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SUMMARY 

Three dimensional integrated circuits (3D ICs) fabricated with through-silicon vias 

(TSVs) have smaller planar dimensions, shorter wire length, and better performance than 

2D ICs. Heat dissipation causing temperature increase has posed new challenges for 

design of 3D integrated circuits (IC). In addition to the thermal problem, 3D ICs also 

require careful design of power grids/network because many inter-tier resistive through-

silicon vias in 3D IC can cause larger voltage drop than 2D ICs. The performance 

optimization of a 3D stack requires validation of thermal and electrical integrity during 

the co-design.  

Many 3D stacks will combine digital and analog circuitry, requiring a strong mixed-

signal design approach. This will require close collaboration between different domains 

of circuit fabrication which traditionally have been working separately. Hence there must 

be some standards to facilitate smooth and effective design of 3D ICs.  

In this thesis, we perform steady-state electrical and thermal simulations to analyze the 

properties of a 3D stack. We optimize electrical and thermal performance using genetic 

algorithm to achieve optimized power map profile for minimizing voltage drop and 

temperature, which can benefit both thermal and power integrity management.  

This thesis presents initial efforts in designing such standards. Steady state electrical 

and thermal simulations are performed to demonstrate the necessary information that 

needs to be exchanged between the dies to ensure adequate co-design. The main purpose 

of a Design Exchange Format (DEF) between dies is to permit sharing of information 

necessary for design by external parties without disclosing their intellectual property (IP). 

The requirements of the standards should be the minimum necessary to produce 

satisfactory answers.  Producing such models is just a customer support function.  The 

role of the standards is to facilitate the transfer of information through a compact model, 

not necessarily to build one.  



 

1 

CHAPTER 1 

INTRODUCTION 

 

The increasing demands of multifunctional portable devices have made engineers 

think beyond the traditional chip fabrication technology. Moore’s law has been the 

guiding principle for electronics industry for many decades. Figure 1.1 shows the 

Moore’s law which states that the number of transistors on a chip will double 

approximately every two years.  

 
Figure 1.1: Moore’s Law [1]. 

 

 With transistors reaching upto atomic scale Moore’s law may soon be hitting a 

wall. With silicon chips hitting the thermodynamic and quantum limits, Moore’s law is 

on the verge of saturation in next decade or so [32]. 
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However history has proven time and again that realization of Moore’s law drives us 

to new levels of innovation. So, following the trend of the semiconductor industry the 

successor to present System on chip (SOC) technology could very well be Stacked ICs 

and Packages (SiP). SiP which means stacking of either bare chips or packages in three 

dimensions enables system miniaturization. Its applications are similar to those of IC 

integration namely high volume integration and multifunctional manufacturing of 

portable devices. If integration along two dimensions seems to have reached saturation, 

then why not start cramming more components along the third dimension using SiP 

technology. The International Technology Roadmap for Semiconductors (ITRS) has 

identified SiP as a way of improving the performance without further shrinking the 

transistor dimensions.  

1.1 System in Package/Stacked ICs and Packages (SiP) 

In contrast to SoC, system-in-package (SiP) is characterized by any combination of 

more than one active electronic component (package or die) of different functionality, 

plus optional passive devices and other devices such as MEMS or optical components. 

All components are assembled into a single package and provide the multiple functions 

associated with a system or subsystem. Figure 1.2 shows integration of a processor and a 

Near Field Communication (NFC) chip using wire bonds from Samsung using a Fine 

Pitch Ball Grid Array package (FBGA) [33]. 

 
Figure 1.2: Example of SiP, security solution from Samsung [33]. 



 3 

Key areas of application for SiP designs include wireless products (GPS modules, 

Bluetooth solutions, 802.11 modems) and portable products where there is a need for a 

combination of large memory (SDRAM, flash, SRAM), and digital-logic or mixed-signal 

designs that require very sophisticated analog design. The future of SiP also includes 

electronic market sectors such as smartphones, flat panel LED TVs, automobiles, high 

end computers to name a few. Nano scale biosensors, personal healthcare and 

environment sensing modules are emerging SiP markets. All the above technologies 

involve density of thousands of functions per cubic centimeter. 

SiP is mainly divided into two broad categories. Non-TSV (Through Silicon Via) and 

TSV based solution. Concept of SIP originated from Bell Labs 40 years ago. However, 

first functional SIP came in 1992 from Irvine Sensors. Non-TSV SiP has grown in 

parallel with IC chip packing from DIP (Dual Inline Package) to JLCC (J-leaded chip 

careers). Non-TSV based SiP is further discretized into chip and package stacking. 

Advancement in chip stacking is has come from the ability to stack more and more dies 

in a given height. Wafer thinning by grinding or chemical polishing, wafer handling and 

thin wafer dicing are the key technologies that help us achieve the above goals.  Non-

TSV integration can be achieved in four different ways.  

 Wire bonding includes traditional wired connections between multilevel chips. 

Several key features like spacer technology, die adhesives, molding and type of 

bonding (forward/reverse) have to be taken into considerations for application 

specific requirements.   
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 Flip chips came as an alternative to wire bonding allowing higher connection density. 

They can be used with wire bonding for faster communication or independently as in 

case of Chip on Chip (CoC).  

 Side Termination requires metal routing on chip edge. Its three variations depends on 

interconnections namely metallization, polymer or a solder bump. In embedded ICs, 

the IC is embedded into the silicon substrate for further miniaturization.  

 Tape Automated Bonding (TAB) is common for chip to substrate bonding. It uses 

metallized flexible polymer for bonding.  

Each of the above mentioned variation has its own pros and cons. Wire bonding has 

wiring density issues when chips increase in number. Flip chips are faster but, they are 

costly. Embedded ICs can incorporate thin film passives like capacitors and inductors. 

Yield is an issue with them.  TAB increases package size and the number of fabrication 

processes. Package Stacking has three variations namely,  

 Package on Package (PoP), in which individual packages are stacked on top of each 

other. At sidewalls conductive epoxy is applied.  

 Package in Package (PiP) involves flipping of the top die (tested package) with 

internal interconnections via wire bonding.  

 Folded Scale Chip Stacked Package (FSCSP) use thin flexible flipsubstrate. A chip 

is mounted on one half of the substrate and the remaining of the flex is folded over 

the chip.  

However all the aforementioned packaging techniques have some manufacturing 

issues. PoP is simple and best among the three, but it adds to package size. PiP is limited 

to expansion to additional package once the final die has been fabricated. FSCSP is 
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limited by the cost and availability of double sided substrates. Figure 1.3 shows various 

forms of SiP integration techniques. 

 
Figure 1.3: Different types of System in package design. [2] 

  

A vital problem for SoC development is the integration of increasingly sophisticated 

IP into the design. Even if integration is achieved, a lot of effort must be given to 

verification, which takes major portion of the design cycle and requires costly and 

sophisticated EDA tools. In addition, as chips become more complex, there’s an 

immediate requirement for advanced silicon processes to attain smaller die size and lower 

power. These cutting- edge processes entail significant research and production costs, and 

even more costly EDA tools. SoC often requires long development time required for 

front-end design and verification as well as backend placement and routing.  

SiP development is shorter since the components don’t require as much design 

verification (at the functional level). But many of the EDA tools for high-speed mixed 
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signal system designs compatible with SiP aren’t commercially available. Thus, they 

require in-house development. Moreover, EDA tools covering mechanical aspects of SiP 

are still in an embryonic stage [39]. There are no simple answers for choosing between a 

SIP or SOC solution. The key to making the best choice is to impartially understand the 

pros and cons of each option. One can use the SiP approach when complex 

semiconductor components are to be integrated in a single system and a short time to 

market is critical. While, the use of SoC can be favored for high-volume production and 

long-life applications in which high performance is essential [38].  

Table 1.1 shows the comparison between currently prevailing SoC technology and the 

future SiP technology. 

Table 1.1: Comparison between SoC and SiP [2] 

 SoC SiP 

Power Low Medium 

Performance (Clock 

Speed)  
High Medium 

System Design 

Flexibility 
Low High 

IP availability  High 

Unit Cost Low Medium 

Development 

Cost/Time 
High Low-Medium 

EDA Tools Mature Limited 

Available Design 

Services 
High Limited 

 

One of the most important advantages of 3D ICs is that it allows the integration of 

different IC technologies like analog, digital, radio frequency (RF) and memory into one 

package, resulting in more functionality in a given volume. Traditionally these different 

chips are interconnected using common chip assembly technologies like wire bonds, tape 

automated bonding (TAB) or flip chip technology.   
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Through Silicon Vias (TSVs) have been recognized as one of the major technologies 

to achieve 3D integration of heterogeneous ICs for next generation devices. A through-

silicon via is a vertical electrical connection passing completely through a silicon wafer 

or die. TSVs are a high performance technique used to create 3D packages and 3D 

integrated circuits, compared to alternatives such as package-on-package, because the 

density of the vias is substantially higher, and because the length of the connections is 

shorter. TSVs enabled chips can be stacked vertically, thus reducing the interconnection 

length due to the thickness of die. Memory can be stacked directly over processor to 

provide high speed and low loss memory-logic interface.  

Current technology uses an intermediate level between traditional 2D and 3D 

assembly, known as 2.5D integration. It is a stepping stone towards the ultimate goal of 

‘true 3D’ integration. The main difference between a conventional 2D IC and a 2.5D IC 

as shown in Figure 1.4 below is that, in the case of the 2.5D IC, a passive silicon 

interposer is placed between the substrate and the active dies, where this silicon 

interposer has through-silicon vias connecting the metallization layers on its upper and 

lower surfaces. This approach enables much denser interconnections between dies than 

would be possible with packaged parts, as well as cutting signal latency and power 

consumption [34]. In 2011 Xilinx announced a single layer, multi-chip silicon interposer 

for its 28nm 7 series FPGAs. It uses a 100µm thick, silicon interposer with 45µm pitch 

micro bumps and 10µm TSV. The FPGA slices are connected by ~10,000 connections 

created on the silicon interposer. Compared to connections on a PWB, the interposer 

interconnect technology provides over 100 angstrom the die-to-die connectivity 

bandwidth per watt, at one-fifth the latency [35]. 
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Figure 1.4: Xilinx Virtex 7 FPGA using 2.5D integration. [35] 

 

1.2 Challenges with 3D Integration 

2.5D/3D ICs with TSVs do not require radical new changes. The silicon interposer can 

be fabricated with the current process technology and the memory/processor cores can 

continue using the traditional CMOS process. But 3D integration does require some new 

capabilities that need to be added for analog/custom design and IC/package co-design. 

