps 1 and 

2 are repeated until no more subtraction is possible. 

4. After obtaining the equivalent circuit, the frequency dependant components, inductors 

and capacitors, are denormalized by dividing every inductance and capacitance by 

the frequency scaling factor. 

 

To illustrate the synthesis procedure, a specific example is considered.  Let H(s) 

be the input impedance, Zin(s), with P=1 and Q=2.  Zin(s) is represented in the frequency 

domain as 

 

Zin( )s =
a0

.a1 s

b0
.b1 s .b2 s2

.    (4.2) 

 

Using Step 1, the input admittance Yin(s) is obtained by inverting Zin(s) to form Yin(s), 

 

Yin( )s =
b0

.b1 s .b2 s2

a0
.a1 s .    (4.3) 
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Yin(s) has a pole at s = ∞.  The pole is removed by subtracting from Yin(s) a function 

which removes the term, b2s2, in the numerator.  The remainder y2 after subtraction is 

 

y2 = Yin .
b2

a1

s =
c0

.c1 s

a0
.a1 s ,    (4.4) 

 

where 

 

c =

b0

b1
..1

a1

b2 a0
.     (4.5) 

 

A capacitor is extracted by subtracting (b2/a1)⋅s in mhos with the capacitance value of  

b2/a1 F.  The remainder y2 has the same number of coefficients in both the numerator and 

the denominator.  It does not have the pole either at s = ∞ or s = 0.  In such cases, y2 is 

subtracted by frequency independent constants to remove either a first or last coefficient 

term in the numerator.  The subtraction yields a resistor.  Let y3 be the remainder after 

subtraction.  Since four possibilities exist for the subtraction of the resistor, an 

appropriate subtraction is chosen to yield y3 with all positive coefficients.  The four cases 

are shown below: 
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y2
c1

a1

y2
c0

a0

z2
a1

c1

z2
a0

c0.      (4.6) 

 

If the second extraction yields the remainder with all positive coefficients and is chosen 

for subtraction, then 

 

y3 = y2
c0

a0

=
.d s

a0
.a1 s        (4.7) 

 

where 

 

d =
.a0 c1

.c0 a1

a0 .     (4.8) 

 

A resistor is extracted with its admittance of c0/a0 mhos.  The coefficient term c0 in y2 is 

removed.  The remaining elements are easily extracted by inverting y3 to form z3 where, 

 

z3 =
a0

.a1 s

.d s
=

a0
.d s

a1

d .    (4.9) 

 

Figure 4.1 shows the resulting equivalent circuit. 
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b 2 
a 1 

F 
a 0 
c 0 

Ω 

d  
a 0 

F 
a 1 

d  
Ω 

Port 1 

 

Figure 4.1: Equivalent circuit after synthesis of Zin(s) in (4.2). 

 

It is important to note that the synthesis only results in ladder circuits such as the one 

shown in Figure 4.1.  Non-ladder circuits, such as the one shown in Figure 4.2, are not 

synthesizable. 

 

Port 1

 

Figure 4.2: Example of non-ladder circuit. 
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4.3 Examples of Equivalent Circuits for One-port Structures 

 
The synthesis technique was applied to a 1-port inductor, capacitor and resistor 

structure.  They were realized by ground rules based on LTCC technology.  The input 

impedance or admittance was approximated as a polynomial function with real 

coefficients using the interpolation technique discussed in Chapter 3.  The equivalent 

circuits were synthesized from the resulting functions.  The response of all the equivalent 

circuits is accurate over the frequency band DC – 4 GHz unless stated otherwise. 

 

4.3.1 Inductor 

The synthesis technique presented in this paper was applied to a 1-port embedded 

inductor structure.  Low Temperature Cofired Ceramic (LTCC) technology ground rules 

were used to define the structure of the inductor.  Two separate sets of materials from two 

different companies were used for the study.  SONNET produced good correlation with 

measurements on some structures and hence was used to generate the frequency response 

for the structure.  The physical dimensions of the metalization, shown in Figure 4.3, were 

kept constant, but other material and physical parameters, such as εr and thickness of the 

dielectric layers and location and conductivity of the metal, were varied to observe 

changes in the corresponding equivalent circuit.  For each case, a full wave EM simulator 

SONNET was used to simulate the structure and a set of scattering parameter data was 

obtained.  The scattering parameter data was converted to impedance parameter data and 

the input impedance was approximated using the interpolation technique to produce a 
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polynomial function with real coefficients.  For all cases, a synthesizable function was 

obtained. 

 

106

114

98

 8

Metal width = 8  
Figure 4.3: Metal dimensions of the inductor.  The dimensional units are in mils. 

 

Table 4.1 lists the cross section of the varying parameters of the inductor in 

Figure 4.3 and the corresponding equivalent circuit obtained using the synthesis 

procedure.  As mentioned earlier, the synthesis only results in ladder type circuits.  For 

example, after the synthesis, L1 in the Table 4.1 had the following ladder type equivalent 

circuit, 

 
Port 1

0.270pF
9.532nH

6810Ω

0.793Ω 0.399pF

0.431Ω

3.543nH 419940 Ω
. 

 

The equivalent circuits shown in Table 4.1 were redrawn from the original ladder circuits 

in a way that the readers can easily understand their physical correlation.  Figure 4.4 
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shows the frequency response of the inductor L1.  The response of the equivalent circuit 

was generated from SPICE and compared to the simulated response generated from 

SONNET.  They agree accurately as shown. 

The equivalent circuits shown in Table 4.1 were redrawn from the ladder circuits 

in a way that the readers can easily understand their physical correlation.  Figure 4.4 

shows the response of the inductor structure L1 in Table 4.1.  The response of the 

equivalent circuit was compared to the full set of SONNET-generated data.  They agree 

accurately as shown. 

 

 

Figure 4.4: S11 response of SONNET (square) and the equivalent circuit (circle) of the 

inductor structure L1 in Table 4.1. 
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Table 4.1: Equivalent circuits as material and physical parameters of the inductor were 
varied.  All dimensional units are in mils. 

 

Name Side-view of the  Inductor Equivalent Circuit 
 
 
 
 

L1 

 

Er = 5.6 

10 

10 

tan δ  = 0.001

tan δ  = 0.001
0.5 

Er = 5.6 
σ  = 3e7 S/m 

Metal 

Ground  

Port 1

0.270pF
9.532nH

6810 Ω
0.793 Ω

0.399pF

0.431 Ω
3.543nH

419940Ω

 
 
 
 
 

L2 

 

Er = 7.8 

10 

10 

tan δ  = 0.001

tan δ  = 0.001
0.5 

Er = 7.8 
σ  = 3e7 S/m 

Metal 

Ground  

Port 1

0.486pF
9.289nH

5381Ω
0.658 Ω

0.483pF

0.419 Ω
4.158nH

26076Ω

 
 
 
 
 

L3 

 

Er = 7.8 

7.4 

7.4 

tan δ  = 0.0035 

tan δ  = 0.0035 
0.3 

Er = 7.8 
σ  = 3e7 S/m 

Metal 

Ground  

Port 1

0.361pF
8.339nH

3201Ω
0.909 Ω

0.702pF

0.263 Ω
2.952nH

12360Ω

 
 
 
 
 

L4 

Er = 5.6 

20 tan δ  = 0.001

0.5 

σ  = 3e7 S/m 

Metal 

Ground  

Port 1

 0.115pF 55018Ω

0.399pF

28411Ω

9.840nH 0.738  Ω0.156 Ω2.699nH

 
 
 
 
 

L5 

 

Er = 7.8 

20 tan δ  = 0.001

0.5 

σ  = 3e7 S/m 

Metal 

Ground  

Port 1

0.187pF
12.515nH

10482Ω
0.548 Ω

0.305pF

0.099 Ω
3.911nH

11408Ω
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Many interesting observations were made after synthesizing the inductor with 

different parameters.  The low frequency reactance (at about 0.2 GHz), when converted 

to an inductance, showed up as one of the components in the equivalent circuit.  The low 

frequency inductance was reduced when the metal winding was moved from the surface 

and embedded in the middle of the substrate with other parameters kept unchanged.  For 

instance, the low frequency inductance, 12.515 nH, of L5 was reduced to 9.289 nH in L2.  

