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CHAPTER I

INTRODUCTION

The rapidly changing world is in constant pursuit of portable, cheap, power efficient,

reliable, high-speed analog/digital electronics, which requires not only higher-level

integration of active and passive devices but also faster clock speed in the system.

Using deep sub-micron and multilayer packaging technologies, the feature size of

both transistors and interconnects has been reduced up to the material and process

limitations of integration [1]-[8]. At the same time, the clock speed has been increased

well above the multi-GHz frequency range in order to perform many functions within

a small time interval.

As the complexity of interconnects and packages increases and the rise and

fall time of the signal decreases, the previously neglected electromagnetic effects of

distributed passive devices, which lead to signal and power integrity issues, are becom-

ing an important factor in determining the performance of gigahertz systems [9]-[12].

Some examples of distributed passive devices are inductors, capacitors, lossy coupled

transmission lines, and power distribution networks, as shown in Figure 1.

The electromagnetic behavior of interconnects and passive devices can be ex-

tracted using an electromagnetic simulation or from measurements. This behavior

is available as frequency dependent data that represent scattering, admittance or

impedance parameters. This information can be represented as a black box, which

captures the behavior of the passive structure at the input/output ports. This black

box representation is called a macromodel in this dissertation. For successful integra-

tion of the electromagnetic behavior of distributed networks into circuit simulators for

design and analysis of gigahertz systems, it is important to investigate the properties
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Figure 1: Passive devices

of the macromodel and to propose efficient methods for representing the frequency

response of distributed networks as a macromodel, which is the focus of this disser-

tation.

1.1 Macromodels

There has been an increasing demand for integrating the electromagnetic behav-

ior of passive structures into conventional computer-aided design (CAD) tools so

that designers can take into account the electromagnetic effects during the design

and analysis of multi-GHz electronic systems [13]-[15]. The CAD tools include non-

linear circuit simulators, which solve the modified nodal analysis (MNA) matrix equa-

tions [16], or electromagnetic simulators, which solve Maxwell’s equations [17]. Two

major methodologies for integrating the electromagnetic behavior into CAD tools

have been studied by various authors in the past [18], [19]. One methodology is to

integrate lumped and/or non-linear circuits into electromagnetic simulators based on

the Finite-Difference Time-Domain (FDTD) method [20], Transmission Line Matrix

2
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(TLM) method [21], or Partial Element Equivalent Circuit (PEEC) method [22]. This

requires solving a large number of unknowns, but provides detailed information of the

electromagnetic behavior of the structure. The other prominent methodology is to

integrate the electromagnetic behavior of passive devices at the input/output ports

into circuit simulators [23]-[47]. This black box representation that captures the elec-

tromagnetic behavior at the input/output ports is called a macromodel, as shown

in Figure 2. The macromodel can be a two port or a multiport device, as shown in

Figure 2.

The macromodel can be constructed using two methods. One method is to

construct the macromodel from the moments that are the characteristics of the cir-

cuit. In [23]-[32], explicit or implicit moment-matching techniques have been used

to construct the macromodel by generating and matching the moments using Pade

approximation. The other method is to capture the frequency dependent data using

a macromodel after extracting the port behavior of the circuit either from an elec-

tromagnetic simulator or from measurements. In [33]-[47], the macromodel has been

constructed by capturing measured or simulated frequency data using least squares

approximation [33]-[41] and vector fitting [42]-[47]. In either case, the purpose of the

macromodel is to replace the electromagnetic behavior of the circuit with a reduced

equivalent model that not only preserves the characteristics of the original passive

circuit at the input/output ports but also captures the electromagnetic behavior as

3



accurately as possible.

1.2 Types of Macromodels

Based on the application, the macromodel can be categorized as follows: 1) Scalable

macromodels for implementing design libraries, 2) Passive macromodels for time-

domain simulation of circuits, 3) Broadband macromodels that capture the dynamic

response of structures over a broad frequency range, and 4) Non-linear macromodels

for the representation of active devices.

1.2.1 Scalable Macromodels

The demand for portable wireless devices requires higher-levels of integration at low

cost. This has led to the integration of electrical components, such as resistors, capac-

itors, and inductors, into the silicon or packaging substrate [1]. Off-chip components

currently being used require a large amount of real estate and consume large levels

of electrical power with high manufacturing cost. On the other hand, embedded pas-

sive components in multilayer configurations reduce the physical size of components,

reduce the manufacturing cost, and provide a good alternative to discrete surface

mount components for high-density integration. Hence, research programs are un-

derway for replacing off-chip passive components with embedded passive components

using multilayer technologies at the chip, package, and board levels [56], [57], [58].

Specifically, embedded inductors have been investigated for achieving useful values of

inductance and quality factor by changing the layout dimension and topology using

multilayer technologies [52], [53], [58]. As an example, Figure 3 shows the top view of

an one-port embedded spiral inductor with design parameters such as the conductor

width (W), conductor spacing (S), inner diameter distance (D), width of bridge (B),

via diameter distance (V), and number of turns (N).

In addition, Figure 4 shows the cross-section of the embedded inductor with

additional design and material parameters such as the dielectric thickness (T), copper
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Figure 3: Embedded spiral inductors having many design parameters

thickness (C), dielectric constant (E), and loss tangent (L). These additional param-

eters are varied depending on the multilayer packging technology used. In Figure 4,

the spiral embedded inductor is on the first layer and the bridge connecting the inner

port to electrical ground is on the second layer. The electrical response of the induc-

tor shown in Figures 3 and 4 is dictated by the parasitics of the structure. Hence,

an electromagnetic simulator is required for extracting the frequency response of the

structure.