The end goal is similar to current SoC technology, i.e. to optimize system cost with the 

shortest possible turnaround time. If 3D ICs cannot be both cost and time effective, they 

will suffer from premature extinction. 

 In comparison to conventional 2D circuits, 3D ICs provide the possibility for 

extremely increased levels of integration in the given circuit area. This creates stern 

design bottlenecks in the areas of thermal and power delivery management. First, due to 

highly dense integration, the amount of heat per unit area or the heat density increases, 

resulting in higher on-chip temperatures. Second, the power to be delivered to a 3D chip 
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is tremendously increased due to vertical alignment of ICs, leading to significant 

complications in the task of reliable power delivery. An n-tier stack will consume n times 

the power as compared to its 2D counterpart for the same footprint area. Moreover, 

through-silicon vias contribute additional resistance to the supply network. Increased 

current density due to small TSV cross section and difference in interconnect dimension 

mismatch in a 3D stack can lead to electro migration failures [36]. 

Many 3D stacks will combine digital and analog/RF circuitry, requiring a strong 

analog/mixed-signal capability. Because of the unique packaging requirements of stacked 

die, an IC/package co-design capability is a must. Thus, anyone who presents a complete 

“solution” must provide proficiency in digital, analog IC, package, and PCB design [3]. 

3D IC design is a shared effort. The logic IC designer knows where to place pins, but 

knows little about the design of the memory IC. The memory IC designer can put TSVs 

inside the die, but has limited knowledge of the logic IC. 3D ICs will require close 

collaboration and co-design among groups that have historically worked separately. 

TSVs have some special tooling requirements. TSVs in active layers must be designed by 

IC design tools. However, TSVs in active layers may be planned with packaging or SiP 

tools. TSVs in passive layers may be both planned and designed with packaging or SiP 

tools. Figure 1.5 shows a general TSV based 3D IC. 

 
Figure 1.5 Schematic of a heterogeneous 3D IC stack. [4] 
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This thesis deals with two major issues which are required to effectively design the 

next generation 2.5D/3D ICs namely, 

 Pathfinding and Optimization. 

 Heterogeneous IC co-design. 

1.3 Pathfinding (Exploration) and Optimization 

 3D stacked chips are becoming a promising system integration technology for modern 

systems. The use of multi-processor systems has increased the communication delays 

between processor cores, and an effective way to reduce this impact is 3D integration 

technology and the use of through-silicon vias for inter-layer communication.  However, 

3D chips present important thermal issues due to the presence of processing units with a 

high power density, which are not homogeneously distributed in the stack. Also, the 

presence of hot-spots creates thermal gradients that impact negatively on system 

reliability and lead to increased leakage power consumption. The location of power cells 

in each chip impacts the distribution of the temperature profile of the complete stack, and 

the arbitrary distribution will lead to a large temperature gradient, thus degrading its 

performance and reliability. 

 3-D ICs also pose challenges for power delivery network design due to larger supply 

currents and longer power delivery paths compared to 2-D ICs. Power delivery must 

provide sufficient current to each module and reduce IR-drop, i.e., the DC voltage drop 

during normal operation. This drop is one of the dominant causes of power-noise issues 

in 3D ICs. Pathfinding can help in determining where functionality goes in a die. It can 

help designers to find a sweet spot in their design technology and choose the best die 
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order in the stack. Pathfinding can aid in optimizing connectivity between chips by 

carefully placing the TSVs between the dies. 

1.4 The Co-Design Problem 

 Three dimensional integrated circuits (3D ICs) built with through-silicon vias 

(TSVs) have smaller planar dimensions, shorter wire length, and better performance than 

2D ICs. Many 3D stacks will combine digital and analog/RF circuitry, requiring a strong 

analog/mixed-signal capability. Because of the unique packaging requirements of stacked 

die, an IC/package co-design capability is required. Hence there must be some standards 

to facilitate smooth and effective design of 3D ICs.  

 Developers of 3D ICs need to remember that a 3D IC will include ICs with different 

functionality. Designing one of the chips first and throwing it “over the wall” to other 

chip designers will not result in design convergence or an optimal, cost-effective solution. 

If the different chips are not designed co-operatively, the interconnect will not be 

optimized, and extra vias will be needed to handle signals that cross from one point to 

another. Without co-design, timing, power, and signal integrity will not be optimized. 

IC/package co-design is important for 3D ICs because there are a large number of I/Os, 

and because the cost of packaging goes higher with multiple die in one package. Without 

co-optimization, the package could end up costing more than the silicon die. Important 

capabilities include I/O feasibility planning, connectivity management, 3D visualization, 

SiP layout, and support for multi-fabric analog and RF circuitry [3]. 

 The board must be considered as well. 3D die stacks result in additional interconnect 

that will have to find its way down to the board. As more connectivity is handled inside 

the package, there’s less complexity on the board. The board designer needs to know 
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what’s going to be positioned near the 3D package. By positioning and rotating 

components properly, the designer can reduce the number of layers required for the 

board. 

 This thesis provides evaluation of voltage drops and temperature gradients for the 

proposed Design Exchange Format (DEF). DEF can act as a standard for exchange of 

information between different die vendors for efficient design of a 3D stack without 

disclosing their sensitive Intellectual Property (IP). Standards will become an important 

part of the 3D IC ecosystem. An initial effort may focus on defining nomenclature of data 

that need to be exchanged between different vendors. Such information can include the 

voltage/current profiles, voltage drop and thermal gradient limits. Down the road, 

detailed I/O standardization between interfaces such as memory, logic, and interposer 

layers can be established for better and much deeper level of information exchange. 

Meanwhile, the 3D-IC Alliance3 is focusing on the manufacturing side, and has 

released the Intimate Memory Interconnect Standard (IMIS) [37] to standardize vertical 

interconnect requirements.  

1.5 Thesis Outline 

 The thesis outline is as follows: Chapter 2 discusses optimization of power and TSV 

maps for thermal and power integrity. In this chapter, the power map optimization is 

achieved by using genetic algorithm. TSV optimization is done using iterative removal of 

residual TSVs. Key results for early pathfinding and , importance of electrical and 

thermal co-optimization are summarized in this chapter. 
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 Chapter 3 demonstrates a scheme to define the proposed exchange formats for three 

dimensional ICs. Steady state DC IR and thermal simulations are performed to estimate 

the ohmic drop and temperature gradient for validation of the design exchange format. 

Chapter 4 summarizes the research that has been done. It also discusses the future 

work and improvements that can be done based on the present work. 
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CHAPTER 2 

OPTIMIZATION FOR THERMAL AND POWER INTEGRITY 

 

2.1 Introduction 

 In the past, a considerable amount of thermal placement/optimization methods have 

been proposed for minimization of 2D/3D on-chip temperature gradients [9-17]. These 

proposed methods include the force-directed method [10], transformation-based 3D 

placement [11], partitioning-based 3D placement [12], and placement algorithm based on 

fuzzy set theory [10]. With regard to IR drop analysis, the work in [18] investigates the 

effect of number of power/ground bumps and power TSVs on IR drop. The work 

proposed in [19] considers deadspace redistribution of thermal TSVs. Insertion of dead 

space insertion and distribution of signal and thermal TSV during floor planning is 

proposed for voltage drop optimization [20]. The study in [19] considers buffer and 

signal-TSV insertion.   

 In this chapter, optimization on temperature and voltage drop for a 3D stack using 

genetic algorithm (GA)-based optimization method is performed. Most of the 

aforementioned proposed methods try to improve the temperature profile by altering the 

whole stack, such as placing the high power blocks on dies closer to the heat sink. 

Moreover, some of the techniques reported earlier do not take the effect of TSVs into 

account while others model them with effective thermal conductivities. None of the 

methods deals with the scenario when both dies have nearly equal power or the total 

power consumed by a die should remain constant. In addition, the constraint on the TSV 

positions between die to die can exist when dies are manufactured by different chip 
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vendors. The vendors can move around devices in their dies, but devices cannot be 

moved across dies that are designed by different vendors. Hence, the power map on 

individual die can change with constant total power consumption. This chapter presents 

optimization on a 3D stack comprising of a PCB, an interposer, and redistribution layers 

(RDL), two dies, and TSVs in interposer and in dies. To aid pathfinding, optimization for 

power map is performed on the bottom dies to obtain the minimum possible voltage drop 

on the die. Similar investigation and optimization is performed for steady-state thermal 

analysis. 

2.2 Need for Optimization 

3D stacked ICs utilizing short TSV interconnections provides reduced communication 

delays between dies and improved system performance, compared to 2D ICs [5]. 3D 

stacked ICs comprising of many stacked dies, TSVs, and bonding layers using micro 

bumps is shown in Figure 2.1. Because of vertical stacked active transistor layers, heat 

density of a 3D stack can increase dramatically causing rapid temperature increase [6, 7], 

particularly for high power-density applications. In addition, the low thermal 

conductivities of under fill/glue layers and back-end-of-line (BEOL) layers can make the 

thermal problem even worse [8].  On the other hand, the continuous increasing power 

density demands sufficient amount of current to be supplied to ICs. In a 3D stack, the 

power delivery requires current to be supplied to all transistor layers by routing through 

multiple inter-tier TSVs. These multi-tier resistive TSVs can cause increased voltage 

drop, compared to 2D ICs. In addition to DC voltage drop, the current carrying capability 

of TSVs also requires limiting current when designing and optimizing the power delivery 

networks for a 3D stack. The current needs to be limited to avoid electromigration 
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failures. Electromigration is the gradual transfer of metal when high direct current density 

is used. This can result in the eventual loss of connections or failure of a circuit 

   

 
Figure 2.1: 3D stacked dies using TSVs and micro-bump/bonding layers. 

  

2.3 Structure Setup 

 The structural configurations for thermal and electrical simulations are shown in 

Figure 2.2 and Figure 2.3, respectively. As shown in Figure 2.2, in the 3D stack, dies are 

connected in face-to-back configuration using TSVs and micro bumps [22].  