The low frequency inductance, 12.539 nH (that is 2.699 nH + 9.840 nH), of L4 was 

reduced to 9.532 nH in L1.  As εr of the dielectric layers was increased from 5.6 (L1) to 

7.8 (L2), the capacitance between the input port and the ground in the equivalent circuit 

was significantly increased.  The microstrip inductors had lower capacitance than the 

embedded inductors due to air and larger spacing between the metal winding and the 

ground plane.  The low frequency inductance was also reduced from 9.532 nH (L1) to 

9.289 nH (L2). 

When synthesis was applied to inductor L5, a negative component value was 

unavoidable.  The following equivalent circuit was obtained, 

 

Port 1

0.187pF
12.515nH

10038Ω
0.797 Ω

0.305pF

-0.173Ω
3.911nH

11984Ω

, 
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which contains a negative resistor.  After investigation, it was found that the real part of 

the transfer function of the input impedance, Real [Zin(s)], had a large error compared to 

the simulated data in extremely low frequency region.  The error was due to the offset of 

the two frequency independent terms, a0 and b0, in (4.1).  When a0 was slightly adjusted 

to give a minimal error at the low frequency region, all positive value components were 

obtained.  Table 4.1 shows the resulting circuit for L5 with all positive components. 

 

4.3.2 Capacitor 

For the capacitor structure shown in Figure 4.5, an equivalent circuit as shown in 

Figure 4.6 was synthesized.  In Figure 4.6, the low frequency capacitance between the 

two metal plates is captured by C2 (19.07 pF) while the effect of the interconnects is 

captured by L1 and L2.  The inductance L2 is larger than L1 since it includes the via for 

the short.  Figure 4.7 shows the S11 response of SONNET and the equivalent circuit. 

 

Port 1 

8 50 
20 

66 

66 

104

98 

15 
Port 2 

(Grounded 
thru  via for 

1-port) 

 

Ground

Er = 5.6

Er = 20

Er = 5.6

4

1

10

0.558 58

tan δ = 0.001

tan δ = 0.001

tan δ = 0.001

σ = 3e7 S/m

 
Figure 4.5: A capacitor structure.  All dimensional units are in mils. 
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L1 
0.50 nH 

C1 
1.47 pF 

R1 
49520 Ω 

C2 
19.07pF 

R2 
0.19 Ω 

L2 
0.89 nH R3 

13370 Ω 

Port 1 

 

Figure 4.6: Equivalent circuit of the 1-port capacitor in Figure 4.5. 

 

 

Figure 4.7: Response of SONNET (square) and the equivalent circuit (circle) of 

the capacitor in Figure 4.5. 

 

4.3.3 Resistor 

For the resistor structure in Figure 4.8, an equivalent circuit as shown in Figure 

4.9 was synthesized.  The synthesis resulted in an unavoidable negative resistor which 

was replaced by a current controlled voltage source.  The resistor R1 captures the DC 

resistance of the resistor and the remaining elements represent parasitic effects.  The 
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negative resistor can be viewed as a correction factor required to obtain the appropriate 

response. 

 

30 15 15 

20 
50 120 

5

Port 1 Port 2 
(Grounded 
thru vi a for 

1-port)  

  

Er = 5.6 

Er = 5.6 10 

 5 

Ground

30 

20 20 

tan δ  = 0.001 

tan δ  = 0.001 

0.8 

σ  = 612 S/m 

σ  = 3e7 S/m 

 

Figure 4.8: A resistor structure.  All dimensional units are in mils. 

 

R1 
20.353 Ω 

L1 
1.116 nH R2 

43.821 Ω 

L2 
0.740 nH 

R3 
84.123 Ω 

C1 
0.709 pF 

11.079*Ix 

Port 1 

Ix 

+ - 

 
Figure 4.9: Equivalent circuit of the 1-port resistor in Figure 4.8. 
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4.4 Synthesis of Two-port Networks 

 
Equivalent circuits for 2-port integral passive structure are obtained by 

synthesizing rational functions approximating z or y-parameter of the structure.  For two-

port structures, although lossy functions may be synthesized, the resulting circuit contains 

many negative elements, which creates difficulty interpreting its physical correlation to 

the structures.  For this reason, most attention is paid to the lossless circuits.  Chapter 3 

discusses the details on generating the required functions. 

The following steps outline the synthesis procedure for two port networks. 

 

1. Observe the frequencies at which z21 (or y21) becomes zero.  From z11 (or y11), 

remove the poles at the frequencies where z21 (or y21) becomes zero.  The poles 

at different frequencies can be subtracted in any order. 

2. Correctly scale z21 (or y21). 

3. Compute the difference between z22 and partial z22 and synthesize it as for a 1-

port structure.  Add it to the circuit to complete the synthesis.  

4. For every inductor and capacitor, divide by the frequency scaling factor that was 

used when generating the rational functions. 

 

Four test cases have been considered to illustrate the synthesis procedure for 

lossless functions.  As the first test case, let the z-parameters of the structure be defined 

by  
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z11 =
a0

.a2 s2

.d1 s .d3 s3
z21 =z12 =

b0

.d1 s .d3 s3
z22 =

c0
.c2 s2

.d1 s .d3 s3
,  (4.10) 

 

where all the coefficients are real and positive.  The goal is to reduce the number of 

coefficients in z11 by subtracting functions that can be realized by lumped components.  

Zeros of z21 provide information on the components to be subtracted from z11.  The 

parameter z21 has three zeros at s = ∞ .  Poles at s = ∞  are therefore removed from z11 

three times.  The resulting circuit has three components consisting of inductors (x⋅s 

ohms) and capacitors (x⋅s mhos).  Since z11 does not have a pole at s = ∞  but 1/z11 does, 

it is inverted for subtraction.  Let y2 be the remainder after subtraction, 

 

y2 = 1
z11

.
d3

a2

s =
.e1 s

a0
.a2 s2

,    (4.11) 

 

where 

 

e1 =d1
..1

a2

d3 a0
.    (4.12) 

 

A capacitor of d3/a2 F is subtracted in (4.11).  The following subtraction, 
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z11
a0

.d1 s ,     (4.13) 

 

is also possible but is incorrect since it realizes a zero for z21 at s = 0.  The remaining 

components are synthesized when the remainder y2 is inverted to z2 as shown below, 

 

z2 = 1
y2

=
a0
.e1 s

.
a2

e1

s
.    (4.14) 

 

Equation (4.14) consists of an inductor (a2/e1) H and a capacitor (e1/a0) F.  The inductor 

and the capacitor are placed as shown in Figure 4.10 to provide three poles at s = ∞ . 

 

.
d3

a2

s mho

d3

a2

F .
a2

e1

s ohm

a2

e1

H

e1

a0

F

.
e1

a0

s mhoz11 
C1 

L1 

C2 

Port 1 Port 2

 

Figure 4.10: Equivalent circuit that matches z11 and zeros z21 in (4.10) before the z21 

scaling. 

 

Realizing an equivalent circuit by continued pole removal at s = ∞ , as demonstrated in 

this case, is based on Cauer 1 realization [15][32][33][34].  Similarly, successive pole 

removal at s = 0 is also possible through Cauer 2 realization [15][32][33][34].  The circuit 
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shown in Figure 4.10 realizes z11 and zeros of z21, but does not include the scaling 

factor, k, that must be applied to correctly scale z21.  In Figure 4.10, 

 

zp21 = k⋅z21,     (4.15) 

 

where 

 

k =

d1

C1 C2
b0  ,    (4.16) 

 

and zp21 is z21 of the circuit in Figure 4.10.  One way to correctly scale for z21 is by 

adding a transformer in parallel with C2.  However, this creates difficulty correlating the 

circuit to the physical structure.  Another method has therefore been used in this 

dissertation by splitting C2 as shown in Figure 4.11.  The capacitors, C2a and C2b are 

adjusted to correctly scale z21 while maintaining the following relationship, 

 

C2a || C2b = C2.    (4.17) 

 

The final step is to obtain z22-zp22 that matches z22.  Figure 4.12 defines zp22.  Suppose 

that 
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z22 zp22 =
f0

.f2 s2

.d1 s .d3 s3
.    (4.18) 

 

The function (4.18) is synthesized in the same way for 1-port and added as shown in 

Figure 4.11 to form a final circuit. 