Often times, RF designers need to optimize the layout of the inductor and

choose the materials for different applications. This can be a cumbersome task due

to the complexity of the structure, leading to long simulation times based on the grid

size used. Instead, the structure can be parameterized by mapping the parameters to

the electrical response at the input/output ports. This is called a scalable macromodel

since the electrical response can be obtained by either scaling the physical dimensions

of the device or varying the electrical parameters of the materials used. The scalable

macromodel is useful in developing design libraries for RF passive devices.
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Figure 4: Cross section of the inductor on a laminate substrate

1.2.2 Passive Macromodels

Unlike scalable macromodels, the macromodel that enables the integration of the fre-

quency response of passive devices or interconnect networks into time-domain simula-

tors such as SPICE (Simulation Program with Integrated Circuit Emphasis) is called

a passive macromodel in this dissertation. Hence, passive macromodels provide for

frequency to time translation within the framework of a time-domain simulator.

Since distributed interconnect networks are inherently passive, the macro-

model has to satisfy the stability and passivity conditions for enabling time-domain

simulation. If a macromodel does not satisfy the stability and passivity conditions,

the macromodel combined with a stable circuit can generate an unstable time-domain

response and can behave as an amplifier or an oscillator during time-domain simu-

lation [19], [32], [46]. In Figure 5, when a two-port non-passive macromodel of an

interconnect was terminated with a 50 Ω resistor, an oscillating time-domain wave-

form was produced during transient simulation in SPICE [32], which is non-physical.

Hence, the macromodel needs to satisfy the stability and passivity conditions. It is
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Figure 5: Violation of passivity for an interconnect [32]

important to note that the scalable macromodel can be embedded into time-domain

simulators by parameterizing the passive macromodel.

In this dissertation, the passive macromodel is limited to low order systems

to differentiate it from the broadband macromodel, which is the topic of the next

section.

1.2.3 Broadband Macromodels

Realistic distributed interconnect networks operating over a broad frequency range

often contain hundreds of resonant peaks and the amplitude variation of the frequency

response can be large. As an example, Figure 6 shows the admittance parameter (Y14)

of a lossy coupled transmission line, which is representative of a distributed network

over a broad frequency range. The representation of the frequency response in Figure

6 requires a high order macromodel with hundreds of resonant poles. This can be a

cumbersome task due to the large amplitude variation and the broad frequency range

to be covered, and can lead to numerical problems. Hence, ensuring accuracy along
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Figure 6: Frequency response of a lossy coupled transmission line

with stability and passivity over a broad frequency range becomes a challenge.

In this dissertation, the broadband macromodel is a passive macromodel for

high order systems. This macromodel is suitable for representing the parasitic behav-

ior of distributed interconnect networks in time-domain simulators for passive devices

supporting fast rise and fall time.

1.2.4 Non-linear Macromodels

Simulation of interconnect networks requires accurate models of non-linear devices at

the input/output ports. Since simulation of transistor level circuits can be cumber-

some, the non-linear circuits can be represented using a macromodel. This is shown in

Figure 7, where the static and dynamic relationship between the output current and

output voltage can be captured using a non-linear macromodel [70]. The non-linear

macromodel is a black box representation of the transistor circuit, as shown in Figure

7. Though the non-linear macromodel is important for the simulation of accurate
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waveforms on interconnect structures, this dissertation is limited to the generation of

macromodels for passive devices.

1.3 Properties of Macromodels

The basis for the construction of the macromodel is a rational function, which is

defined by Webster’s dictionary as “a quotient of two polynomial functions”, where

the polynomial is defined as “a mathematical expression of one or more algebraic

terms, each of which consists of a constant multiplied by one or more variables raised

to a nonnegative integral power.” Using the rational function, the frequency response

H(s) of any linear time-invariant passive network can be represented as:

H(s) =

NS∑
ns=0

anss
ns

DS∑
ds=0

bdssds

(1.1)

where s = jω, ω is the angular frequency in radians per second. In Equation (1.1),

H(s) can be scattering, admittance, or impedance parameters generated from an

electromagnetic simulation or measurements. The goal of solving Equation (1.1) is to

represent the frequency response H(s) as a rational function by computing the orders
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NS and DS and the coefficients ans and bds of the numerator and denominator,

respectively.

1.3.1 Real Coefficients

Since any time-domain waveform f(t) is real, constraints need to be enforced on the

coefficients of the rational function. If the Fourier transform of f(t) is defined as F (s),

the Fourier transform of f ∗(t) is F ∗(−s), where ∗ is the complex conjugate operator

[67]. Since f(t) is real, F (s) = F ∗(−s). For enabling time-domain simulation, the

rational function therefore has to satisfy the constraint H(s) = H∗(−s) in Equation

(1.1), which requires real coefficients for the rational function.

1.3.2 Causality

The causality condition requires that if a physical device having two ports has a

finite length, the signal launched at one port appears at the other port after a finite

time interval. If the causality condition is violated, a spurious time-domain waveform

can result prior to the finite travel time of the signal. As the rise and fall time of

the signal decreases, the electrical length of interconnects becomes comparable to

the wavelength at the maximum operating frequency of the device [9]. Therefore,

delay and causality become important during time-domain simulation since spurious

glitches prior to signal arrival can cause the false transition of the circuit.

1.3.3 Stability

The stability condition requires that for a stable system, the output response be

bounded for a bounded input excitation [59]. Hence, the rational function represent-

ing a stable system has to satisfy the following stability constraints: 1) the poles lie on

the left half of the s-plane, where the poles are the roots of the denominator polyno-

mial of the rational function, 2) the rational function does not contain multiple poles

along the imaginary axis of the s-plane, and 3) the difference between the numerator
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and denominator orders of the rational function does not exceed unity, implying that

|NS −DS| ≤ 1. For time-domain simulation, the rational function has to satisfy the

stability condition.