 
Figure 2.2: Structural configuration for thermal simulation 
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 Each die contains one set of redistribution layers and TSVs. For the top die, no TSVs 

are required. In addition to metal RDL, each die consists of two layers:  silicon dioxide 

insulator and a silicon substrate. The interposer and the two dies are bonded together 

using micro bumps with underfill. Block-wise power densities are defined for each die to 

represent the power consumption of active devices. The interposer is connected to the 

PCB power plane through bumps. Table 2.1 provides the details of geometrical 

information and material properties used in thermal simulation. Constant temperature 

boundary condition is used at the top surface of the top die to represent the ideal heat sink 

with a constant temperature of 30 Celsius. Convection boundary condition with a heat 

transfer coefficient of10 Wm
-2

K
-1

 is used on top surface of the PCB, as shown in Figure 

2.2. 

Table 2.1: Geometrical information and material properties for thermal simulation. 

 Size 

(mm
2
) 

Material 

Thickness 

(µm) 

Thermal 

Conductivity 

(W/(mK)) 

Silicon die 1.1x 1.1 100 110 

Bulk Silicon 1.1x 1.1 500 110 

Adhesive 1.1x 1.1 50/20 0.3 

PCB 10 x 10 800 4.3 

Silicon 

Dioxide 

1.1x 1.1 10 1.3 

Copper 

Power Plane 

10 x 10 30 400 

 

 In the electrical simulation configuration shown in Figure 2.3, the RDL comprises of 

two layers of metal grids placed orthogonally on top of each other. Power and ground 

traces alternate in each layer. The corresponding power/ground grids in each layer are 

connected to each other through metal connectors, which are referred to as micro-

interconnects. 
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Figure 2.3: Structural configuration for DC voltage drop simulation. 

 

 A voltage source is placed at the bottom corner of the PCB power plane. Current 

sources at specific positions (Figure 2.3) in RDL are used to represent active devices. For 

a given amount of power density P, die area A, and input voltage V, the current value I 

for each block can be calculated as 

                                                    
   

 
                                                                                    

Table 2.1 provides details about the structures used in the IR drop stimulation.  

Table 2.2: Component details for voltage drop simulation. 

Components Connection Area  Height 

(µm) 

Bumps Power plane to 

interposer 

50 x 50 

µm
2
 

50 

Interposer 

TSVs 

Interposer to 

micro- bump 

30 x 30 

µm
2
 

200 

Die TSVs Die1 to Die 2 10 x 10 

µm
2
 

100 

Micro-Bumps Interposer to 

Die 1 

20 x 20 

µm
2
 

20 

Die 1, Die 2 - 1.1x1.1 

mm
2
 

100 

Power Plane - 10 x 10 

mm
2
 

30 

Interposer - 3 X 3 mm
2
 200 
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For both the configurations for electrical and thermal analysis, all components 

including bumps, micro-bumps, and TSVs have rectangular cross-section. The RDL layer 

has a length L of 3 mm in interposer and 1.1 mm in stacked dies. The thickness T of the 

power/ground grid conductor is 1 µm. The width W is 10 µm, and the pitch P, the gap 

between power and ground conductors, is set to 50 µm. The pitch between TSVs is 100 

µm. Figure 2.4 shows the modeled RDL structure.  

 
Figure 2.4: Structural configuration RDL layer. 

 

In voltage drop simulation, the PCB, substrate, and TSV dimensions are the same as 

that used for thermal simulation. A finite volume-based solver [22-24] is used for both 

DC voltage and thermal simulations in this thesis. 

 

2.4 Algorithm for Steady State DC and Thermal Optimization. 

It is well known that the location of dies in a 3D stack can play a vital role in heat 

dissipation if dies consume different powers. However, if two dies in a 3D stack consume 

nearly the same power, the positioning/placement of blocks with non-uniform power 

maps on dies can have a substantial impact on temperature, which can affect the delay 

and leakage power. In addition to temperature increase, heat generation can cause 

mechanical issues such as thermal-induced stress, which can lead to mechanical fractures 
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in the stack [25]. Minimizing IR drop in a 3D stack plays a vital role in proper 

functioning of a system. Because of the shrinking of device and interconnect size, 

interconnect resistance increases by a large amount. While keeping the interconnect 

dimensions small, maintaining required voltage drop margin has become one of the key 

factors in the proper functioning of a 3D stack [18].  

 A genetic algorithm based optimization technique has been used here for optimization 

of both thermal and electrical response. Genetic algorithm (GA) [26] is preferred over 

other optimization algorithms such as calculus-based algorithms, for GA is a global 

optimization algorithm that does not depend upon initial conditions. GA does not 

collapse even if inputs change slightly [26]. Figure 2.3 shows a general flowchart of 

genetic algorithm-based optimization.  

 For thermal optimization, the power map consists of a 5x5 array, a total of 25 blocks 

of equal area. An initial population is generated by keeping the total power consumed by 

all members of the initial population constant. After temperature distribution is generated 

using the finite- volume solver from the initial population, the two best power maps that 

yield the lowest temperatures are selected as parents for the next generation. The power 

blocks are randomly selected from each parent to form a next generation. This process is 

referred to as crossover. There is a strong chance that the power consumed may change 

after each crossover. Therefore, after each crossover, the power map is re-normalized to 

keep the total power consumption constant. Mutation is performed by swapping some 

power blocks in each offspring. The next generation is again fed to the simulator to 

obtain the thermal profile of the next generation. The above process is repeated till a 

steady value of die temperature is reached.  

 Similar procedure is used for DC IR drop optimization. IR drop analysis with current 

sources is simulated in a 10x10 mesh array. Table 2.3 briefly describes the setup for the 

optimization engine 
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Table 2.3: Optimization engine setup for simulation. 

 Power map (Thermal) Power map (IR drop) 

Population  

Mesh 

25 blocks (5x5 mesh) 100 current sources 

(10x10  mesh) placed on 

RDL 

Constant 

Parameters 

TSV distribution, total 

power consumed by 

each die 

TSV distribution, total 

power consumed by each 

die 

Optimization 

Goal 

Minimizing the 

maximum temperature 

on the bottom die. 

Minimizing the voltage 

drop on the bottom die. 

 

 Genetic Algorithm (GA) Topology [26] 

1. Chromosomes: A chromosome represents one of the many possible solutions to 

the problem being solved. Chromosomes are various power maps that are used as 

initial inputs to the solver. Figure 2.5 shows one of the power maps for thermal 

profile. Each of the Ais represents power densities in a particular area. 

 
Figure 2.5: Power map for thermal simulation (in W). 

2. Population: Population represents the set of possible solutions used in GA. It is 

equal to the number of chromosomes Figure 2.6 illustrates the initial population for 

the engine. GA works on to evolve the given solutions to better and more optimal 

solutions. 

3. Cross over: Cross over is one of the steps in GA where the two best chromosomes 

interact to give rise to a third chromosome. The two chromosomes involved in cross 

over are called parent chromosomes, while the new chromosome produced is called 
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the child/daughter. The percentage of inheritance from each parent is determined by 

the cross over location which is random. The probability of cross-over happening is 

called cross over rate. In Figure 2.7 the daughter contains cells from both parent A and 

B. 

 
Figure 2.6: Initial population. 

 

 
Figure 2.7: Depiction of cross over. 

4. Mutation: To avoid convergence to local optima at the expense of global optima, 

random changes are introduced in the off springs produced after crossover [27]. These 

random changes are called mutation. Mutation causes a random change in 

chromosome causing a modification in the solution. Small changes increase the 

probability of solution converging but the convergence is more likely towards local 

optima. On the other hand, large changes increase the probability of solution 

converging to global optima, at the expense of rate of convergence. The probability of 

mutation happening called the mutation rate can be also be controlled to alleviate the 
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problem of solution converging to local optima. Figure 2.8 shows the mutation 

process, where A25 is swapped with A6 and B22 is swapped with A8. 

 
Figure 2.8: Depiction of mutation. 

 

The flow chart of GA applied to power block problem is shown in Figure 2.9. The 

various steps of GA are explained below the flowchart. 

 

 
Figure 2.9: Flow chart of genetic algorithm. 
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1. The inputs to GA include: 

 The Structure file containing material properties, RDL layers and TSV locations, 

maximum iterations. 

 GA population: GA populations controls the number of solutions GA has to work 

to evolve them into better solutions. A high value of population requires larger 

run time, but might lead to faster convergence. 

 Cross over rate: The probability of cross over can be specified using the cross 

over rate. 

 Mutation rate: The probability of mutation can be specified by specifying the 

mutation rate. 

For thermal optimization, the power map consists of a 5x5 array, a total of 25 blocks of 

equal area.  

2. Initial Population: An initial population is generated by keeping the total power 

consumed by all members of the initial population constant.  

3.  Checking if specifications are met: If the solution with highest fitness meets the 

specification or if number of iterations equal the maximum allowed iterations, the 

algorithm terminates with output as the solution with highest fitness. If the specifications 

are not met and more iterations are allowed, the algorithm goes to the next step - Pruning. 

4.  Crossover: The power blocks are randomly selected from each parent to form a 

next generation. This process is referred as crossover. There is a strong chance that the 

power consumed may change after crossover. Therefore, after each crossover, the power 

map is re-normalized to keep the total power consumption constant.  

5. Mutation: It is performed by swapping some power blocks in each offspring. The 

next generation is again fed to the simulator to obtain the thermal profile of the next 

generation. The above process is repeated till a steady value of die temperature is 

reached. 
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2.4 Simulation Setup 

 In the analysis, the power map of die1 in Figure 2.2 is to be optimized while the power 

map of die 2 (top die) is kept constant. Figure 2.10 shows the power map for die 2. Two 

TSV maps in which TSVs going from die 1 (bottom die) to die 2 are used in the 

simulation. The two different TSV maps are shown in Figure 2.11 

 

 

Figure 2.10: Power map used for die 2. 

 

  
                                           (a)                                                                      (b) 

Figure 2.11: (a) TSV map-1, (b) TSV map-2. (Red dot: TSV from interposer to die 1, blue 

dot: TSV from die 1 to die 2) (dimension in mm). 
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 We consider two scenarios for both thermal and DC voltage drop optimizations. 

Scenario I utilizes TSV map-1 while Scenario II uses TSV map-2. Both scenarios use 

same number of TSVs and the power map for die 2 (Figure 2.10). As shown in Figure 

2.11, the difference between the two TSV maps is that TSV map-2 has more number of 

1:1 corresponding TSVs from interposer to die 1 and die 1 to die 2, which means that 

there are more blue squares covering the red squares in Figure 2.11b than Figure 2.11a. 