 

d3

a2

F

a2

e1

H

z11 
C1 

L1 C2b Port 1 Port 2 

C2a 

zp22 

z22-zp22 

z22 
 

Figure 4.11: Equivalent circuit with z11, z21 and z22 matched for (4.10). 
 

The second test case considered has the same z11 and z22 as in (4.10) but a 

different z21 as shown, 

 

z11 =
a0

.a2 s2

.d1 s .d3 s3
z21= z12 =

b0
.b2 s2

.d1 s .d3 s3
z22 =

c0
.c2 s2

.d1 s .d3 s3
.  (4.19) 

 

Zeros of z21 are located at s = ± 20 b/bj⋅  and s = ∞  which requires 
2

20 sbb
sx

⋅+

⋅  and x⋅s 

to be subtracted from z11, where x is a real constant.  To realize the subtraction of 

2
20 sbb
sx

⋅+

⋅ , poles of z11 are shifted to s = ± 20 b/bj⋅  by a partial pole removal [15] as 

follows: 
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y2 = 1
z11

.x1 s =
..sc1 b0

.b2 s2 s

a0
.a2 s2

,   (4.20) 

 

where x1 is a constant which creates a pair of poles at s = ± 20 b/bj⋅ in the remainder 

z2, and sc1 is a resulting scaling factor.  The following subtraction is performed next, 

 

z3 = 1
y2

.x2 s

b0
.b2 s2

=
.sc2 b0

.b2 s2

..sc1 b0
.b2 s2 s

= sc2
.sc1 s

,    (4.21) 

 

where x2 is a real constant that creates a pair of zeros at s = ± 20 b/bj⋅  in z3 (to cancel 

out the same poles) and sc2 is a resulting scaling factor.  The synthesized circuit for this 

case is shown in Figure 4.12.  To complete the synthesis, z21 is scaled and the difference 

of z22 and zp22 is added as discussed in the previous case. 

 

.x1 s mho

C1 
x1 F 

.x2 s

b0
.b2 s2

ohmb2

x2

F

x2

b0

H

C2 

L1 

C3 
 

sc1
sc2

F

.sc1
sc2

s mho
z11 

 

Figure 4.12: The equivalent circuit of (4.19) before z21 scaling and z22 matching. 
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The third test case considered has the following z21 (or z12), 

 

z11 =
a0

.a2 s2

.d1 s .d3 s3
z21 = z12 =

b0
.b2 s2 .b4 s4

.d1 s .d3 s3
z22 =

c0
.c2 s2

.d1 s .d3 s3
, (4.22) 

 

with the same z11 and z22 in (4.10).  It is impossible to synthesize an equivalent circuit 

since z21 has a private pole at s = ∞ that z11 does not have.  However, the converse is not 

true as shown in the next case.  (The function z11 may have a private pole that z21 does 

not have.) 

Consider a fourth case with the following y-parameter functions, 

 

y11 =
.a1 s .a3 s3

d0
.d2 s2

y21 = y12 =
.b1 s

d0
.d2 s2

y22 =
.c1 s .c3 s3

d0
.d2 s2

. (4.23) 

 

There are three zeros of y21, one located at s = 0, two at s = ∞ .  It implies that 1/(x⋅s) 

need be subtracted once and x⋅s twice from y11, where x is a real constant.  The 

subtraction may be done in any order.  If a pole at s = 0 is removed first, the following 

subtraction is performed with its remainder z2, 

 

z2 = 1
y11

d0
.a1 s

=
.e1 s

a1
.a3 s2

,    (4.24) 
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where 

 

e1 =
.a1 d2

.d0 a3

a1 .     (4.25) 

 

A capacitor with a1/d0 F is extracted.  The remaining elements are easily seen from y2 (or 

1/z2) without further subtraction.  The resulting circuit is shown in Figure 4.13.  C1 

realizes a pole at s=0, C2 and L1 realize two poles at s = ∞ .  To finish the synthesis, y21 

needs to be scaled by splitting L1 and the difference of y22 and yp22 must be added as 

illustrated in Figure 4.11. 
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Figure 4.13: The equivalent circuit of (4.23) before y21 scaling and y22 matching. 

 

 To illustrate the synthesis of lossy circuits, the following lossy y-parameter 

functions are considered: 
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y11 =
a0

.a1 s

.d1 s .d2 s2
y21 =y12 =

b0
.b1 s

.d1 s .d2 s2
y22 =

c0
.c1 s

.d1 s .d2 s2
.   (4.26) 

 

There are two zeros of y21, one located at s = - b0/b1 and the other at s = ∞ , which 

requires that x/(b1⋅s+b0) and x⋅s are subtracted from y11, where x is a real constant.  To 

shift the pole of y11 to s = -b0/b1, a pole is partially removed, 

 

z2 = 1
y11

.x1 s =
..sc1 b0

.b1 s s

a0
.a1 s ,     (4.27) 

 

where x1 is a real constant that creates a pole at s = -b0/b1 in y2.  The following 

subtraction is performed next, 

 

y3 = 1
z2

x2
b0

.b1 s
=

.sc2 b0
.b1 s

..sc1 b0
.b1 s s

= sc2
.sc1 s ,    (4.28) 

 

where x2 is a real constant that creates a zero at s = -b0/b1 in y3 (to cancel the same pole 

in the denominator).  Figure 4.14 shows the resulting equivalent circuit.  To complete the 

synthesis, y21 is scaled and the difference of y22 and yp22 is added as discussed 

previously. 
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Figure 4.14: Equivalent circuit of (4.26) before y21 scaling and y22 matching. 

 

4.5 Examples of Equivalent Circuits for Two-port Structures 

 
The synthesis technique was applied to a 2-port inductor, capacitor and resistor 

with dimension similar to the 1-port case.  Lossless functions were generated for every 

case using the data obtained from SONNET [25].  The equivalent circuits were 

synthesized from the resulting functions.  The response of all the equivalent circuits is 

accurate over the frequency band DC – 4 GHz unless stated otherwise. 

 

4.5.1 Inductor 

Figure 4.15 shows the 2-port inductor structure and Figure 4.16 shows the 

equivalent circuit.  The low frequency inductance of 10 nH is shown by L1 while C1 and 

C2 represent the parasitic capacitance between the metal and the ground.  The inductance 

of the stripline leading to port 2 is captured by L2. 
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Figure 4.15: An embedded inductor structure.  All dimensional units are in mils. 
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Figure 4.16: Equivalent circuit of the 2-port inductor in Figure 4.15. 

4.5.2 Capacitor 

Figure 4.17 shows the equivalent circuit of the 2-port capacitor in Figure 4.5.  The 

s-parameters of the equivalent circuit have been compared to the simulated data from 

SONNET, as shown in Figure 4.18.  The results show good agreement.  For the capacitor 

structure in Figure 4.5, the capacitance between the plates can be computed using the 

simple parallel plate capacitor formula as 

 

C =
...ε r ε o width length

distance
=

...5.6 .0.225 fF
mil

( ).66 mil ( ).66 mil

.1 mil
= .19.6 pF

.  (4.29) 
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This value agrees well with capacitor C2 in Figure 4.17.  Based on the physical 

dimensions and the electrical properties of the substrate, the interconnect leading to the 

capacitor has Zo = 54.2 Ω and θ = 7.045 ° which translates to an inductance at 2 GHz 

with value:  

 

L = .Zo
ω

sin( )θ = ..54.2 ohm
...2 π 2 GHz

sin( )7.045 = .0.53 nH
   (4.30) 

 

(assuming that the capacitive effect between the interconnect and the ground is small).  
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Figure 4.17: Equivalent circuit of the 2-port capacitor structure in Figure 4.5. 
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Figure 4.18: Response of SONNET (square) and the lossless equivalent circuit (circle) of 

the 2-port capacitor structure in Figure 4.5. 