1.3.4 Passivity

The passivity condition requires that a passive circuit does not create energy [19], [32],

[46]. The passivity conditions for a multiport network [G(s = σ + jω)] are twofold,

namely, 1) [G(s∗)] = [G∗(s)] for all s, where * is the complex conjugate operator and

2) [G(s)] is a positive real matrix, i.e., the product z∗T [GT (s∗) + G(s)]z ≥ 0, for all

s with Re(s) > 0 and any arbitrary vector z. When the rational function matrix

[H(s)] is used, these conditions translate into the following passivity constraints: 1)

[H(s)] does not contain poles on the right half of the s-plane, 2) [H(s)] does not have

multiple poles on the imaginary axis of the s-plane, 3) the coefficients of [H(s)] are all

real, and 4) the real part of [H(s)] must be positive semi-definite for all frequencies,

implying that the eigenvalues of Re[H(s)] are positive or zero for all frequencies.

Among the above constraints, the first and second constraints are included as part

of the stability condition and the third constraint is equivalent to the constraint for

real coefficients described earlier. Therefore, the passivity condition needs to ensure

real coefficients and satisfy the stability condition. In addition, the eigenvalues of the

real part of the rational function matrix must be all positive.

1.4 Issues in the Construction of Macromodels

This section discusses several issues that need to be handled during the automated

construction of scalable, passive and broadband macromodels.
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1.4.1 Scalable Macromodels

During the manufacturing of embedded passive devices, there are several undesirable

manufacturing variations due to changes in the mask film resolution, alignment be-

tween layer masks, and material processes for embedded passive components. These

variations result in physical and electrical variations of design parameters such as

thickness and dielectric constant. To alleviate these problems, RF designers prefer to

parameterize these variations using design libraries. However, as embedded inductors

become complex and the operating frequency increases, it is difficult to capture the

distributed parasitic behavior of inductors with many variations.

Over the last decade, macromodeling techniques have been used for building

design libraries for embedded passive devices. In [36], the macromodel based on

the rational function was successfully applied for capturing the frequency response

of embedded inductors using full-wave electromagnetic simulators and measurements.

In [54], a methodology using the generalized multidimensional rational function, which

provides a mapping between the frequency response and the physical parameters, was

developed. This was successfully applied to microwave devices in [54]. Using the

multidimensional function, the frequency response can be represented as:

S(s, p1, p2, p3, · · · , pn) =
Pnum(s, p1, p2, p3, · · · , pn)

Pden(s, p1, p2, p3, · · · , pn)
(1.2)

where Pnum(s, p1, p2, p3, ..., pn) and Pden(s, p1, p2, p3, ..., pn) are arbitrary polynomials

of s = jω and design parameters p1, · · · , pn.

For the construction of design libraries of embedded passive components fab-

ricated using multilayer technology, it is important to construct the scalable macro-

model that not only captures the distributed parasitic behavior but also provides a

mapping between the frequency response and the design parameters of the device.

If the scalable macromodel is constructed using measurements, test vehicles having

several embedded inductors with design variations are necessary. If electromagnetic
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simulators are used to construct the scalable macromodel, the number of frequency

samples required to represent the frequency response becomes an important param-

eter. As the grid size decreases and the frequency samples increase, the simulation

time increases, which limits the construction of design libraries. Hence, there are

clear needs for developing adaptive methods that reduce the frequency samples re-

quired during the construction of scalable macromodels. It is important to note that

if time-domain simulation is not required, there are no constraints to be satisfied

during the construction of scalable macromodels except that the frequency response

using bandlimited data be accurately interpolated. In this dissertation, the scalable

macromodel has been used both for interpolation and extrapolation of frequency data.

1.4.2 Passive Macromodels

For time-domain simulation, a passive macromodel needs to satisfy the conditions of

real coefficients, stability, and passivity. The constraint for real coefficients can be

satisfied by construction, while the stability condition can be satisfied by ensuring that

the poles of the rational function lie on the left half of the complex s-plane. However,

satisfying the passivity condition is more difficult since it needs to be guaranteed over

infinite frequency bandwidth.

If common poles are used to represent the rational function matrix [H(s)]

of a multiport passive circuit, methods developed for guaranteeing passivity of the

macromodel can be categorized into two techniques, namely, indirect [32] and di-

rect [46]. In [32], the authors have proposed a method that computes the frequency

response of the macromodel, searches the frequency band of violation, and compen-

sates the non-passive macromodel by inserting additional rational functions, as shown

in Figure 8(a). In [46], an eigenvalue approach has been discussed, which enforces

passivity of the macromodel by directly compensating the poles and residues of the

rational function using linearization and constrained minimization through Quadratic

13



Programming, as shown in Figure 8(b). In Figure 8, the small dotted line is the fre-

quency response of the macromodel and the solid line is the frequency response of

the compensated macromodel.

However, both methods, which are based on searching the frequency band

of violation, are computationally expensive and use discrete, band-limited frequency

samples for enforcing passivity of the macromodel. Hence, the generated macromodel

can still violate passivity over continuous frequency and outside the band-limited

frequency response since the macromodel is tested at discrete frequency samples, as

shown in Figure 8.

Recently, the rational function matrix [H(s)] with non-common poles have

been used for representing the passive macromodel for multiport circuits [69]. Us-

ing the rational function matrix with non-common poles, a compensation method

has been proposed, which can detect the frequency band violating passivity using

the associated Hamiltonian matrix [69]. Since the method can detect the frequency

bands with passivity violation for continuous frequency and over infinite frequency

bandwidth, the passive macromodel can be constructed. This method shows promise

but has been tested on relatively simple examples until now.

1.4.3 Broadband Macromodels

For capturing the moments or the frequency response of distributed interconnect net-

works, several methods have been proposed using Pade approximation [23]-[28], least

squares approximation [33]-[41], and vector fitting [42]-[47]. However, the asymptotic

waveform evaluation (AWE) method based on Pade approximation has presented in-

stability problems in the past, meaning that the accuracy of the macromodel is sensi-

tive to small changes in the moments during the construction of the macromodel [26].