 

2.5 Simulation Results 

The dimensions of the RDL is taken to be 1.1 X 1.1 mm
2 

as shown in Figure 2.4.Hence 

the total power consumption for both dies is fixed as 1.21 W, which is equivalent to 

power density of 100 W/cm
2
. Since we are considering the fact that the two dies are 

supplied by different vendors, hence one cannot alter the power distribution profile of the 

other die. Therefore in the optimization performed, the power map of the top die is kept 

constant while the power map of the bottom die is to be optimized.     

2.5.1 Thermal Optimization 

The lower die (die1) will be hotter in a two die case since it is far from the heat sink. 

Heat travelling from die 1 has to follow a higher resistance path in order to reach the heat 

sink, thus resulting in a considerably higher temperature than the upper die (die 2). It is 

important to note that the goal of optimization is to minimize the temperature of the 

hottest die, which is the bottom die in the stack. Thus, the goal (fitness function) for GA 

is to minimize the maximum die temperature within a feasible working temperature 

range. The power map of die 1 is same as die 2 before optimization. 
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Figure 2.12: Maximum temperature of the bottom die with iterations. 

 

Scenario I 

 Figure 2.12 shows the maximum die temperature with iterations. It shows the 

maximum temperature converges after 35 iterations. Figure 2.13 shows the initial power 

map and the power map of the bottom die after 50 iterations. Compared to the initial 

power map, the final power map has more evenly distributed power blocks. As 

temperature distribution can provide better insight regarding the optimization, Figure 

2.14 shows the comparison between the initial and converged thermal profile after 

optimization.  

 
(a)                                                              (b) 

Figure 2.13: (a) Initial power map, (b) optimized power map after 50 iterations (Unit: W). 
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(a)                                           (b) 

 
(c)                                         (d) 

Figure 2.14: Temperature of (a) bottom die before optimization, (b) top die after 

optimization, (c) bottom die after optimization, (d) bottom die after optimization with 

normalized scale (Unit : 
o
C). 

 

 Figure 2.15 shows the histogram of temperatures on the bottom die (die 1). As seen in 

Figure 2.14, the optimization results in a much lower peak temperature. The maximum 

temperature in the die has reduced from 100 
o
C to 88 

o
C, around 12% decrease in the 

maximum die temperature. In addition, the difference between minimum and maximum 

temperatures after optimization has reduced from 26 
o
C to 5 

o
C, which shows uniformity 

in temperature distribution. 



 29 

 
Figure 2.15. Temperature distribution histogram, (top) before optimization, (bottom) after 

optimization. 

 

 

Scenario II 

 In this scenario, TSV map-2 (Figure 2.11b) is used. The optimized temperature maps 

of the bottom die for scenario II are shown in Figure 2.16. Figure 2.16a shows localized 

hot spots, the red regions at top corner of the die, which result in a maximum temperature 

of 98 
o
C before optimization. After optimization, Figure 16b shows there are no obvious 

hotspots on die 1 because of the absence of red regions in Figure 2.16b. Figure 2.16c 
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illustrates the renormalized temperature profile of die 1 with a different scale. Because of 

the many overlapping TSVs (Figure 2.11b), the cold spots, (the deep blue regions), 

appear. Figure 2.17 shows frequency of occurrence of different temperature in die1. 

Similar to Scenario I, the temperature gradient has reduced from 24 
o
C to 4 

o
C, indicating 

of importance of optimization. 

 
                   (a)                                                       (b) 

 
(c) 

Figure 2.16: Temperature of (a) bottom die before optimization, (b) bottom die after 

optimization, (c) bottom die after optimization with normalized scale (Unit : 
o
C). 

 

The comparison of temperatures in Figure 2.14b and Figure 2.14d shows that the hotspots 

(high temperature areas) on the top and the bottom dies are misaligned after the 

optimization, which results in the reduction in maximum die temperature. Similar results 

are observed in Figure 2.16b and Figure 2.16c for Scenario II. With a constant TSV map, 

the best response to a particular power map of one die is to place the hotspots, which is 

produced by high power density block in the die, such that the hotspots are not vertically 

aligned.  
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(a)                                                       (b) 

Figure 2.17: Frequency of occurrence on die 1, (a) before optimization, (b) after 

optimization. 

 

2.5.2 DC IR drop optimization 

The power map of the bottom die before optimization comprises of a randomly chosen 

power map with total power of 1.21 W. The goal of optimization is to minimize the 

voltage drop on die 1 (bottom die).  

Scenario I 

 Figure 2.18 shows the power maps of the bottom die before and after optimization for 

Scenario I. The optimized power map depends on the TSVs going from interposer to die 

1, as these TSVs carry the current from PCB to die 1.  

 
                  (a)                                                               (b) 

Figure 2.18: Bottom die power map, (a) before optimization, (b) after optimization. (unit: 

W) 
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Figure 2.19 shows the voltage drop at the bottom die versus the number of iterations. It 

shows that the voltage drop converges after 61 iterations. The maximum voltage drop 

reduces from 45 mV to 39 mV, about 13% reduction.  

Figure 2.20 shows the voltage profile on the RDL of die 1. Compared to the initial 

voltage profile, the optimized voltage profile has fewer number of nodes with large 

voltage drop, which is indicated by the blue spots in Figure 2.19.  

 
Figure 2.19: Minimum voltage on the bottom die vs iterations. 

 

 
(a)                                                    (b) 

Figure 2.20: Voltage drop (a) before and (b) after optimization. 

 

The area marked by the dash frame in Figure 2.21 denotes the voltage for bottom die. 

As we can see from Figure 2.20, the voltage drop gradient is also improved by at least 

20%. 
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(a)                                   (b) 

Figure 2.21: Voltage across z axis (a) before and (b) after optimization. 

 

Scenario II 

      For scenario II, Figure 2.22 shows the voltage drop at the bottom die versus 

iterations. It shows that the voltage drop converges after 41 iterations. The maximum 

voltage drop reduces from 50 mV to 29 mV, about 42% reduction.  

 
Figure 2.22: Minimum voltage on the bottom die with iterations. 
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     Figure 2.23 shows the power maps of the bottom die before and after optimization for 

scenario II. As seen in Figure 2.23, since the TSV map has more overlapping TSVs 

(Figure 2.11b), most of the power in the bottom die is concentrated in the top region 

irrespective of the power map of the top die. 

 
(a)                                        (b) 

Figure 2.23: Bottom die power map (a) before optimization (b) after optimization. (unit: W) 

 

Figure 2.24 shows the voltage profile on the RDL of die 1. Compared to the voltage 

profile before optimization, the optimized voltage profile has less blue region with large 

voltage drop. As can be seen from Figure 2.25, the voltage drop gradient has been 

improved. 

 
(a)                                       (b) 

Figure 2.24: Voltage profile (a) before and (b) after optimization. 
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(a)                                         (b) 

Figure 2.25: Voltage gradient along z axis (a) before and (b) after optimization. 

 

2.5.3 Importance of co-optimization 

       In Section 2.5.1 and 2.5.2, the optimization is performed for thermal and voltage 

drop without considering their interaction. To cross-validate the optimized results, we 

perform another set of simulations. In the simulation, the optimized power map for 

thermal optimization is used as the input to simulate the voltage drop and vice versa. 

Figure 2.26 shows the results for all scenarios when they were simulated with optimized 

power maps for both IR drop and thermal analysis. 

      The horizontal axis shows the maximum temperature on die 1, and the y axis shows 

the maximum voltage drop on die 1. Figure 2.26 shows that optimized power map for 

thermal analysis can result in larger IR drop than the optimized voltage drop. It also 

shows that optimized power map for IR drop analysis can result in larger temperature, 

indicating the importance of co-optimization.  
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Figure 2.26: Cross-validation results. 

 

2.6 Matrix Synthesis Process (MSP) 

Matrix Synthesis Process (MSP) is to synthesize a matrix out of a given list of 

numbers such that no submatrix of a particular size has a large sum. MSP can be used to 

model the thermal placement problem of minimizing the temperature and thermal 

gradient on a die [31]. The amount of heat generated by the die area can be represented 

by a nonnegative real number. A submatrix Ss(M) in corresponds to a region of size s X s 

on the chip. The submatrix with the largest sum corresponds to the hottest region on the 

chip. So MSP is equivalent to finding a placement of the power consuming blocks such 

that the temperature of the hottest region is the lowest among all possible placements 

[31].  

From now on, we assume for simplicity that for a matrix of size n X m, n=m =sr for 

some integer r. In other words, we are placing s
2
r

2
 numbers into a sr X sr matrix. We 

assume n=m and let x1>x2>x3…..>xn*n, where xi are entries in the matrix which represent 

power densities. 
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The basic idea of the algorithm is to distribute the numbers evenly in the matrix. We 

divide the numbers into s X s groups according to their magnitudes. We observe that it is 

possible to have a placement with the property that every s X s submatrix contains exactly 

one number from each group. Figure 2.27 shows how we group elements. 

 
Figure 2.27: Group formation for MSP. 

 

For example, let t=2, m=n=4, xi =i for 1<=i<=16. In other words, we want to place 

numbers 16, 15… 1 into 4X4 matrix. Then G0 contains 1-4, G1 contains 5-8, G3 contains 

9-12 and G4 contains 13-16.  Figure 2.28 shows one of the possible implementations of 

MSP 

 
Figure 2.28: One of the possible implementations. 
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The MSP approach for 3D ICs is as follows. 

 Randomly assign power densities to dies at all levels, keeping the total power 

density constant in the stack.  

 Apply MSP on individual dies. Store maximum sum submatrices max(Ss(M)) and 

their location. 

 Places the submatrices such that one with largest sum is closest to heat sink. Two 

cases will arise. If the larger sum submatrix replaces the lower sum submatrix. A 

lower sum submatrix replaces the larger sum submatrix. In the latter case MSP 

has to be applied again locally on the corresponding die. 

 Sort the dies based on total power consumption. Matrix with the largest sum 

max(S(M)) is placed closer to the heat sink. 

 Check whether max(Ss(M)) and matrix sum (S(M)) are in sorted order. 

 If yes then terminate algorithm, else go to Step 2. 

 The elements are grouped according to s X s submatrix. 

Tables 2.4-2.9 show the results for various input parameters for the algorithm. The 

improvement tabulated is based on the maximum sum submatrix max(Ss(M)) before and 

after applying MSP. 