 

The inductors L1 and L2 capture the inductive effect of the interconnect.  The inductor 

L1 is believed to be slightly higher than (4.30) due to the presence of C1.  Using (4.29), 

the capacitance between the bottom plate and the ground plane is 1.28 pF, which is close 

to capacitor C3 in Figure 4.17. The inductors L1 and L2 capture the inductive effect of 

the interconnect.  The inductor L1 is believed to be slightly higher than (4.30) due to the 

presence of C1.  Using (4.29), the capacitance between the bottom plate and the ground 

plane is 1.28 pF, which is close to capacitor C3 in Figure 4.17. 

The lossy equivalent circuit is shown in Figure 4.19.  The circuit models the loss 

and is accurate up to 2.5 GHz.  However, the presence of many negative components 

creates much difficulty correlating the lumped elements to the physical structure. 
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Figure 4.19: Lossy equivalent circuit of the capacitor structure in Figure 4.8. 

 

4.5.3 Resistor 

For the 2-port embedded resistor in Figure 4.8, only reactive elements (inductors 

and a capacitor) were first synthesized from the lossless functions.  The resistors were 

then incorporated into the equivalent circuit and their values were optimized using a 

gradient optimizer in Microwave Design System (MDS).  The value of the reactive 

elements were kept fixed.  The optimization generated a negative resistor which was 

replaced with a current controlled voltage source.  The final equivalent circuit is shown in 

Figure 4.20.  Figure 4.21 compares the s-parameters of the equivalent circuit with only 

reactive elements before optimization and the data from SONNET.  As can be seen, the 

results have large error.  Figure 4.22 compares the s-parameters of the final circuit after 

the optimization with data from SONNET.  In Figure 4.22, the agreement is almost exact.  

The benefit of using the optimizer after synthesizing the lossless equivalent circuit is that 

the degree of freedom for the optimizer can be minimized.  For the resistor structure in 

Figure 4.8, the DC resistance can be computed as 

 



 cv

Rdc = 1
.σ ( )metal_thickness

= 1

..611.9 S
m

( ).20.32 µm
= .80.4 ohm

square

.  (4.31) 

 

The dimension of 120 mil * 30 mil of the lossy metal can be regarded as four 80.4 Ω 

connected in parallel which gives a resistance of 20.1 Ω.  Sum of R1 and R2 in Figure 

4.19 gives the equivalent DC resistance.  Using equation (4.30), the inductive effect of 

the interconnect at 2 GHz is computed as 0.57 nH, which compares well with inductors 

L1 and L2.  Using equation (4.29), the parasitic capacitance between the lossy metal and 

ground plane is computed as 0.91 pF, which is represented by capacitor C1.  The value of 

C1 is believed to be much higher than the theoretical prediction due to the presence of the 

controlled voltage source. 
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Figure 4.20: Equivalent circuit of the resistor structure in Figure 4.8.  Losses (resistors) 

were optimized by an optimizer in MDS. 
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Figure 4.21: Response of SONNET (square) and the equivalent lossless circuit (circle) of 

the 2-port resistor in Figure 4.8 before optimization. 
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Figure 4.22: Response of SONNET (square) and the lossy equivalent circuit (circle) of 

the 2-port resistor in Figure 4.8 after optimization. 

 

Figure 4.23 shows the lossy equivalent circuit.  The interpretation to the physical 

structure is very difficult due to the presence of the negative elements.  It also requires 
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almost twice as many lumped elements to realize the losses.  For these reasons, synthesis 

of lossless circuits are preferred. 
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Figure 4.23: Lossy equivalent circuit of the resistor structure in Figure 4.8. 

 

4.6 More Examples of Equivalent Circuits for Thin-film Structures 

 
 Circuit synthesis was applied to thin-film embedded structures realized by SLIM 

technology.  An equivalent circuit was synthesized for a one-port inductor structure and a 

two-port capacitor structure.  Figure 4.24 shows the one-port inductor structure.  Figure 

4.25 shows the resulting equivalent circuit.   

The two-port capacitor structure is shown in Figure 4.26.  Figure 4.27 shows its 

equivalent circuit. 
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Figure 4.24: SLIM one-port inductor structure. 
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Figure 4.25: Equivalent circuit for the SLIM inductor structure shown in Figure 4.24. 
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Figure 4.26: SLIM two-port capacitor structure. 
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Figure 4.27: The equivalent circuit for the capacitor structure. 
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CHAPTER 5 

 

STABILITY ENFORCEMENT ALGORITHM 

 

For all the embedded passive structures presented in the previous chapters, the 

interpolation generated a stable solution using a minimum order.  However, the 

interpolation technique may not always generate stable solutions, especially when a high 

order approximation is performed.  The interpolation may produce rational functions that 

have poles on the right half plane.  In such case, the solution results in unbounded time 

domain response and is no longer suitable for macromodeling. 

In this chapter, a stability enforcement algorithm is presented.  The method 

provides a stable solution even when unstable solution is generated by discarding 

unstable poles and collecting only stable poles for reinterpolation.  The response is 

reinterpolated using sampled data and updating the residue of each collected stable pole.  

Only real coefficient rational function is considered since complex coefficient rational 

function is not suitable for macromodeling and circuit synthesis. 
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5.1 Stability Algorithm  

 
Stability enforcement algorithm is applied to rational functions that contain one or 

more unstable poles.  Rational functions are generated by the interpolation technique, 

which does not guarantee a stable solution.  To illustrate the mathematical details of the 

algorithm, consider the following stable poles after discarding unstable poles of a real 

coefficient rational function, 

 

p0, p1, p2.     (6.1) 

 

For real coefficient rational functions, poles are either a pair of complex conjugates or 

real.  In addition, a pair of complex poles has a pair of corresponding complex residues 

and a real pole has a corresponding real residue.  Suppose that p0 and p1 are complex 

conjugates of each other and p2 is real.  The response to be reinterpolated can be 

represented as 

 

H( )s
r0

s p0

r1

s p1

r2

s p2.    (6.2) 

 

Since p0 and p1 are complex conjugates, r0 and r1 are also complex conjugates.  The 

residue r2 is real since the corresponding pole p2 is real.  The equation H(s) is written as 
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H( )s
r_real0

.j r_imag0

s p0

r_real0
.j r_imag0

s p0

r2

s p2.  (6.3) 

 

The equation can be represented as a matrix format, 
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The residues are found by solving 
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where T denotes transposed matrix. 

 

5.2 Results of Stability Enforcement Algorithm 

 
 The stability enforcement algorithm was applied to three embedded structures, an 

inductor, a capacitor, and a resistor.  The result of each structure is discussed in the 

following subsections. 

 

5.2.1 Inductor 

The algorithm was applied to a one-port inductor structure shown in Figure 5.1.  

The full set of SONNET-generated data were used for interpolation.  When numerator 

order P and the denominator order Q were set to 5 and 6 respectively, the following poles 

were generated, 

 

p1 = -0.09381710220291 + 3.93552177549540i 
p2 = -0.09381710220291 - 3.93552177549540i 
p3 =  3.40351561030503 
p4 = -1.69842759178416 
p5 = -0.00967791873625 + 1.17094594502752i 
p6 = -0.00967791873625 - 1.17094594502752i. 

 

The unstable pole p3 was discarded and the remaining poles were collected to find their 

corresponding residues using a minimum number of data.  Since there are five stable 

poles, the required minimum number of data for reinterpolation is five.  The following 

residues were found, 
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r1 = 88.12530887269060 + 2.87116953815470i 
r2 = 88.12530887269060 - 2.87116953815470i 
r4 = -0.43878404204200 
r5 = 56.29736595043329 - 0.07116581469280i 
r6 = 56.29736595043329 + 0.07116581469280i. 