Similarly, the instability problem has also been discussed when least squares approx-

imation has been used to represent frequency data as a rational function using power
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series [38]. This problem can be improved using frequency scaling, which normalizes

the frequency term during matrix construction. However, it has been shown that

frequency scaling does not result in significant improvement in the approximation

beyond 20-30 poles, as illustrated in [39]. Hence, the author in [38] has proposed the

Chebyshev polynomial expansion to approximate the frequency response using the

orthogonal property of Chebyshev polynomials, which increases the accuracy of the

coefficient vectors of the macromodel. However, Chebyshev polynomials need to be

converted into the pole-residue representation for integrating the model into circuit

simulators [38]. In [45], an iterative method called vector fitting has been proposed

for increasing the accuracy of stable poles in the rational function.

However, since the methods presented in [23]-[47] used a single matrix for the

construction of the macromodel, they pose a problem for distributed interconnect

networks, which often contain hundreds of poles. This is due to the ill-conditioned

matrix problem, which often translates to long computational times and large com-

putational memory. Therefore, the ill-conditioned matrix problem arising during the

construction of the macromodel still needs to be solved when the frequency response

of distributed networks needs to be approximated.

1.4.4 Model Order Reduction

For fast time-domain simulation, the purpose of a passive macromodel is to replace

the electromagnetic behavior of the circuit with a reduced order model at the in-

put/output ports. Hence, several methods for reducing the order of passive macro-

models have been proposed [23]-[47]. If a macromodel with order 2N is reduced,

the macromodel cannot capture the N pole pairs present in the frequency response.

Therefore, it is important to determine the dominance of poles for reducing the order

of the macromodel.

For the construction of scalable, passive, broadband macromodels, the orders
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Solution area

Figure 9: Minimum eigenvalue tracking method vs. the order NS

NS and DS of the rational function in Equation (1.1) need to be estimated. In [48],

the order of the rational function has been estimated by using the minimum eigen-

value tracking method, as shown in Figure 9. In Figure 9, the minimum eigenvalue

has been plotted as a function of the order NS, which provides the optimum solution

area where a non-trivial solution exists. However, this method is limited to low or-

der systems due to the ill-conditioned matrix problem associated with least squares

approximation, as discussed later in Chapter 4. Another method for estimating the

order of the rational function is to estimate the number of resonant peaks in the

frequency response, since an accurate representation for a response with N resonant

peaks requires a macromodel with order 2N in Equation (1.5). However, this method

requires a manual calculation of the number of resonant peaks in the frequency re-

sponse. Hence, there are clear needs for the automated estimation of the order of

scalable, passive, broadband macromodels during the construction of macromodels.

17



1.5 Numerical Approximation

The rational function in Equation (1.1) can be written in three forms as follows:

polynomial form, pole-zero form, and pole-residue form. Equation (1.1) is a polyno-

mial representation using a power series expansion. By computing the roots of the

numerator and denominator polynomials of Equation (1.1), the polynomial form can

be rewritten in the pole-zero form as:

H(s) = k

∏
ns

(s− µns)

∏
ds

(s− ϕds)
(1.3)

where the complex values ϕds and µns are the poles and zeroes of the rational function,

respectively. There are two types of roots for the polynomials, real and complex.

Based on the constraint for real coefficients of the rational function, the complex

roots must always occur in complex conjugate pairs. Hence, the poles and zeroes in

Equation (1.3) are real or occur in complex conjugate pairs. In addition, it is assumed

that the root is simple and non-overlapping [23]-[47].

Equation (1.1) can also be rewritten in the pole-residue form by computing

the roots of the denominator polynomial and its residues as:

H(s) =
∑

ds

rds

s− pds

+ d (1.4)

where the complex values pds are the poles of the rational function and the complex

values rds and d are the residues of the rational function.

1.5.1 Least Squares Approximation

As mentioned earlier, Equation (1.1) cannot be used until the integer orders NS

and DS and the real coefficients ans and bds are determined. Equation (1.1) can be

rewritten in the form:

NS∑
ns=0

anss
ns −H(s)

DS∑

ds=0

bdss
ds = 0 (1.5)
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For a given H(s) from either measured or simulated data, which represents the fre-

quency response of a one-port network, Equation (1.5) can be written as a matrix

equation [48]:

[A]




a

b


 = [0] ⇔ [A] [x] = [0] (1.6)

where the matrix [A] is given by

[A] =




Re

{
NS∑

ns=0

sns
1

}
−Re

{
H(s1)

DS∑
ds=0

sds
1

}

Im

{
NS∑

ns=0

sns
1

}
−Im

{
H(s1)

DS∑
ds=0

sds
1

}

...
...

Re

{
NS∑

ns=0

sns
k

}
−Re

{
H(sk)

DS∑
ds=0

sds
k

}

Im

{
NS∑

ns=0

sns
k

}
−Im

{
H(sk)

DS∑
ds=0

sds
k

}




In Equation (1.6), each row represents a frequency sample in the matrix [A].

The vectors [a] and [b] in Equation (1.6) are real coefficient vectors of the numer-

ator and denominator, respectively. After pre-multiplying Equation (1.6) with the

transpose of [A], Equation (1.6) becomes:

[A]T [A] [x] = [0] (1.7)

which can be written as an eigenvalue equation [36], [48], [49] in the form:

[A]T [A] [x] = λmin [x] (1.8)

where λmin is the minimum eigenvalue of the matrix and the superscript T is the

transpose operator. This method for solving Equation (1.8), which was proposed in

the past by Choi, et al. [48], is called the eigenvalue method in this dissertation. To

solve Equation (1.8), the computation of the real coefficient vector [x], which contains

the coefficient vectors [a] and [b] of the rational function, requires the estimation of

the integer orders, NS and DS. Once the orders are determined, the eigenvector [x]
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related to the minimum eigenvalue λmin can be computed. The stability can now be

enforced on the denominator coefficient vector [b] of the eigenvector [x] in Equation

(1.8) by applying the stability constraints. Using the root finding method [68], the

stability constraints have been enforced by computing all the poles of the rational

function and retaining only the stable poles. The stable poles can be real or complex

conjugate poles, but it has been assumed that the pole is simple or non-overlapping

in this formulation.