Table 2.4: Summary of different die layers for a 10 X 10 matrix. 
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Table 2.5: Improvement data for different matrix sizes for a 2 X 2 submatrix. 

 
 

Table 2.6: Improvement data for different sub matrix sizes for a 10 X 10 matrix. 
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2.6.1 Structure and results for MSP 

Since this algorithm does not require running the thermal analysis tool in every 

iteration, hence one can use larger number of dies in a stack. Therefore a 4 die structure is 

used as shown in Figure 2.29. No TSVs are initially placed in the structure. The internal 

setup of each die is similar to Figure 2.2 except for the RDL.  

 
Figure 2.29: 4 die setup for MSP. 

 

The RDL used in previous case (Figure 2.4), can result in a large number of unknowns 

even for a 2 die simulation. Therefore to simulate the effects of metal in insulator the 

concept of effective metallization is used.   

The effective metallization of RDL layer is calculated as 

                                                                                   

where κ is the thermal conductivity, m is the percentage of material.  

In order to pick the correct m, the percentage of metal is varied in the insulator in all 

the dies and maximum temperature is recorded. For this simulation the setup used is 

shown in Figure 2.29. where 100 TSVs per die were placed in the structure. The RDL 
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used previously has 100 intersections between the power traces which correspond to 

potential TSV positions in the die, hence a maximum of 100 TSVs can be placed in a die. 

Figure 2.30 shows temperature versus metallization density. 

 
Figure 2.30: Temperature vs. metallization density. 

 

We see that the temperature saturates around 10/12% of metal. Hence we use 15% 

metallization density. We use a total power density 2e10
8
 W/m

2
 with an average of 0.5 

W/m
2
 per die. The power density map for each die is meshed as 10 X 10 matrices. The 

submatrix size used is 2 X 2. Figure 2.31 shows the temperature profiles before and after 

applying MSP.  

 
                               (a)                                                               (b) 
Figure 2.31: Temperature on bottom die (a) before applying MSP, (b) after applying MSP 

(Unit: 
o
C). 
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Again die 1 which is the bottommost die will have the maximum temperature because 

it is the farthest from the heat sink. Figure 2.32 shows frequency of occurrence of 

temperatures on the bottommost die. 

 
Figure 2.32: Frequency of occurrence on bottom die, (a) before MSP, (b) after MSP. 

 

From Figure 2.32 it is clear that the MSP approach not only reduces peak temperature 

but also reduces the thermal gradient across a die. As shown in tables 24-2.6 this method 

can be used for a large number of layers and big matrix sizes. The code has been 

developed in MATLAB® and it does not require the solver after each run. Hence the 

method is fast, but does not capture the actual thermal effects after each iteration. Since 

the algorithm only manipulates the numbers representing power densities and does not 

call the solver until the code has terminated, it cannot capture the effects on intradie 

routing metal or the inter die connections using TSVs  

  

2.7 Effects of TSVs on thermal profile 

TSVs are filled with metal form high heat conducting paths from bottom die to the top 

die. But, they do not affect heat convection system. Hence the effects of TSVs cannot be 

neglected. On the other hand TSVs consume a lot of real estate, can cause stresses in a 

stack and are difficult to fabricate. Therefore, to maintain thermal integrity with use of 



 43 

minimum number of TSVs is a key factor in cost reduction and proper functioning of 

dies. To study the effect of TSVs a uniform array of TSVs is added to Figure 2.2. The 

array size is gradually increased till all possible TSV positions are occupied in the 

interposer and die 1. Table 2.7 shows the maximum, minimum and gradient of the 

temperature for different array sizes. Figure 2.33 shows the variation of the temperature 

with different array sizes. 

Table 2.7: Temperature variation with 

number of TSVs (Unit: 
o
C) 

  
 

 
Figure 2.33: Variation of temperature with 

number of TSVs 

 

A critical observation made from our experiments is that inserting TSVs reduce the 

maximum temperature in the 3D IC stack. However it does not reduce the minimum 

temperature and that may even increase slightly. In other words the role of TSV is 

“soothing or averaging” the maximum temperature of 3DIC than shifting down the 

working temperature level as a whole. 

 

2.8 Residual TSV removal Algorithm 

This algorithm aims at removing the unwanted TSVs. The structure used is same as 

Figure 2.3 for electrical simulations and Figure 2.29 for thermal simulations. The 

simulation starts with TSVs in all possible locations in the stack. Then TSVs are removed 
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iteratively based on a specific condition until a threshold voltage is reached. Figure 2.34 

shows the flowchart and for electrical simulations for TSV removal. 

 
Figure 2.34: Flowchart for TSV removal algorithm in electrical simulation. 

 

A node with a TSV connected to it will have a very low voltage drop associated with 

it. The algorithm targets such nodes where the voltage is much higher than the required 

threshold. It removes TSVs from such nodes thereby reducing the voltage or increasing 

the voltage drop at that particular node. This process is repeated till the particular voltage 

threshold is reached. The algorithm stars with 300 TSVs. 100 each from power plane to 

interposer, interposer to die 1 and die 1 to die 2. The threshold level for minimum voltage 

on the 3D stack is arbitrary set to 900mV. This threshold is flexible and can be set as per 

requirement of the die manufacturer. This algorithm can also be customized to set a 

threshold for a particular die instead of a complete stack. Moreover there is no restriction 
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on number of dies that can be used. The dotted line in the flowchart denotes the fact that 

the first iteration of the algorithm for finding the highest voltage drop node can be started 

with either die without much change in the final result. Figure 2.35 shows number of 

TSVs versus the minimum voltage.  

 
Figure 2.35: Number of TSVs vs minimum voltage on the stack. 

 

We observe that all the  TSVs positions are not required to maintain a particular 

voltage drop. As we can see from the above graph, from 175 to 300 TSVs the voltage is 

nearly constant. The voltage begins to fall rapidly after a specific number of TSVs which 

is 100 in the above case. Figure 2.36 shows the RDL map of die 2 after placing the TSVs 

 
Figure 2.36: Voltage plot of RDL on die 2 after TSVs are placed (Unit: Volt). 
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Similar logic is used for thermal simulations as well. TSVs provide high heat 

conducting paths; they remove heat away from the active regions in a die. For each 

particular die level the coldest node is found. The TSV nearest to the coldest node and all 

TSVs corresponding to that node in dies above that particular die are removed. TSVs are 

iteratively removed by considering the coldest region in each die until a given 

temperature threshold is reached.  Figure 2.37 shows the general steps in algorithm for 

thermal simulations. 

 
Figure 2.37: Steps for TSV removal algorithm in thermal simulation. 

 

Since there are 100 possible TSV positions per die, so the simulation starts with 400 

initial TSVs which are then iteratively removed till the temperature reaches a specified 

threshold. The threshold temperature chosen is 90
o
C. The algorithm is applied on the 

MSP optimized structure given in Figure 2.31(b).  
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Figure 2.38: Number of TSVs vs maximum temperature on the stack. 

 

Figure 2.38 shows the maximum die temperature versus number of TSVs. Figure 2.39 

shows the 3D structure of the complete stack before and after TSVs have been placed. 

We can see that as discussed in section 2.7 the maximum temperature of the 3DIC has 

decreased, but the minimum temperature is the same. From Figure 2.38 we observe an 

exponential increase in temperature as number of TSVs start to reduce. Figure 2.39(c) 

shows the cross-section of the bottom die after TSV insertion. The deep red/black areas 

are the low thermal conductivity (к) glue layer between bottom die and the die above it. 

These low к layers provide the most hindrance in the efficient conductivity of heat. As 

can be seen from Figure 2.39c, TSVs provide a good heat conducting path through these 

low к layers in the 3D stack. 

 
                           (a)                                                                (b) 
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(c) 

Figure 2.39: Thermal profile of the 4 die stack (a) after MSP, (b) after MSP and TSV 

placement, (c) cross section of the bottom die and glue layer above it. 

 

 

 

2.9 Summary 

In this chapter, a genetic algorithm based approach for DC IR drop and thermal 

optimization of a 3D stack is presented. We utilize GA optimization engine for 

minimizing temperature and voltage drop with fixed die power and TSV maps. The 

simulation results show that 20% improvement in temperature and voltage drop can be 

obtained. The optimization method can help different IC vendors optimize for thermal 

and voltage integrity of a 3D stack. The simulation results also indicate the importance of 

voltage drop and thermal co-optimization. A method based on matrix synthesis process is 

introduced. It is modified for a four die thermal optimization, which can be extended to 

more dies as well.  Both approaches above not only reduce the maximum temperature of 

the stack but also help in spreading heat by considerably reducing the thermal gradient. A 

TSV removal algorithm is introduced to minimize the number of TSVs that can be used 

to achieve a given voltage drop or temperature. The simulation results prove that not all 

TSV positions need to be occupied for best results. Hence reducing number of TSVs 

plays an important role in minimizing costs, while maintaining electrical and thermal 

integrity.  
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CHAPTER 3 

DESIGN EXCHANGE FORMATS 

   

3.1 Introduction 

 The emerging TSV technology enables Three Dimensional (3D) stacking of Integrated 

Circuits (ICs), which help to continue miniaturizing integrated systems and increasing 

their functionality. Due to the continuing growth of integration density, the power density 

of IC chips is expected to increase beyond 100 W/cm
2
 in 2016 according to the 

International Technology Roadmap for Semiconductors (ITRS) [28]. In order to reduce 

the power consumption and increase functionality, the power supply voltage of IC chips 

has been reduced to 1.2 V and below with the scaling of IC fabrication technology [29]. 

In particular, due to stacking of ICs together in the vertical direction, the power density of 

3D integrated systems is expected to become much larger than for the corresponding 2D 

system implementation.  

 To aid in a smooth paradigm change from 2D design to next-generation designs for 

3D ICs, it is necessary to develop standards for 3D IC design. The design of a 3D stack 

assumes that there are DRAMs, logic (chips), interposer, package and PCB which make 

up a whole system. In today’s industry scenario each component of the system is being 

designed by a different vendor. With different companies battling over patents and 

copyrights it is unlikely that the DRAM and logic vendor will be willing to share circuit 

level IP, detailed layout information, and the details of the material stack up in their chip.  