 

Figure 5.2 shows the reinterpolated response using the stable poles and the updated 

residues.  It shows a good agreement to the full set of SONNET-generated data. 
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Figure 5.1: The inductor structure.  All dimensional units are in mils. 
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Figure 5.2: Response of SONNET and the stable function. 

Dotted - SONNET, dashed - the stable function, x - data points used to update residues. 
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5.2.2 Capacitor 

 The stability enforcement algorithm was applied to a two-port capacitor structure 

shown in Figure 5.3.  The order of the numerator for z11, z21, and z22 were chosen 

P1=7, P2=5, and P3=7 respectively, and order of the common denominator was chosen as 

Q=8.  When the interpolation technique was initially applied, the following poles were 

generated: 

 

p1 = -0.37091208503460 +23.81636689459581i 
p2 = -0.37091208503460 -23.81636689459581i 
p3 = -0.02064844803906 +9.62709057291218i 
p4 = -0.02064844803906 -9.62709057291218i 
p5 = -1.62530071748234 
p6 = -0.20662268448497 
p7 = -0.00005857433403 
p8 = 0.46829284242248. 

 

The last pole p8, which was located on the right half plane, was discarded.  Using the 

remaining seven poles, the response was reinterpolated.  The required minimum number 

of data for updating residues is equal to the number of poles, which is seven.  However, 

in this case, the full set of 40 data points was used for reinterpolation to illustrate that a 

large number of data may also be used for this algorithm.  The following residues were 

found for z11: 

 
r1 = 1613.86734272516 + 24.77155348352i 
r2 = 1613.86734272516 - 24.77155348352i 
r3 = -0.01791131599163 - 0.00012800627490i 
r4 = -0.01791131599163 + 0.00012800627490i 
r5 = 0.00020514568968 
r6 = 0.00002707541385 
r7 = 0.05416097676304. 
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The following residues were found for z21: 

 
r1 = 383.585280450992 + 16.5386711679748i 
r2 = 383.585280450992  - 16.5386711679748i 
r3 = -95.5253769119736 - 3.96743824592704i 
r4 = -95.5253769119736 + 3.96743824592704i 
r5 = 0.346840226388849 
r6 = 0.0127462727721763 
r7 = 49.5645011133654. 

 

The reinterpolated response of z11 and z21 are shown in Figure 5.4.   
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Figure 5.3: Capacitor structure.  All dimensional units are in mils. 

 



 cxviii

 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency in GHz

R
ea

l(Z
11

)

 0 0.5 1 1.5 2 2.5 3 3.5 4
−900

−800

−700

−600

−500

−400

−300

−200

−100

0

Frequency in GHz

Im
ag

(Z
11

)

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency in GHz

R
ea

l(Z
21

)

 0 0.5 1 1.5 2 2.5 3 3.5 4
−800

−700

−600

−500

−400

−300

−200

−100

0

Frequency in GHz

Im
ag

(Z
21

)

 

Figure 5.4: Response of SONNET and the stable function. 

Dotted - SONNET, dashed - the stable function. 
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5.2.3. Resistor 

The stability enforcement algorithm was applied to a resistor structure shown in 

Figure 5.5.  The full set of SONNET data was used for interpolating input impedance.  

When the numerator order P and the denominator order Q were chosen as 7 and 8 

respectively, the interpolation generated a rational function that has the following poles, 

 

p1 = -2.32170458414923 +19.51105596973696i 
p2 = -2.32170458414923 -19.51105596973696i 
p3 = -0.47601779769009 + 3.07147365384140i 
p4 = -0.47601779769009 - 3.07147365384140i 
p5 = -1.49677896518829 
p6 = -0.49260401989093 
p7 = 0.33983141585170 
p8 = -0.10460796701448. 

 

The unstable pole p7 was discarded and the remaining stable poles were used for 

reinterpolation.  The algorithm generated the following residues for each stable pole, 

 

r1 = 1021.95606779936 + 85.6897526872064i 
r2 = 1021.95606779936 - 85.6897526872064i 
r3 = 34.327940282873 - 22.0940582818584i 
r4 = 34.327940282873 + 22.0940582818584i 
r5 = -0.619140941015019 
r6 = -0.136069656620521 
r8 = -0.0172113287677469. 

 

The stable function is shown in Figure 5.6.  It shows a good agreement to the full set of 

SONNET data. 
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Figure 5.5: Top and side view of the 26 Ω resistor structure.  The dimensional 

units are in mils. 
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Figure 5.6: Input impedance generated by SONNET and the stable function. 

Dotted - SONNET, dashed - the stable function, x - data points used to update residues. 
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5.3 Application of the Stability Enforcement Algorithm 

 
To illustrate usefulness of the method, the SPICE macromodeling technique and 

the equivalent circuit synthesis were applied to a stable function generated by the stability 

enforcement algorithm.  The interpolation technique was applied to a resistor structure 

shown in Figure 5.7.  The structure was realized based on SLIM ground rules.  When the 

numerator order P=4 and the denominator order Q=5 were used, an unstable function 

with the following poles was generated: 

 

p1 = -5.05659506715923 
p2 = 4.39490145430350 
p3 = -1.42631797166535 
p4 = -0.43872785649784 
p5 = -0.04859896130694 

 
 

The unstable pole p2 was discarded and the residue of each stable pole was updated.  The 

residues were found as 

 

r1 = 1.91744977456039*100 
r3 = 1.30724934118518*100 
r4 = 1.95963418381059*100 
r5 = 2.57234728406099*100. 

 

The stable function obtained using this algorithm is written as 

 

Zin( )s =
r1

s p1

r3

s p3

r4

s p4

r5

s p5.    (6.7) 
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To incorporate this stable function in SPICE as a macromodel, the function (6.7) need be 

rewritten as a rational function, 

 

=a

1.128207185067

5.655339828542

5.190105543452

0.969585072952
Zin( )s =

a0
.a1 s .a2 s2 .a3 s3

b0
.b1 s .b2 s2 .b3 s3 .b4 s4

=b

0.000192223616

0.004566225131

0.012991164399

0.008712799821

0.00125 .  (6.8) 

 

Not only can the stable function in (6.8) be used to build a macromodel, but also an 

equivalent circuit can be synthesized from (6.8).  Figure 5.8 shows the equivalent circuit 

extracted from (6.8). 
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5 

5 

120 

20 
25 

Port 1 

2 

Port 2 

εr = 3.2 

εr = 3.2 

εr = 3.9 

1 

1 

4 

dielectric loss = 0.15 

dielectric loss = 0.15 

dielectric loss = 0.15 

Ground 

Metal on the surface 
Metal thickness = 8 µm 

σ = 5.813e7 S/m 

Rdc of this lossy 
metal  = 1KΩ/sq. 

 

Figure 5.7: SLIM resistor structure.  All dimensional units are in mils unless stated 

otherwise. 

 

 

Port 1 

0.1289 pF 0.08231 pF 5389.6 Ω  

479.5991 Ω  0.1435 pF 1350.98 Ω  

596.9927 Ω  0.2049 pF 

 

Figure 5.8: Equivalent circuit of the resistor structure in Figure 5.7. 
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CHAPTER 6 

 

SIMULATION OF EMBEDDED CIRCUITS 

USING MACROMODELS AND EQUIVALENT 

CIRCUITS 

 

In Chapter 2, a method was developed to capture the frequency response of an 

embedded component using rational functions.  The method used an interpolation 

technique to reduce the analysis time using commercial electromagnetic (EM) solvers.  In 

Chapter 3, the method was applied for transient simulation using SPICE macromodels.  