For computing the residues corresponding to the stable, common, real and

complex conjugate poles, the matrix [A] in Equation (1.6) can be reformulated as

Equation (1.9) using the pole-residue form in Equation (1.4).



















=



























































−
−+−

−
+−

−
−







−
−+−

−
+−

−
−







−
−+−

−
+−

−
−







−
−+−

−
+−

−
−

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

0

0

0

0

1
)(0

)()(

2

)(

)(2

)(

1
Im

)(01
)()(

2

)(

)(2

)(

1
Re

)(0
)()(

2

)(

)(2

)(

1
Im

)(01
)()(

2

)(

)(2

)(

1
Re

1

1

1

1

2222
1

2222

11
1

1
22

1
22

1

1

1

1
1

1
22

1
22

1

1

1

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

η
δ

ϕ

β

α

γ

tt
k kt

t

n ninrt

ni

n ninrt

nrt

m mt

t
k kt

t

n ninrt

ni

n ninrt

nrt

m mt

k kn ninr

ni

n ninr

nr

m m

k kn ninr

ni

n ninr

nr

m m

sGs
ps

s

pps

p

pps

ps

ps

sG
ps

s

pps

p

pps

ps

ps

sGs
ps

s

pps

p

pps

ps

ps

sG
ps

s

pps

p

pps

ps

ps

(1.9)

In Equation (1.9), the residues can be real residues γm for real poles pm,

complex conjugate residues αn± jβn for complex conjugate poles pnr± jpni, and real

residues ϕk for real poles pk. In addition, Equation (1.9) consists of a constant residue

δ, a linear frequency dependent residue η, and the frequency response G. In Equa-

tion (1.9), the real and imaginary parts are separated to ensure that the coefficients

of rational functions are always real. For a multiport network containing common

poles, the residues for each port are constructed independently using Equation (1.9).

Equation (1.9) is also used in vector fitting [45] by moving the column vector of the

frequency response G into the right side of Equation (1.9).
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1.5.2 Vector Fitting

In [36], the coefficients of the rational function in Equation (1.1) have been computed

after constructing a linear matrix equation and solving the eigenvalue problem. How-

ever, since the power series expansion inherently generates an ill-conditioned matrix,

the solution using the eigenvalue method can generate inaccurate poles. Therefore,

the method based on the least squares approximation is limited to low order systems

having a few poles, which will be discussed in later chapters. One prominent method

for overcoming the numerical limitations is an iterative method called vector fitting,

which iteratively extracts accurate stable poles of the rational function [45].

The fundamental formulation for vector fitting using the pole-residue form of

the rational function can be written as:

(
DS∑

ds=1

rds

s− pds

+ d + es

)
=

(
DS∑

ds=1

Rds

s− pds

+ 1

)
H(s) (1.10)

where the residues rds and Rds are the unknown values to be computed using the

given poles pds of the rational function. The left part of Equation (1.10) also has a

constant residue d and a linear frequency dependent residue e, where d and e are the

unknown real values. Depending on the application, these two residues are included

in the formulation [45].

As an initialization step, the method requires the estimation of the order DS

and the stable poles pds of the rational function in Equation (1.10). Once the initial

poles are selected, the method computes the residues using the least squares approxi-

mation, as shown in Equation (1.9). For extracting new poles in the subsequent step

from the residues Rds, Equation (1.10) can be rewritten in the pole-zero form as:

e

DS+1∏
ds=1

(s− zds)

DS∏
ds=1

(s− pds)

=

DS∏
ds=1

(s− Zds)

DS∏
ds=1

(s− pds)

H(s) (1.11)

where zds and Zds are the zeroes of the rational function in the left and right side of the
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equation, respectively. After cross-multiplying
DS∏

ds=1

(s− pds) on both sides, Equation

(1.11) becomes:

e

DS+1∏

ds=1

(s− zds) =
DS∏

ds=1

(s− Zds)H(s) (1.12)

Rewriting Equation (1.12), the rational function H(s) can be represented in the pole-

zero form as:

H(s) = e

DS+1∏
ds=1

(s− zds)

DS∏
ds=1

(s− Zds)

(1.13)

where the zeros zds and Zds in Eq. (1.11) become the zeros and poles of the rational

function, respectively, and the poles Zds are used in the following step. During the

iteration process, the unstable poles of Zds in Equation (1.13) are appropriately modi-

fied for satisfying the stability condition. After a few iterations from Equations (1.10)

to (1.13), the vector fitting method extracts accurate poles and residues provided that

the poles are selected appropriately in the initial step. For faster convergence and ex-

traction of stable poles, the authors in [45] have recommended that the initial stable

poles be complex conjugate poles.

1.5.3 Multiport Approximation

This section begins by considering an arbitrary N -port network. In general, any linear

time-invariant passive system for a N-port network can be represented as:

[H(s)] =




H11(s) H12(s) · · · H1N(s)

H21(s) H22(s) · · · H2N(s)

...
...

. . .
...

HN1(s) HN2(s) · · · HNN(s)




(1.14)

where s = jω, ω is the angular frequency in radians per second. The transfer func-

tion matrix [H(s)] can be the scattering function matrix [S(s)] capturing scattering

parameters [S], admittance function matrix [Y (s)] capturing admittance parameters

[Y ], or impedance function matrix [Z(s)] capturing impedance parameters [Z].
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If the functions Hij(s) of the transfer function matrix [H(s)] represent a com-

mon pole system using rational functions, Equation (1.14) can be written as:

[H(s)] =
[Q(s)]

P (s)
=




Q11(s) Q12(s) · · · Q1N(s)

Q21(s) Q22(s) · · · Q2N(s)

...
...