Thus the main purpose of a Design Exchange Format (DEF) is to permit sharing of 

information necessary for design by external parties without disclosing this IP.  
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 This chapter presents an initial effort towards prototyping an design exchange format 

for power delivery networks (PDNs) in 3D ICs. Steady state (DC) and thermal analysis is 

performed on a 3D stack to understand the parameters that may affect the exchange of 

different design parameters from one die to the other. The primary question that we try to 

address here is that- “given a set of stacked dies, what is the complete list of items of 

design information that any one die must know about the others, to ensure compatibility 

with each other?”  

 

3.2 Simulation Setup 

The main motivation behind this chapter is abstraction of the sensitive IPs of various 

chips. In order to facilitate this, two basic simulation problems are setup where the focus 

is on IR drop and heat dissipation. These two parameters are chosen here due to their 

interdependencies through joule heating. First a simulation is run with a full 3D stack and 

electrical and thermal properties are observed separately. In the second set of simulations 

a single die is simulated, where the simulations are run with some ‘information’ from the 

top die. With given inputs from the top die the same set of electrical and thermal 

parameters are observed as in the first set of simulations as shown in Figure 3.1. With 

results from two separate scenarios, the error or deviation is calculated. Since the vendor 

of die 2 needs to protect the IP from die1, they can pass a specific set of parameters for 

die 1, as illustrated in Figure 3.1(b). These parameters can be the total power 

consumption of die 2, the TSV distribution for TSVs going from die 1 to die 2 or the 

power map of die 2 in addition to total power consumption. 
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(a)                                                                  (b) 

Figure 3.1: Two sets of simulations used for calculating the error, (a) Full 3D 2 die 

simulation, (b) Single die simulation with some information passed from the top die. 

 

The error between the parameters is computed as  

 

                                                     
                         

           
                                                                                      

where P denotes parameters for a particular kind of simulation. For electrical 

simulation P is the voltage on die 1, while for thermal simulations it is the temperature on 

die 1. 

 

3.3 Simulation Parameters for electrical and thermal analysis 

A Finite Volume Method based solver was used for the simulation [22-24]. The 

simulation considered is for a two die stack connected to a PCB board through an 

interposer as shown in Figure 3.2. 

Two basic types of steady state simulations are used for comparison namely IR drop 

and thermal simulation. Since the simulations are steady state, the transient effects are not 

taken into account in any of the simulations. Electrical simulation setup only considers 

the IR drop from the voltage source to the end of TSVs. Effects of substrate, adhesives, 

PCB on the steady state voltage drop are neglected because they do not affect the steady 
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state end result for IR drop. This is equivalent to calculating the IR drop for just the 

voltage supply. However, these effects are taken into account in the thermal simulations. 

Electrical resistivities of materials other than conductors are very high, so that they can 

be neglected for IR drop calculations. However this is not true for their thermal 

resistivities. Hence ignoring them in thermal simulations can lead to large errors. 

 
Figure 3.2: Structural overview for simulation setup. 

 

3.3.1 Steady State (DC) Electrical Analysis 

 Figure 3.3 shows the details of structure used for electrical simulation.  

 
Figure 3.3: Structure used in electrical simulation. 
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Each part of the 3D stack contains one set of Redistribution Layers (RDL) and TSVs. 

The dies are connected in face- to- back configuration [6]. Hence no TSVs are required in 

die 2. The interposer is connected to the power plane through bumps in form of a uniform 

array. The two dies are connected to each other using micro bumps. A voltage source is 

used at the bottom corner as shown in Figure 3.3. Current sources are used to simulate the 

active devices. For a given amount of power and input voltage the required current values 

can be calculated. For the simulations a 1 V voltage source was used in the bottom left 

corner of the power plane.  

Figure 3.4 shows the layout of the RDL layers in each die and the interposer. It 

comprises of two layers of metal rows placed orthogonally on top of each other. Power 

and ground rows alternate in each layer. The corresponding power/ground rows in each 

layer are connected to each other through metal connectors which are referred as micro 

interconnects in Figure 3.4. For sake of simplicity ground vias are not taken into account. 

This kind of setup is analogous to considering the ground plane at infinity which is fine 

for DC analysis. The RDL layer at each level gives the flexibility to route the power from 

one part of the die to the other. All components including bumps, micro bumps and TSVs 

are rectangular in cross section. Table 2.2 in chapter 2 gives all the details about the 

structure used in the electrical stimulation. 
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Figure 3.4: Modeled RDL layer in the 3D Stack. 

 

The RDL layer has length (L) = 3 mm for the interposer and 1.1 mm for each of the 

dies. The thickness (T) of power/ ground conductors is 1 µm. The width (W) is 10 µm 

and the pitch (P), which is the gap between power and ground conductor is set to 50 µm. 

The TSV pitch used is 100 µm. 

3.3.2 Parameters for Thermal Analysis 

For thermal simulations, thermal properties of all the materials are considered. Each 

die consists of two portions, silicon dioxide insulator and a silicon substrate as shown in 

Figure 3.5. The interposer and the two dies are bonded together using an adhesive. The 
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power plane was used in the FR4 board to spread the heat. Power densities were defined 

for each die to replicate the effect of active devices. The board, substrate, and TSV 

dimensions were the same as that used for electrical simulations. For simulation purpose 

isothermal boundary conditions were used at the top to simulate ideal heat sink, with a 

constant temperature of 30
o
C. Convection boundary condition with a heat transfer 

coefficient 10 Wm
-2

K
-1

 was used on the board. Table 2.1 in chapter 2 provides the details 

of material properties used in thermal simulation. 

 
Figure 3.5: Structure used in thermal simulation. 

 

3.4. Simulations 

In electrical simulations top and bottom die have power consumption of 5W and 2W 

respectively and in thermal simulation the power densities of the two dies are taken to be 

1W/mm
2
 which represents a high heat density. For electrical simulations a 1V supply 

voltage is chosen. The error is calculated taking the voltage drop on die 1 as the 

reference. For thermal simulations, temperature on die 1 is chosen to be the reference. 

The error is calculated for each type of simulation in accordance with equation (2). 
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Electrical simulations 

The TSV maps used in IR drop simulations are shown in Figure 3.6. Map 1 

corresponds to the TSVs from interposer to die 1. Map 2 corresponds to the TSVs from 

die 1 to die 2. The TSV maps are chosen in a random manner and kept constant for each 

electrical simulation. The simulations were performed in the following order. First a two 

die simulation is performed observing the voltage on the die 1, followed by a single die 

simulation. For a single die simulation the information provided is the TSV map 2 and 

the power consumed by the die 2.  

   
(a)                                                                (b) 

Figure 3.6: TSV maps. (a) Interposer to die 1 (Map 1), (b) Die 1 to Die 2 (Map 2). 

 

Voltage was observed on the RDL layers of die 1 which is just below the active 

device. The voltage profile for a two die simulation is shown in Figure 3.7. The solid 

squares denote the TSV positions from interposer to die 1, while the hollow squares 

denote TSV positions from die 1 to die 2.  
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Figure 3.7: Voltage profile on the RDL layer of die 1. 

 

In the second set or single die simulation only die 1 is considered. The information 

that is shared is the TSV positions from die 1 to die 2 and the total power consumed by 

die 2. To simulate the effects of power being consumed by the top die, new current 

sources were added on the bottom die. Current sources are placed on top of these TSVs. 

With total power and voltage known, the total current was calculated. This current is then 

equally distributed on the TSVs. Figure 3.8 shows the single die simulation scenario and 

the resultant voltage map on die 1. 

  

 
(a) 
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(b) 

Figure 3.8: (a) Structure for one die simulation, (b) Voltage map of die 1. 

 

The error between the maps shown in Figure 3.9 gives the error when abstraction is 

applied, where the details of the RDL layer of die 2 is not included. 

  
Figure 3.9: The error map. (left) 2D, (right) 3D. 

 

There are a couple of observations that can be made based on the 2D error map. The 

error for absolute voltages is large where a hollow black square does not have a 

corresponding solid square at the bottom. This means, if there is no 1:1 correspondence 

between the TSVs the error tends to increase.  Since actual current consumption from 

TSVs is not known due to the abstraction of RDL layer of die 2, error is more significant 

at these positions. Also one can see that if a hollow square with no corresponding solid 
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square at bottom is surrounded by a group of solid squares, the error tends to decrease. 

We observe that the error is less at positions where there is TSV going from interposer to 

die1 (solid squares). So, adding more TSVs from interposer to die 1 tends to have an 

averaging effect on high error areas and reduces the error. From Figure 3.9 we can see the 

error is only 2 or 3 %.  So does that mean that we have successfully abstracted the data? 

The major concern in 3D ICs is voltage drop across various layers of a stack instead of 

the absolute voltage. Hence it will be more meaningful if error in voltage drop is taken 

into account. Until then the abstraction of data may not be complete. 

A more interesting result is seen when the error in voltage drop is considered instead 

of absolute voltages. Figure 3.10 shows the voltage drop for one die simulation. 

 
Figure 3.10: Voltage drop in a 1 die simulation (Units Volt). 

 

The surface plot shown in Figure 3.11 gives the error when the details of the RDL 

layer of die 2 are not passed to die 1. Die 1 uses equivalent current sources to simulate 

the effect of die 2. In Figure 3.11, the negative error indicates an over estimation of 

voltage drop while the positive error is an under estimation. We can see that the 

percentage error is very large as compared to the error in absolute voltage value. 



 60 

 
Figure 3.11: The error map for voltage drop. 

 

Another set of simulations was performed where the actual power map information 

shown in Figure 3.12a is shared between dies. The bottom die still has a uniform 

distribution. Since top half of the die consumes 80% of power hence 80% of the current 

was uniformly distributed among top half TSVs while performing a single die simulation. 

Since the top die consumes 5 W of power, hence its top half will consume 4 W drawing a 

total current of 4 A from a 1 V supply voltage. Let there be n TSVs in the top half of die 

2. So for a single die simulation all current sources at these TSV positions will consume 

an average of 4/n A of current each. 

. 
Figure 3.12: (a) power map of the top die, (b) power map of bottom die 
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Figure 3.13: Error (%) map when the power map is supplied from die 2. 

 

We see that there is a slight improvement in the error profile, with 5-10% error. This 

indicates there is critical data that is missing. The current carried by the TSVs in single 

die simulation is assumed to be uniformly distributed throughout, which most probably is 

not true.  

Two different methods are discussed here to equalize current based on the top die 

power distribution. Figure 3.14 shows the general RDL and TSV distribution on top of 

die1. 