In Chapter 4, methods were presented for equivalent circuit synthesis from the rational 

functions to develop circuit models.  The modeling techniques presented in the previous 

chapters were applied to only a single embedded passive component (or two at most for 

modeling of a voltage divider in Chapter 3).  In this chapter, the macromodeling 

technique and the equivalent circuit synthesis are applied to circuits that consist of 

multiple embedded components.  The accuracy of the two modeling techniques is 

compared. 
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 Two cases are considered.  The first case is embedded circuits used in digital 

applications.  Multiple transmission lines were terminated with a matching embedded 

resistor and the time domain response was evaluated.  The other case is an embedded 

circuit used in RF application and its frequency response was examined [45].  Low 

Temperature Cofired Ceramic technology (LTCC-M) process ground rules were used for 

the design of embedded components. 

 

6.1 Digital Application 

 
The circuit shown in Figure 6.1 was simulated in the time domain.  The 

transmission lines have the characteristic impedance Zo of 150 Ω and are terminated with 

an embedded resistor that has matching resistance of 150 Ω.  The structure of the 

embedded resistor, shown in Figure 6.2, is based on LTCC-M ground rules.  A full set of 

data (0.1 - 4 GHz) was used to interpolate its frequency response and SONNET was used 

to obtain the data.  The following rational function approximating the input admittance 

was generated: 

 

Yin( )s =
a0

.a1 s .a2 s2

b0
.b1 s .b2 s2 .b3 s3

, 

 

where 
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=a

0.00502568697585

0.02227981162008

0.00720672075652   

=b

0.76829234150291

0.61994864936008

0.15310945503831

0.03707371795469    (6.1). 

 

The function in (6.1) was used to build a macromodel.  An equivalent circuit was also 

extracted from (6.1) and is shown in Figure 6.3. 

 

 

 

Ideal 
50 Ω 

+ 

- 

Vin 

Zo=50 Ω  
TD=1 ns  

150 Ω  

Zo=150 Ω  

TD=1 ns 

150 Ω 

Zo=150 Ω 
TD=1 ns  

150 Ω
 

Zo=150 Ω 

TD=1 ns 
Measured 

 

Figure 6.1: Schematic of the digital circuit for test. 
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160 

240 
5 

15 

20 

50 

Port 1 Port 2 

 

Er = 5.6 

Er = 5.6 10 

 5 

Ground

240 

20 20 

tan δ  = 0.001 

tan δ  = 0.001 

0.8 

σ  = 612 S/m 

σ  = 3e7 S/m 

 

Figure 6.2: The 150 Ω resistor structure.  All dimensional units are in mils. 

 

Port 1 

0.5144 nH 

152.8731 Ω 

2.3941 pF 5.5349 Ω  

10.9704 Ω  

3.4467 pF 

 

Figure 6.3: Equivalent circuit of the resistor structure shown in Figure 6.2. 

 

To test the effect of terminating resistors using the two modeling methods, the 

circuit shown in Figure 6.1 was simulated twice in SPICE, first using macromodel for the 

resistor, and second using the equivalent circuit model for the resistor.  The circuit was 

also simulated using ideal lumped resistor for comparison.  For all the cases, the circuit 
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was excited by a 1-volt step input with 35 ps rise time.  Figure 6.4 shows the response of 

each case.  In the plot, the parasitic effect is shown after 2 ns from the ideal response, 1 

ns to travel through the transmission line and 1 ns to bounce back through the same 

transmission line from the embedded resistor. 

 The circuit shown in Figure 6.5 was also simulated in the same manner.  Figure 

6.6 shows the response of each modeling case. 

For both cases, the results show that the response of macromodel and the response 

of equivalent circuit are in good agreement.  Both modeling techniques consistently 

generate the same results and, therefore, designers may choose either one of the modeling 

methods. 

 

 



 

Figure 6.4: Response of each modeling method for the circuit shown in Figure 6.1.  

Dashed - macromodel, dotted - equivalent circuit, solid - ideal lumped resistor. 
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150 Ω  

Ideal 
150 Ω  

150 Ω 150 Ω  

150 Ω  

+ 

- 

Vin 

Zo=150 Ω 
TD=0.5 ns 

Zo=150 Ω 
TD=0.5 ns  

Zo=150 Ω 
TD=0.5 ns  

Zo=150 Ω 
TD=0.5 ns  

Zo=150 Ω 
TD=0.5 ns  

Zo=150 Ω 
TD=0.5 ns  

Zo=150 Ω 
TD=0.5 ns  

measured 

 

Figure 6.5: Schematic of the digital circuit. 



 

Figure 6.6: Response of each modeling method for the circuit shown in Figure 6.5. 

Dashed - macromodel, dotted - equivalent circuit, solid - ideal lumped resistor. 
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6.2 Analog and RF Application 

 
A second order Butterworth bandpass filter with 3dB cutoff frequencies at 0.8 and 

1.2 GHz is shown in Figure 6.7.  The details on this filter design are found in [44].  Using 

empirical models available in the library of Advanced Design System (ADS), an 

embedded passive component was designed for each ideal lumped element in the circuit.  

The geometry and its dimensions were chosen to behave closely to the ideal lumped 

element.  Table 6.1 lists the electrical and physical parameters of the embedded passives 

that were used for the design.  The physical dimensions of each structure are shown in 

Table 6.2.  The filter using empirical models is shown in Figure 6.8.  Models for the 

interconnects connecting the passive components have not been introduced to better 

account for the parasitic behavior. 

 

 

Zo Zo

0.938pF 28.15nH

11.26pF 2.345nH

C1 L1

C2 L2

50 ohm50 ohm

 
 

Figure 6.7: Bandpass filter using ideal lumped elements. 
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Table 6.1: Electrical and physical parameters for the embedded passives. 

Dielectric layer thickness 5 mils 

Dielectric constant  5.6 

Loss tangent   0.001 

Metal conductivity  3*10^7 S/m 

Metal thickness  0.5 mil 

 

 

Table 6.2: Embedded passive structures.  All dimensional units are in mils. 

Structure Structure 
C1 

57

57

Port1

Port2

Ground

5

15

 

C2 

Ground

Port 1

Port 2

125

125
5

5

10

 
L1 

115 

115

8 

8 

Port 1 

Port 2 

 
Metal on the surface.  Distance to the 

ground – 20 mils 

L2  

8

8

62

62

Port 1

Port 2

 
Metal on the surface.  Distance to the 

ground – 20 mils 

 



 cxxxiv

 

Figure 6.8: Filter using empirical models in ADS. 
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These structures were modeled using SONNET, an EM solver, to extract the 

frequency response except for the inductor L2, which was modeled using empirical data.  

The data points were interpolated to generate rational functions, which were used to 

develop SPICE macromodels.  Losses in the two capacitors, C1 and C2, were small due 

to its geometry and were neglected.  The response of the capacitors was represented by 

lossless rational functions, which are in the form of a ratio of an even powered 

polynomial and an odd powered polynomial or vice versa [30][31].  Most of the losses in 

the filter come from the two inductors, L1 and L2, and their losses were fully 

incorporated.  The inductor L1 and the two capacitors were represented with a two-port 

macromodel using rational functions approximating the z-parameter responses.  The 

inductor L2 was represented with a one-port macromodel approximating the input 

impedance. 

For embedded structures C1, C2, and L2, the rational functions in the 

macromodels were used to synthesize lumped equivalent circuits.  For inductor L1, the 

response was reinterpolated to generate lossless rational functions, which allowed the 

synthesis of a lossless equivalent circuit.  To incorporate the losses, resistors were added 

and were optimized using a gradient optimizer in Microwave Design System (MDS).  

Figure 6.9 shows the macromodel and Figure 6.10 shows the equivalent circuit that 

represents the bandpass filter realized using embedded passives. 

The |S21| response for each modeling technique is shown in Figure 6.11.  The 

filter response using SPICE macromodels agrees well with the equivalent circuit model.  

However, a noticeable difference is observed between the responses of the macromodel 
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and the empirical model available in ADS, showing discrepancy between the full-wave 

solution and the empirical solution.  Hence, the method discussed in this paper can be 

used to develop models for new processes where empirical models are inaccurate. 