. . .
...

QN1(s) QN2(s) · · · QNN(s)




P (s)
(1.15)

where the common denominator polynomial P (s) is

P (s) =
DS∑

ds=0

bdss
ds = [s]DS [b]TDS (1.16)

In Equation (1.16), DS is the order of the denominator polynomial, [s]DS is a column

vector having elements sk, k = 0, 1, ..., DS, [b]DS is a column vector having DS + 1

unknown coefficients for power series, and the superscript T is the transpose operator.

Similarly, the numerator polynomial Qij(s) in Equation (1.15) can be written in

matrix form as:

Qij(s) =

NSij∑
nsij

ansij
snsij = [s]NSij

[aij]
T
NSij

(1.17)

where NSij is the order of the numerator polynomial Qij(s), [s]NSij
is a column vector

having elements sk, k = 0, 1, ..., NSij, and [aij]NSij
is a column vector having NSij +1

unknown coefficients.

For given orders DS and NSij, one of the goals of this dissertation is to

find the denominator coefficient vector [b]DS and the numerator coefficient vectors

[aij]NSij
. Along with the assumption that the system has common poles, it is also

assumed that the rational function matrix [H(s)] is reciprocal or symmetric, Hij(s) =

Hji(s). Hence, only the lower or upper diagonal numerator polynomial functions of

the rational function matrix [H(s)] need to be computed.

For computing the coefficients of the common denominator polynomial and the

symmetric residue polynomial matrix, Equation (1.14) can be written in the matrix
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equation form as:




A1

...

Am

...

AM




[x] = [0] ⇔ [A] [x] = [0] ⇔ [A]T [A] [x] = λmin [x] (1.18)

where M is the number of frequency samples, and the matrix [Am] and the vector [x]

are given by:

Using the eigenvalue method discussed in Chapter 1, Equation (1.18) can

be solved. However, because of the stability condition on the roots (poles) of the

denominator polynomial P (s) during the construction of passive macromodels, the

unstable poles of the vector [b]DS need to be discarded after using the root finding

method in [68]. Due to the unstable poles, the numerator coefficient vectors [a]NSij

need to be modified for computing the residue polynomial matrix [Q(s)]. Hence, the

matrix [Q(s)] needs to be recalculated using Equation (1.9).
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1.6 Proposed Research and Dissertation Outline

The objective of this dissertation is to develop methods for the automated construc-

tion of scalable, passive and broadband macromodels that capture the electromagnetic

behavior of multiport distributed passive networks. These macromodels should have

the required properties such that they can be combined with a larger circuit for sim-

ulation in a commercial circuit simulator such as SPICE. As mentioned earlier, the

frequency response of the passive networks can be extracted using an electromagnetic

simulator or measurements.

The following items have been discussed in various sections of this dissertation:

• Scalable Macromodel Development

1. Comparison between rational functions using power series and

orthogonal polynomials: A rational function using power series has

a large dynamic range in the elements during matrix construction and

hence results in an ill-conditioned matrix. After replacing the power series

expansion with orthogonal polynomials, the accuracy and efficiency of the

rational function is studied.

2. Development of scalable macromodels for building design libraries:

For building design libraries, the generalized multidimensional rational

function [54] has been reformulated as a multiplication of one-dimensional

rational functions. The multidimensional function has been constructed

using a power series expansion and orthogonal polynomials. This has been

applied to embedded inductors used in packaging. The scalable macro-

model is a parameterized model that provides a mapping between the

frequency response and electrical response of the device, as mentioned ear-

lier.
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3. Development of the selective sampling method for reducing the

number of frequency samples: Data at discrete frequency samples can

be extracted using an electromagnetic simulator. If frequency samples are

numerous, this translates into an increase in simulation time. Hence, a

selective sampling method has been developed for minimizing the number

of frequency samples required.

4. Application of scalable macromodels derived from electromag-

netic simulation and measurements: To confirm the accuracy of scal-

able macromodels, one-port embedded rectangular spiral inductors were

simulated using an electromagnetic simulator. In addition, one-port em-

bedded circular spiral inductors were fabricated on a specially designed

test vehicle using laminate technology. In both cases, the physical param-

eters were varied to ensure an accurate mapping between the physical and

electrical parameters. The scalable macromodels constructed were then

tested at intermediate points to check their accuracy.

• Passive Macromodel Development

1. Derivation of multiport passivity formulae: Using the concept that

the summation of passive sub-networks is passive, multiport passivity for-

mulae were analytically derived for the construction of passive macromod-

els using filter theory and the pole-residue form of the rational function

matrix. The properties of multiport passivity formulae have been discussed

in this dissertation.

2. Development of methods for compensating a non-passive macro-

model using multiport passivity formulae: If multiport passivity

formulae are violated, passivity needs to be enforced. Negative eigenval-

ues of the real part of the rational function matrix have been set equal to
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zero or changed to a small positive value for enforcing passivity of non-

passive macromodels. For completeness, since enforcing passivity using

multiport passivity formulae is a sufficient but not necessary condition,

the limitations of the passivity enforcement process have been discussed.

3. Network synthesis: To enable circuit simulation, the passive macro-

model has been synthesized into SPICE net lists using resistors, inductors,

capacitors, and controlled sources.