 
Figure 3.14:  Setup 1 for current equalization 
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The top half die is consuming 4W (80%) out of the 5W of power. Now in two die case 

4W is distributed evenly among 50 current sources resulting in 0.08 A of current in each 

source. The current redistribution over TSVs is done on the basis of total current being 

carried by the left side group of original current sources. So for the top left dotted box let 

the current carried by each TSV be I A. The dots correspond to original current sources, 

while the square represent the TSVs going from die 1 to die 2. 

                              

          

Figure 3.13 shows the second setup for current equalization. 

 
Figure 3.15:  Setup 2 for current equalization. 

 

In setup 2, the method is to distribute the current in each TSV (square) according to 

number of original current sources (dots) around it. Current in each TSV is directed using 

the nearest TSV approach. If there are two of them then current is divided equally.  

Hence we assume that current from a current source will flow through its nearest TSV. 

For example, the top right corner TSV (square) will draw a large current because it has 

large number of current sources surrounding it (dots).  Figure 3.16 shows the error profile 

obtained from the two setups. 



 63 

 
Figure 3.16:  Error (in %) plots for (left) setup 1, (right) setup 2. 

 

As can be observed from Figure 3.16 that current carried by the TSVs plays a vital 

role in reducing the error. To confirm this hypothesis a simulation is performed here. 

Actual current from a two die simulation is fed as the current values for the TSVs in the 

single die simulation setup. Figure 3.17a illustrates the current distribution in TSVs. 

Figure 3.17b shows the error when these current values are used in a single die 

simulation. 
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Figure 3.17: (top) Current distribution plot in TSVs from die 1 to die 2 in a two die 

simulation, (bottom) error (%) plot when these current values are plugged in a single die 

simulation. 

 

From the current plot we can see that the current is 

• High:  where there is 1:1 correspondence between TSVs in different dies. 

• Medium: where the TSVs from die 2 to die 1(hollow) have some TSVs from die 

1 to the interposer (solid). 

• Low: where the TSVs from die 2 to die 1 are somewhat isolated. 

A final set of simulations is performed when the bottom die also has a non uniform power 

map as shown in Figure 3.12b. The results of the simulation are shown in Figure 3.18. 

 
           (a)                                                   (b) 
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(c) 

Figure 3.18: (a), Error (%)when only TSV map and total power consumption is given from 

die 2 to die 1, (b) Error (%) power map is also given and (c) Error (%) when current 

through TSVs is also given. 

 

Some of the key conclusions that can be made from the above simulations are that as 

more information is provided the error tends to reduce. Maximum error reduces as the 

power map information is provided by die 2 in addition to the total power consumption. 

Hence the vendor of die 1 can minimize the error in the estimation of the voltage drop on 

die 1 in the presence of die 2 without providing any vital information about die 2 if the 

user is provided with a power distribution profile of sufficient granularity by the vendor 

of die 2 in addition to total power consumed by die 2. The granularity of the power map 

in Die 2 ultimately determines the error. But, in order to significantly reduce the error 

current drawn by the TSVs should be known. If power map is provided in sufficient 

detail then currents can be calculated with enough accuracy. The power map profile can 

aid in deciding the number and position of TSVs to not only minimize voltage drop but 

also to ensure that maximum current limits of 1.5 X 10
11

 Am
-2

 through copper TSVs are 

not violated, which denotes the electromigration limit for copper. 
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Thermal Simulations 

The same set of simulations were performed with the thermal simulator. For a single 

die simulation the information passed were the TSV positions, power consumed, the die 

size and the die material used. The same power map was used for die 2 used as in the 

case of electrical simulations as shown in Figure 3.12. Figure 3.18 provides the TSV map 

used for thermal analysis. The dark squares represent TSVs going from interposer to die 

1, while the light smaller squares show TSVs from die 1 to die 2. 

 
Figure 3.19: TSV map for thermal simulation. 

 

For error calculations we use the temperature profile of die 1 for a complete two die 

simulation as shown in Figure 3.20. When TSV map and power map are not given die 1 

assumes uniform distribution of both based on total power consumption and total number 

of TSVs.  
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Figure 3.20: Temperature (in 

0
C) on die 1 for a complete 2 die simulation. 

 

From Figure 3.20 we can see that there are localized cold spots on die 1 where a TSV 

going from die 1 to die 2 is directly above a TSV going from the interposer to die 1 

(Circled spots). Since TSVs are the primary sources of heat removal from the dies, they 

conduct away all the heat from die 1 towards the heat sink on the top and towards the 

bottom resulting in cold spots at these locations. 

For single die simulations four possible scenarios were taken into account namely,  

1) That only the total number of TSVs and total power consumption of die 2 is passed 

from die 2 to die 1, 

2) The power distribution profile of die 2 is also provided  

3) The actual TSV map is also given with total power consumed and  

4) Power map of the die 2 and TSV map both are passed from die 2. No RDL information 

is shared in any of these scenarios. 

Error for four scenarios when bottom die has a uniform power map has been calculated 

and shown in Figure 3.21.  
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                                                  (a)                                                     (b) 

 
                                              (c)                                                     (d) 

Figure 3.21: When bottom die has a uniform power map. Error maps (White areas show 

high error, while black areas have low error). (a) No power map or TSV map is given, (b) 

When power map is given but no TSV map is given. (c) When TSV map is given but power 

map is not given and (d) when power map and TSV map is given. 

 

We can see that as more information is transferred from die 2 to die 1 the error reduces 

as it occurred in the case of electrical analysis. Not only does the absolute value of error 

change, but the error profile also varies along the die. The error is more sensitive to TSV 

map than the power map of the top die, since error reduction is more significant from 

Figure 3.21, 3.22b to Figure 3.21, 3.22c than from Figure 3.21, 3.22c to Figure 3.21, 

3.22d.  For a single die, in case of thermal simulations the RDL layer in die 2 is modeled 

as an effective metallized layer. 

Error for four scenarios when bottom die has a non-uniform power map is calculated and 

shown in Figure 3.22. 

 
                                                (a)                                                            (b) 
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                                               (c)                                                               (d) 

Figure 3.22: When bottom die has a non-uniform power map. Error maps (White areas 

show high error, while black areas have low error). (a) No power map or TSV map is given, 

(b) When power map is given but no TSV map is given. (c) When TSV map is given but 

power map is not given and (d) when power map and TSV map is given. 

 

 
Figure 3.23: Effective metallization used in single die thermal simulation. 

 

The effective metallization of the RDL layer is calculated as 

                                                                                   

Where к is the thermal conductivity and m is the percentage/ fraction of material 

present. Here no RDL information is passed. Both dies may use same RDLs, same 

number of metal layers or different metal layers and patterns. As long as the amount of 

metal used in the metallization layer is passed by die 2 vendor, the die 1 vendor can 

accurately estimate the temperature on his die. 
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Figure 3.24 show the temperature profile on top of die 1 for various equivalent 

metallization values. 

 
                                            (a)                                                       (b) 

 
                                              (c)                                                      (d) 

 
                                               (e)                                                      (f) 

 
(g) 

Figure 3.24: (a) SiO2=100%, Metal = 0%; (b) SiO2=99%, Metal = 1%; (c) SiO2=98%, Metal 

= 2%; (d) SiO2=95%, Metal = 5%; (e) SiO2=90%, Metal = 10%; (f) SiO2=85%, Metal = 

15%; (g) Error Vs metallization plot. 
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3.5 Discussion of Results 

For electrical simulations the exact TSV locations and total power consumption of die 

2 must be passed to die 1. With this information shared one can estimate the steady state 

electrical behavior of die 1 in the presence of die 2 as shown in Figure 3.11. Moreover, as 

shown in Figure 3.13 this estimate can be slightly improved if the actual power map of 

die 2 is also passed to die 1. But in order to considerably improve the voltage drop 

estimation, one must know the current passing through the TSVs as accurately as possible 

as shown in Figure 3.17b. 

For thermal simulations a larger set of information needs to be shared by die 2. 

Thermal profile of a die depends on all the material properties of the die, so sharing only 

the TSV positions is not sufficient. All material properties and dimensions of die 2 must 

be shared by die 2. Also power consumed by die 2 and total number of TSVs connecting 

die 1 and die 2 should be passed along. Simulation results in Figure 3.21a show that even 

if the actual TSV distribution or power distribution is not shared by die 2, one can get a 

good estimate of the temperature on die 1. However this estimate can be significantly 

improved if the actual power map and TSV map is also shared by die 2. This can be 

observed in Figure 3.21 b-d. 

Another conclusion inferred is that the error improvement is more significant when the 

bottom die has a non-uniform power map. This can be seen in Figure 18a-c for electrical 

simulations, when the error reduced from 80% to 0.9%. Whereas for thermal simulations, 

Figure 3.22 a-d shows that the error reduced from 20% to 9% when the bottom die had a 

non uniform power map. So looking at the thermal simulations, one can say that if a 10% 

error is tolerable then only the total power consumption of the top die is required if the 

bottom die has a uniform power distribution. On the other hand if the bottom die has a 
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non-uniform power map then only passing the total power consumption of the top die can 

result in large error. Hence the actual power map or the power distribution profile needs 

to be exchanged. Table 3.1 provides the general parameters that will be required for 

transfer of parameters from Die 2 to Die 1. 

Table 3.1: DEF parameters. 

Data in DEF IR Drop Thermal Analysis 

Power Total Power consumption of 

the top die 2 

Power map of die 2 with 

sufficient granularity.( That 

can be used to determine the 

current carried by the TSVs 

from die 1 to die 2) 

Total Power 

consumption of the top 

die 2 

Power map of die 2 

TSVs X, Y coordinates and height 

of TSVs, materials used in 

TSV 

X, Y coordinates and 

height of TSVs, 

materials used in TSV 

Materials  No die or interface material 

information is required 

Material properties 

(dielectric constant, 

thermal conductivity) 

used in the die and 

interface have to be 

specified. 

Ambient No ambient required Ambient properties 

(room temperature, 

convection coefficient) 

needs to be specified. 

 

3.6 Design Exchange Format 

For IR drop analysis, die 2 provides power map profile of sufficient granularity to Die 

1 along with voltage information. These can be in the form of blocks of power maps. Die 

1 uses this information to compute the current being drawn by each block. Manufacturer 
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of die 1 then creates the TSV distribution with (x,y) coordinates and dimension from Die 

1 to Die 2 and interposer and starts simulating the IR drop in Die 1 using the power map 

in Die 1. The voltage drop at the TSV at the top of Die 1 is then passed on to Die 2 along 

with (x,y) coordinates and dimension for Die 2 to ensure that the voltage drops are 

adequate for the functioning of Die 2. 