 

 

 

 

z11 = 0.701914 .0.004955s2

.0.002386s ..4.10942210 6 s3

z21 = z12 = 0.484261

.0.002386s ..4.10942210 6 s3

z22 = 0.522265 .0.00423s2

.0.002386s ..4.10942210 6 s3

z11 = 0.4398 .0.015 s .0.4032s2 .0.0079s3 .0.0783s4

.2.72 10 7 .0.0042s ..1.24 10 4 s2 .0.0022s3 ..3.13 10 5 s4 ..2.45 10 4 s5

z21 = z12 = 0.4395 .0.0122s .0.1006s2

.2.72 10 7 .0.0042s ..1.24 10 4 s2 .0.0022s3 ..3.13 10 5 s4 ..2.45 10 4 s5

z22 = 0.4401 .0.0158s .0.4811s2 .0.0101s3 .0.0934s4

.2.72 10 7 .0.0042s ..1.24 10 4 s2 .0.0022s3 ..3.13 10 5 s4 ..2.45 10 4 s5

z11 = 0.674009 .0.039082s2

.0.014049s ..7.02254610 6 s3

z21 = z12 = 0.515032

.0.014049s ..7.02254610 6 s3

z22 = 0.526268 .0.042081s2

.0.014049s ..7.02254610 6 s3

Zin =
.2.4552 10 4 .0.0931 s .0.6663 s2 .0.7385 s3

0.00388 .0.02903 s .0.03296 s2 .0.00102 s3 .0.00106 s4

Port 1 

 
Port 2 
 

C1 
 

L1 
 

C2 
 

L2 
 

 

Figure 6.9: Macromodel for the filter. 
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0.20762 nH 

1.09641 pF  

0.49279 pF  

6.27925 pF  

0.17726 nF  

Port 1 

0.27 Ω  

1.63518 nH 

0.52581 pF  0.4375 pF  

12.6857 nH  1.1919 nH 

7177.2 Ω  2.8979 pF  

1.04538 nH  

0.37 Ω  

Port 2 

0.28061 nH  

0.01796897 pF  2.70421 pF  

8.76075 pF  0.29772 nH  

0.016791 87 pF  

137.99128 pF  

0.1437 pF  
2.3540 nH 

12646 Ω  

52.859 nH 

9.9163 nH  

57.236 Ω  

0.0634 Ω  

113.12 Ω  

C2 L2 

C1 
 

L1 
 

 

Figure 6.10: Equivalent circuit for the filter. 
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Figure 6.11: |S21| response of the filter. 

Solid - empirical model 
Dotted - macromodel 
Dashed - equivalent circuit 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 
In this dissertation, modeling methods are presented to accurately model 

embedded passive components using rational functions.  Based on the results of the 

modeling techniques presented in this dissertation, the following conclusions are drawn. 

 

•  A sampling and interpolation method was presented for embedded passives.  The 

method reduced the EM simulation time for complex 3D structures.  This is a useful 

method for realizing embedded passives. 

•  The interpolation technique was modified to generate rational functions with real 

coefficients and a common denominator for multiple-port structures.  This 

modification allowed development of SPICE macromodels and synthesis of 

equivalent circuits.  The method used to generate the macromodels is a major 

contribution. 
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•  The interpolation technique did not guarantee a stable solution.  In this dissertation, a 

stability-enforcing algorithm was developed.  When used with the interpolation 

technique, a stable solution was always obtained. 

•  Macromodeling technique demonstrated that limited frequency data samples were 

sufficient to capture the parasitic effects in transient response. 

•  Equivalent circuits were extracted from a limited sampled data.  Equivalent circuits 

physically correlated to the geometry of the structure.  The physical correlation 

revealed parasitic effects and provided a ground work in developing scalable models 

[41].  This is a major contribution since it provides a path for developing design 

libraries for new processes. 

 

When the modeling techniques are incorporated in a circuit design, the design of 

embedded passives would consist of the following procedure:  
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7.2 Future Work 

 
When many embedded components are integrated in a substrate, there is 

electromagnetic interference (EMI) between the components.  This undesirable effect 

becomes more significant as the components are placed more closely.  Such unwanted 

EM effect is not well understood and an accurate modeling technique is needed for the 

circuit designers.  For the work in the future, study of the EM and coupling effect 

between the embedded components is proposed.  Modeling techniques will be utilized to 

model EMI.  One of the ways to approach this problem is to analyze circuits with 

multiple structures using equivalent circuit synthesis, which may reveal coupling effects 

between the components. 

Another proposed work for the future is sampling method for interpolation.  To 

ensure the interpolation uses a minimum number of data for a new structure, methods for 

data selection will be studied further (from the work presented in the section 2.6).  The 

method will allow the designers to use minimum number of data samples for 

interpolation of a new class of structures. 
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APPENDIX 

 

This appendix lists all the embedded structures discussed in this dissertation and 

the corresponding macromodel and equivalent circuit.  The rational functions are denoted 

by a list of coefficients.  In the case of one-port structures, either input impedance or 

admittance was interpolated (as indicated in macromodel column).  The numerator 

coefficients are listed in 'a' matrix and denominator coefficients are listed in 'b' matrix. 

 In the case of two-port structures, z-parameter response was interpolated.  The 

z11 numerator coefficients are listed in 'a' matrix.  The z21 (or z12) numerator 

coefficients are listed in 'b' matrix.  The z22 numerator coefficients are listed in 'c' matrix.  

The common denominator coefficients are listed in 'd' matrix. 

 In all cases, the first number in the list corresponds to the first coefficient with a 

power of zero, the second number in the list corresponds to the second coefficient with a 

power of one, etc. 

 

 

A.1 One-port Inductor 
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106

114

98

 8

Metal width = 8  
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Structure Macromodel Equiva

 

Er = 5.6 

10 

10 

tan δ  = 0.001

tan δ  = 0.001
0.5 

Er = 5.6 

σ  = 3e7 S/m 

Metal 

Ground  
LTCC-M 

Zin, fscale = 1e9 

=a

0.082391

0.991161

6.08882110 4

0.001402

=b

0.103967

1.86542610 4

8.10657710 4

3.73765510 7

3.78969810 7
 

Port 1

0.270pF

0.793 Ω

0.39

 

Er = 7.8 

10 

10 

tan δ  = 0.001

tan δ  = 0.001
0.5 

Er = 7.8 

σ  = 3e7 S/m 

Metal 

Ground  
LTCC-M 

Zin, fscale = 1e9 

=a

0.07028

0.991795

8.15409710 4

0.001993

=b

0.106761

2.57046210 4

0.001175

8.42705410 7

9.67819 10 7
 

Port 1

0.486pF

0.658 Ω

0.48

 

Er = 7.8

7.4

7.4

tan δ = 0.0035

tan δ = 0.0035
0.3

Er = 7.8

σ = 3e7 S/m

Metal

Ground  
LTCC 

Zin, fscale = 1e12 

=a

4.94599210 8

4.54005410 4

5.84078810 4

0.940499

=b

5.44240110 8

1.82699510 7

5.95275410 4

5.80779710 4

0.339795  

Port 1

0.361pF

0.909 Ω

0.70

Er = 5.6 

20 tan δ  = 0.001

0.5 

σ  = 3e7 S/m 

Metal 

Ground  
LTCC-M 

Zin, fscale = 1e9 

=a

0.070894

0.994326

1.85748710 4

8.40266810 4

=b

0.079302

7.70641110 5

4.26093110 4

3.67040110 8

9.69482410 8
 

Port 1

 0.115pF 55018Ω

2.699nH

Er = 7.8 

20 tan δ  = 0.001

0.5 

σ  = 3e7 S/m 

Metal 

Ground  
LTCC-M 

Zin, fscale = 1e9 

=a

0.063328

0.994822

5.89093510 4

0.001185

=b

0.079482

1.32711910 4

5.83857910 4

3.27152510 7

2.21813410 7
 

Port 1

0.187pF

0.548 Ω

0.30
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The other inductor structures are listed in the following table: 
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Structure Macromodel Equival