• Broadband Macromodel Development

1. Development of methods for capturing hundreds of poles: For cap-

turing large number of poles in the frequency response, methods have been

developed based on the concept that a passive system can be represented

as a summation of passive sub-systems. These methods include:

– Band division, which divides the entire computational domain into

sub-computational domains or subbands for alleviating the ill-conditioned

matrix problem

– Subband reordering, which provides a construction sequence for

reducing the interaction between subbands

– Subband dilation, which provides local correction in the boundary

region between subbands

– Pole replacement, which increases the accuracy of the macromodel

by replacing inaccurate poles with accurate poles near the maximum

error deviation point

2. Development of an automated macromodel construction method:

For automation, it is important to determine the subbands from the fre-

quency response. Each subband can be determined using the frequency

range of resonant peaks and nulls in the frequency response. Hence, an
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automated method that detects the peaks and nulls has been developed

by checking the magnitude of the frequency response. This information is

used to represent the frequency response as a collection of subbands.

3. Development of methods for reducing the macromodel construc-

tion time: For a matrix of size C, the required computation time is

O(2
3
× C3) for LU decomposition. For approximating the poles of com-

mon pole systems, the size of the matrix for symmetric N -port networks

becomes N ≈ NS × N2, where NS is the order of the macromodel. The

solution of such matrices requires computation time of O(2
3
×NS3 ×N6).

As N increases, the construction time of the macromodel is dominated by

the term N , which is the number of ports. Hence, methods for reducing

the construction time of the macromodel have been developed using the

properties of common pole systems.

4. Development of methods for reducing the order of the macro-

model for saving simulation time in a circuit simulator: As the

order of the macromodel increases, the number of electrical elements dur-

ing network synthesis increases and therefore the simulation time increases

as well. Hence, methods for reducing the order of the macromodel have

been developed by limiting the frequency band of interest or the amplitude

range. Since the order of the macromodel is reduced after the construction

of the macromodel, neither the stability nor passivity condition is violated.

Details of the methods developed for reducing the order of the macromodel

have been discussed in this dissertation.

5. Development of a software program for the automated construc-

tion of macromodels: The methods developed in this dissertation have

been realized in the Broadband Efficient Macromodeling Program (BEMP)
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developed at Georgia Tech, which uses C++ and is executable on a Win-

dows operating system. The details of this software program have been

provided in this dissertation.

• Test Cases

The methods discussed in this dissertation have been applied to several test

cases that are representative of distributed networks. These test cases include:

– Interconnect with known transfer function

– One-port transmission line

– Four-port lossy transmission line

– Four-port transmission line data from a vector network analyzer measure-

ment

– Four-port power plane pair with decoupling capacitors

– Power distribution network from Rambus

– Fourteen-port power distribution network for INC (Intelligent Network

Communicator) board from Packaging Research Center

– Thirty-two-port bus from HRL (Hughes Research Labs)

The remainder of this thesis is organized as follows. Chapter 2 presents meth-

ods for the construction of scalable macromodels for building design libraries of em-

bedded passive components using the generalized multidimensional rational function.

Use of orthogonal polynomials and selective sampling has been presented in Chapter

2. Chapter 3 discusses the pole-residue form of the rational function for representing

a linear time-invariant passive network. Analytical formulae for multiport passive cir-

cuits based on the pole-residue form of the rational function have been presented for

enforcing passivity. In addition, methods for compensating the non-passive macro-

models have been discussed and the passive macromodels have been synthesized into
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circuit elements for circuit simulation. Chapter 4 presents band division, subband

reordering, subband dilation, and pole replacement methods for the construction of

broadband macromodels containing a large number of poles. This chapter also dis-

cusses methods for reducing the construction time, for estimating the order of the

macromodel, and for reducing the order of the macromodel. In Chapter 5, several

test cases representative of distributed interconnect networks using the methods de-

veloped in this dissertation are presented, followed by the conclusion and future work

in Chapter 6.
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CHAPTER II

SCALABLE MACROMODELS

The focus of scalable macromodeling is to parameterize interconnect networks as a

function of design and material parameters. One application of scalable macromodels

is the construction of design libraries for embedded passive devices arising in advanced

packaging [54], [55]. To achieve this goal, both orthogonal polynomials [64], [65] and

multidimensional rational functions [54] have been discussed in this chapter. The or-

thogonal polynomials have been used and compared with power series for increasing

the accuracy and convergence of scalable macromodels. The multidimensional ratio-

nal functions provide a mapping between the frequency response and the physical or

material parameters of the structure.

Since the scalable macromodels are constructed from frequency dependent data

of the device obtained using an electromagnetic tool or from measurements, methods

that reduce computation time and increase accuracy are required. For an electro-

magnetic simulator discretizing Maxwell’s equation and computing the frequency re-

sponse, the frequency samples and grid size in the electromagnetic simulator dictate

the computation time. If the frequency response is obtained from a vector network

analyzer measurement, the number of embedded passive devices with design varia-

tions that must be measured becomes a major challenge for reducing the real estate

in the test vehicle. In either case, methods for reducing both the frequency samples

and physical variables of the device as well as increasing the accuracy of the scalable

macromodel are required. Therefore, a selective sampling method has been devel-

oped for minimizing the number of sampling points (frequency and design variables)

required for improving both time and accuracy.
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Using the cavity resonator model [49] for generating the frequency response of

a power plane pair, scalable macromodels have been developed for this structure using

orthogonal polynomials and selective sampling. The methods have also been applied

for generating scalable macromodels for embedded inductors in organic substrates

fabricated using laminate technology developed at the Packaging Research Center [58].

2.1 Orthogonal Polynomials

Consider a function N(ω) represented as a power series expansion in the form:

N(ω) =
∑

k

akω
k (2.1)

where ω is a real variable and ak are complex coefficients. Assuming ω is angular

frequency, the frequency response of ωk as a function of order k is shown in Figure

10. From the figure, it can be noted that as the order k of the power series expansion

becomes large, the frequency response does not improve. For example,
∑
20

ωk has a

similar response as
∑
24

ωk within the computational domain 0 ≤ ω ≤ 1. Hence, when

the order of the power series expansion becomes large, an increase in the number of

expansion terms does not improve accuracy [38].