Hence, the vendors should provide with details on the position of the voltage and 

ground bumps, with the maximum allowed IR drop at each of the bump. The current 

profiles provided in the pin outs will enable the designer of the bottom IC to ensure that 

there is minimum overlap between the high current areas in the bottom IC based on the 

current map of the top IC. 

Similarly, for thermal simulations die 2 vendor provides the power map and the 

material properties used in die 2 to die 1. Die 1 vendor then creates a TSV distribution 

and simulates to get a temperature profile on top of die 1. This temperature profile on top 

of die 1 can be fed as a boundary condition to the simulator while simulating the 

temperature profile of die 2, to ensure that the temperature in die 2 does not exceed 

maximum permissible limits. 

So, the 2D power map of each die can be exchanged to facilitate accurate thermal 

analysis. The 2D power map along with the TSV density map (i.e. thermal conductivity 

map) of die 1 will allow designers of die 2 to obtain an accurate estimate of temperature 

behavior of the 3D stack. Therefore, the 2D power map is useful if higher accuracy 

thermal analysis of the 3D design is desired by vendors of any tier. 
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3.7 Summary 

From the simulations and analysis shown in this chapter it is clear that as more 

information is exchanged between the top and the bottom die, the vendor of the bottom 

die can estimate performance of his die in presence of the top die. For electrical 

simulations the TSV map and the power map need to be passed from die 2 to die 1. 

Additionally, the better granularity of the power map profile of die 2 provided to die 1, 

the smaller will be the error in computing the performance of die 1 in the 3D stack.  For 

thermal analysis a more specific set of parameters need to be passed, which include the 

material parameters and the metallization density in the RDL of die 2 in addition to the 

TSV and power map.  

Some error is bound to occur as actual current path across the RDL cannot be 

predicted with complete accuracy. Also the assuming uniform metallization in case of 

thermal simulation is highly idealized as metal traces are not distributed uniformly in an 

insulator in die 2.  

Moreover, as information regarding wiring, routing or RDL is not transferred the 

sensitive IPs of the dies can be protected.  
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

 

4.1 Conclusion 

Two fundamental issues of 3D IC design were covered in the thesis, namely 

pathfinding/optimization and standardization for heterogeneous IC integration. Both 

issues were evaluated using steady state thermal and electrical simulations. These two 

were considered because they are coupled due to Joule heating.   

First thermal and electrical optimization was performed resulting in improved thermal 

and electrical performance of the complete stack. The optimization considered a two die 

stack with both dies consuming equal power. For both electrical and thermal simulations, 

the bottom die power map was optimized while keeping the rest of the 3D structure 

unaltered. Such a scenario can occur if the dies in a stack are fabricated by two different 

vendors. Hence altering the properties (power map, TSV map) of the other die was 

restricted.  

Genetic algorithm was used for DC IR drop and thermal optimization and its 

efficiency was verified by applying it to a two die 3D stack. The simulation results 

showed 20% improvement in temperature and voltage drop after optimization. It is 

shown from the thermal optimization results that with a fixed TSV distribution, the best 

thermal results in a stack occur when the hotspots, which are produced by high power 

density blocks, are not vertically aligned in a stack. The simulation results also indicated 

the importance of voltage drop and thermal co-optimization. Hence if a vendor designs 

the die for low thermal gradient they might end up designing a die which results in a 
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large voltage drop in the other die. The optimization results presented can help different 

IC vendors share necessary and sufficient information amongst themselves for effective 

co-design for a complete 3D stack.  One possible application for co design can be 

optimizing the die for a particular objective. For example, evaluating the delay of an 

inverter for various optimized thermal and IR drop maps. 

A Matrix Synthesis Process (MSP) based algorithm was introduced which can be 

implemented for thermal optimization for any number of the dies in a 3D stack. The 

method is fast, memory efficient and can cover a variety of die sizes. Since it does not 

involve any thermal analysis, it is therefore inadequate in capturing the effect of 3D 

interconnects like TSVs and RDL layers in the dies. However the results do show that it 

is an effective approach for reducing thermal gradient when the 3D stack has a large 

number of layers. 

  Finally, a TSV Removal algorithm is proposed, which can capture the effects of TSV 

in a 3D stack. Based on the analysis it was concluded that not all TSV spots are required 

to maintain a particular voltage drop or temperature. Results from the proposed TSV 

removal algorithm demonstrated a method to achieve a minimum voltage threshold or 

maximum temperature limit while minimizing the number of TSVs. The proposed 

algorithm is flexible and can be tuned for any desired threshold level. Moreover it can be 

used to minimize TSVs for a particular die layer rather than the whole stack.  

The second issue taken into account in the thesis was formulating standards for 

information exchange between die vendors of a 3D IC. From the simulations and analysis 

shown in Chapter 3 for design exchange formats it can be concluded that sharing of 
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information between different die vendors is necessary for effective implementation  3D 

ICs.  

Based on the results it can be inferred that as more information is exchanged between 

the top and the bottom die, the vendor of the bottom die can accurately predict the 

functional parameters of their die inside a complete 3D stack.  

Granularity or detail of the power map profile of die 2 which is provided to die 1 

emerged as a critical factor in improving the error estimate in case of DC IR drop 

analysis. For the case of thermal analysis, the amount of metal used by die 2 proved to be 

of critical importance. In sharing of the abovementioned information between different 

vendors, information regarding wiring, routing or actual placement of active devices is 

not shared. Hence, the vendors can share adequate information without disclosing  their 

sensitive IPs .  

 

4.2 Future Work 

The power maps used in optimization for this thesis have uniform mesh, which is 

highly idealized. The optimization concept can be extended to non-uniform meshes as 

well.  Figure 4.1 shows a non-uniform mesh power map. Such a mesh not only captures 

non uniform power distribution but also captures the effect of active area that consumes 

power. Here Pi/Ai denotes power and area respectively. 



 78 

 
Figure 4.1: Power map with non-uniform mesh. 

 

With the above power map the proposed genetic algorithm can be used to optimized 

other cost related issues like die area and wire length.  

The MSP algorithm does not capture the effects of vertical alignment of hotspots in a 

3D stack.  Figure 4.2 shows one such case.  

 
Figure 4.2: Vertical alignment of hotspots in MSP. 

 

In Figure 4.2 the numbers denote the power densities and the shaded region shows the 

maximum sum sub matrix. We see that all high power density areas are located at the 

bottom right corner of the stack. This will result in a very high temperature around that 

region. A possible approach can be a post MSP process which swaps the submatrices 

such that the maximum sum sub matrix is not aligned as shown in Figure 4.3 
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Figure 4.3: Post MSP vertical re alignment of hot spots. 

The TSV optimization algorithm has a tendency to get stuck during thermal analysis if 

there is an insignificant change in the thermal profile after removing the TSV in a 

particular iteration. The algorithm can be modified to search for the next suitable node for 

the TSV removal so that it does not get caught in a loop.  

From Figure 4.4 a higher granularity power map will result in a better estimation of 

parameters, but can lead to less level of abstraction. Hence an extensive analysis can be 

performed from very coarse to very fine meshed power maps and by calculating the error 

thresholds for both electrical and thermal simulations. This will lead to a large data base 

which can aid in building the DEF. 

 
Figure 4.4: Different granularity levels of the power map. 

 

Simulations performed in Chapter 3 can be performed for inductive and capacitive 

drops as well. Inductive drops can be difficult to model because current return path needs 
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to be defined, which was omitted in the DC IR drop analysis. This can result in a large 

problem both for computation and time consumption. One way to tackle the problem is to 

convert inductive noises in time domain to impedances in frequency domain. Such an 

interface standard may require only impedance values to be shared between the dies. 

For thermal aspect, creating a thermal sensitivity map can be of importance. This map 

will be generated for each die to inform the sensitivity of “critical parameters” at different 

locations of a die. The critical parameters can be performance, noise margin, and/or 

power (static power). Improvements can be made in the current thermal analysis tool 

such that the temperature map of die 1 can be used by designers of die 2 as the boundary 

condition during thermal analysis of die 2. This can result in complete abstraction of die 2 

parameters. Even the material information or effective metallization parameters need not 

be provided in the exchange format. 
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APPENDIX A 

ELECTRICAL AND THERMAL TOOL: POWER ET 

 

 The tool used is a three dimensional DC IR drop solver for simulation of 3D power 

delivery networks. The tool uses Finite Volume Method (FVM) [22-24] with non-

uniform grid. The tool has the capability to solve for inhomogeneous power delivery 

networks. The tool is able to solve for at least 10 million unknowns on a 3GB machine. 

The thermal analysis tool also uses FVM to solve the steady state heat equation. Both 

Joule heating effect from the PDN and convection effect are considered. In this thesis 

Joule heating effect was not considered.  

 Implementation   : Matlab 

 Platform     : Windows 

 Input Format    : ASCII text file (.txt) 

 Output Format   : Matlab Data file (.mat) 
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APPENDIX B 

INPUT FILE FORMAT 

 

 There are four blocks in the file namely material parameters, object parameters, 

electrical excitation and thermal excitation. The first number after the labels (shown in 

red) in each body denoted the number of columns in the body. All individual blocks are 

ended with three ‘#’ signs. Materials in all the blocks should correspond to the same 

material number in material parameters. All units are in millimeters.  

Object parameters: 

Every object is a cuboid. The vectors specified denote the two ends of the diagonal of the 

cuboid. 
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Electrical excitation: 

Type = 0 for voltage excitation (Unit: Volt). 

Type = 1 for current excitation (Unit: Ampere). Negative sign is for current consumed 

and positive for current delivered. 

Thermal excitation: 

Type = 0 for constant temperature boundary condition (Unit: 
o
C). 

Type = 1 for power density. When z1=z2 then surface power density (Unit: W/m
2
). When 

z2>z1 then volumetric power density (Unit: W/m
3
). 

Type = 3 for convection boundary condition (Unit: W/m
2
K).  

While defining surface excitations care should be taken that surface excitation should not 

go beyond the structure definition in the object parameter block. 

 Figure below shows the structure created by the above input file. 
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