8 

8 

62

62

Port 1 
Port 2 - grounded 

thru via 

 
 

Distance from metal to ground = 20 mils.  Metal 
thickness = 0.5 mils, εr of layer = 5.6, σ = 3e7 

S/m, tan δ = 0.001 
LTCC-M 

Zin, Fscale = 1e10 
 

 

=a

0.000246

0.093057

0.666338

0.738504

=b

0.003875

0.029033

0.032956

0.001016

0.001061  

 
 
 
 

Port 1 

0.1437 pF 

52.859 nH

0.0634 Ω  

1

105 

120 

5 

10 

15 

7 
GRD 

25 

5 
Port 1 

 

4 

1 

1 Er = 3.2 

Er = 3.2 

Er = 3.9 

Loss tan = 0.015 
 
Loss tan = 0.015 
 

Loss tan = 0.015 
 

σ = 5.8e7 S/m 

Ground 

Metal thickness = 8 µm 
 

via 

 
SLIM 

Zin, fscale = 1e10 
 
 
 
 
 

=a

0.007076

0.994996

0.008654

0.098131

=b

0.013542

0.0002728

0.006629

0.0000265

0.000137  

 
 
 
 
 

0.140 pF 

0.5225 Ω  Port 1 

0

 

A.2 One-port Capacitor 

Structure Macromodel Equival

Port 1 

8 50 
20 

66 

66 

104 

98 

15 
Port 2 

(Grounded 
thru  via for 

1-port) 

 

Yin, fscale = 1e10 
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Ground 

Er = 5.6 
Er = 20 

Er = 5.6 

4 
1 

10 

0.5 58 58 

tan δ = 0.001

tan δ = 0.001

tan δ = 0.001

σ  = 3e7 S/m 

 
LTCC-M 

=a

0.0000069

0.07014519

0.00024191

0.00856445

=b

0.341492

0.012724

0.936142

0.001057

0.04319  

L1 
0.50 nH 

C1 
1.47 pF 

R1
49520 

19

Port 1 

 



 cl

A.3 One-port Resistor 

Structure Macromodel Equival
30 

  
15 

  
15 

  

20 
  

50 
  120 

  

5 

Port 1 
  

Port 2 -
Grounded 

thru via 

  
 

Er = 5.6   

Er = 5.6   10   

 5   

Ground   

30   

20   20  

tan   δ    = 0.001   

tan   δ    = 0.001   

0.8   

σ    = 612 S/m   

σ   = 3e7 S/m

 
LTCC-M 

Zin, fscale = 1e10 
 
 
 
 

=a

0.771073

0.626385

0.101982

0.033584

=b

0.037886

0.010004

0.004816

0.000703  

 
 
 
 

R1 
20.353 Ω 

L1 
1.116 nH R

4

Port 1 

5 

5 

120 

20 
25 

Port 1 

2 

Port 2 
grounded 

εr = 3.2 

εr = 3.2 

εr = 3.9 

1 

1 

4 

dielectric loss = 0.15 

dielectric loss = 0.15 

dielectric loss = 0.15 

Ground 

Metal on the surface 
Metal thickness = 8 µm 

σ = 5.813e7 S/m 

Rdc of this lossy 
metal  = 1KΩ/sq. 

 
SLIM 

Zin, fscale = 1e10 
 

=a

1.128207

5.65534

5.190106

0.969585

=b

0.0001922

0.0045662

0.0129912

0.0087128

0.00125  

 
 

Port 1 

0.1289 pF 0.08231 pF

479.5991 Ω 
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A.4 Two-port Inductor 

Structure Macromodel Equival

106 

  

114 

  

98 

 8 

Metal width = 8 

Port 1

Port 2 

 

15   

5 
Er = 5.6 

tan   δ    = 0.001   

σ    = 3e7 S/m   

Ground   
  

 Port 2 
tan   δ    = 0.001   

 
LTCC-M 

z-parameter, fscale = 1e10, DC - 2 GHz 
 
 
 

=a

0.51582

0

0.296426

=b 0.533

=d

0

0.005118

0

0.001252

=c

0.519436

0

0.304266  

 
 
 
 

0.422 pF   C1 
  

L1 
  

10.09 nH   
Port 1 

  

115 

115

8 

8 

Port 1 

Port 2 

 

Er = 5.6 

20 tan δ  = 0.001

0.5 

σ  = 3e7 S/m 

Metal 

Ground  
LTCC-M 

z-parameter, fscale = 1e10, DC - 2 GHz 

=a

0.483442

0

0.344459

0

0.023069

=b 0.480578

=c

0.483511

0

0.426679

0

0.016815

=d

0

0.004657

0

0.001411

0

0  

 
 
 
 

0.27 Ω 

1.63518 nH 

0.52581 pF 

12.6857 n

7177.2 Ω

Port 1 

 

A.5 Two-port Capacitor 

Structure Macromodel Equival

Port 1   

8   50   
20   

66   

66   

104   

98   

15   
Port 2  

 

z-parameter, fscale = 1e9 
 

 
 
 
 
 

C1 
0.2711 pF 

L1 
0.6563 nH C2

20.102 p

 
Port 1 
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Ground 

Er = 5.6 
Er = 20 

Er = 5.6 

4 
1 

10 

0.5 58 58 

tan δ = 0.001

tan δ = 0.001

tan δ = 0.001

σ  = 3e7 S/m 

 
LTCC-M 

=a

0.6093677

0

0.0006363

=b 0.561141

=c

0.560163

0

0.0006854

=d

0

0.001135

0

1.72517610 7
 

57

57

Port1

Port2

Ground

5

15

 
σ of metal = 3e7 S/m, εr  = 5.6, tan δ = 0.001 

LTCC-M 

z-parameter, fscale = 1e10, DC - 2 GHz 

=a

0.701914

0

0.004955

=b 0.484261

=c

0.522265

0

0.00423

=d

0

0.002386

0

0  

 

0.20762 nH 

1.09641 pF
Port 1 

Ground

Port 1

Port 2

125

125
5

5

10

 
σ of metal = 3e7 S/m, εr  = 5.6, tan δ = 0.001 

LTCC-M 

z-parameter, fscale = 1e10, DC - 2 GHz 

=a

0.674009

0

0.039082

=b 0.515032

=c

0.526268

0

0.042081

=d

0

0.014049

0

7.02254610 6
 

 

0.28061 nH 

0.01796897 pF 

8.76075 p

Port 1 

 

25 

29 

25 

29 

4 

Port 1 

27 
21 9 

4 

Port 2 

 

4 

1 

1 Er = 20 

Er = 3.2 

Er = 3.9 

Loss tan = 0.015 
 
Loss tan = 0.015 
 

Loss tan = 0.015 
 

σ = 5.8e7 S/m 

via σ = 5.8e7 S/m

Ground 

Metal thickness = 8 µm 

 
SLIM 

z-parameter, fscale = 1e10 
 
 
 

=a

0.610768

0

0.009164

=b 0.55341

=c

0.566151

0

0.009197

=d

0

0.002161

0

7.36979210 6
 

 
 
 
 

0.54866 nH 2.912 p

0.08042 pF 

Port 1 
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A.6 Two-port Resistor 

Structures Macromodel Equival
30 

  
15 

  
15 

  

20 
  

50 
  120 

  

5 

Port 1 
  

Port 2  

  

 

Er = 5.6   

Er = 5.6   10   

 5   

Ground   

30   

20   20  

tan   δ    = 0.001   

tan   δ    = 0.001   

0.8   

σ    = 612 S/m   

σ   = 3e7 S/m

 
LTCC-M 

z-parameter, fscale = 1e10 

=a

0.026942

0.025207

0.004505

0.001942

=b

0.0269107

0.0207841

0.0017975

0.0000877

=c

0.026942

0.025207

0.004505

0.001942

=d

0.547213

0.787586

0.274502

0.030021

0.009126  

 
 
 

Ix 

R1 
10.06 Ω 

L1 
0.580 nH

Port 1 
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