Assuming the function is now represented as a rational function as in Equation

(1.1), the problem in Figure 10 can be alleviated using Chebyshev polynomials in the

numerator and denominator of the rational function [38]. This is because the orthog-

onal property of Chebyshev polynomials increases the accuracy of the coefficients in

the rational function. Hence, this section compares the performance of several kinds

of orthogonal polynomials for approximating the frequency response of the device. It

is important to note that the nth term, ωn, in Equation (2.1) is replaced with the

orthogonal polynomial of degree n.

Since the orthogonal polynomials currently available are mainly real-valued

expansions [64], [65], the power series expansion of the complex variable ‘s’ needs to
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Figure 10: Frequency response of the power series expansion [38]

be converted into the power series expansion of a real variable ‘ω’. As an example,

consider a power series expansion N(s) having real coefficients written in the form:

N(s) = 3 + 2s + 10s2 + 7s3 + 5s4 (2.2)

Substituting s = jω into Equation (2.2), the power series expansion with variable ω

can be written as:

N(s = jω) = 3 + j2ω − 10ω2 − j7ω3 + 5ω4 (2.3)

In general, the power series expansion of a complex variable s with real (or

complex) coefficients in Equation (2.2) can be rewritten as the power series expansion

of a real variable ω with complex coefficients, as shown in Equation (2.3). Hence, the

rational function with the power series expansion can be represented as:

H(s = jω) =

NS∑
ns=0

ansω
ns

DS∑
ds=0

bdsωds

(2.4)
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Table 1: Recurrence relations of orthogonal polynomials [65]

ω O0(ω) O1(ω) An Bn Cn

Legendre L(ω) [-1 1] 1 ω 2n+1
n+1

0 n
n+1

Chebyshev I T (ω) [-1 1] 1 ω 2 0 1
Chebyshev II U(ω) [-1 1] 1 2ω 2 0 1

where the angular frequency ω is real and the coefficients ans and bds are complex.

The function in Equation (2.3) can be replaced with orthogonal polynomials and

rewritten in the form:

N(s = jω) = 3O0(ω) + j2O1(ω)− 10O2(ω)− j7O3(ω) + 5O4(ω) (2.5)

where On(ω) is the orthogonal polynomial of degree n. Details on several kinds of

orthogonal polynomials are available in [64], [65]. In this dissertation, Legendre and

Chebyshev I and II polynomials have been implemented. Using recurrence relations,

the orthogonal polynomial of degree n + 1 can be evaluated as:

On+1(ω) = (Anω + Bn)On(ω)− CnOn−1(ω) (2.6)

where the polynomials O0(ω) and O1(ω) and the coefficients An, Bn, Cn are shown in

Table 1. It is important to note that since these polynomials preserve the orthogonal

property within the range of ω, it is required that the computational domain be

mapped into that range. This range is shown in the second column of Table 1. The

frequency responses of orthogonal polynomials in the range [-1 1] are shown in Figure

11.

From Equation (2.4), the rational function with orthogonal polynomials can

be represented as:

H(s = jω) =

NS∑
ns=0

cnsOns(ω)

DS∑
ds=0

ddsOds(ω)

(2.7)
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(a)

(b)

(c)

Figure 11: Frequency responses of orthogonal polynomials: (a) Legendre polynomi-
als, (b) Chebyshev I polynomials and (c) Chebyshev II polynomials
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Port 1 (500mil x 500mil)

width: 2.0in

015.0tan =δ

Figure 12: Power plane pair

where On(ω) is the orthogonal polynomial of degree n, which can be generated using

Equation (2.6). In Equation (2.7), orders NS, DS and complex coefficients cns, dds

need to be computed.

2.1.1 Test Case: Power plane pair

For demonstrating the accuracy of the rational function with orthogonal polynomi-

als, consider a 2.0in x 2.0in power plane pair with a 1.0mil thick dielectric (relative

permittivity εr = 4.3 and loss tangent tanδ = 0.015), as shown in Figure 12. It is

assumed that both planes are made of copper with conductivity σ = 5.8× 107 [S/m].

Using the cavity resonator model with propagating modes m = 20 and n = 20

[49], a total of 1000 uniformly spaced frequency samples of the impedance parameter

at Port 1 (x = 500mil and y = 500mil) was computed from 10.0 MHz to 10.0 GHz.

To assess the performance of orthogonal polynomials, NS = DS was assumed and

the order was swept from 1 to 50. The frequency response was approximated using

the least squares approximation in Equation (1.8) and (1.9), as discussed in Chapter

1. The root-mean-square (RMS) error between the original frequency response and

the frequency response of the rational function using the power series expansion and

36



Dash: Legendre
Dotted: Chebyshev I
Dash dotted: Chebyshev II

Solid: Power series

Figure 13: Power series expansion and orthogonal polynomials

orthogonal polynomials are shown in Figure 13. The results demonstrate the accuracy

of the rational function approximation using orthogonal polynomials. From Figure

13, the following observation can be derived:

1. The accuracy of the rational function using the power series expansion is not

improved beyond the order NS of 10. However, the deviation (RMS error)

between the original response and the response of the rational function using

orthogonal polynomials continues to decrease until the order NS = 40 is reached

with the error converging to 10−6. As is obvious, the orthogonal polynomials

provide a more accurate approximation than the power series expansion.

2. For order NS < 13, the orthogonal polynomials do not provide better accuracy

than the power series expansion. This is because polynomials with a low order

are used for approximating the frequency response. Hence, estimating the order

of the rational function is more important than choosing either the power series
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Original frequency response

Response of Chebyshev II polynomial

Deviation

Figure 14: Comparison between the original response and the response of Chebyshev
II polynomials

expansion or orthogonal polynomials for increasing the accuracy. The issue on

the estimation of orders NS, DS is discussed in Chapter 4.

3. For order NS > 40, the orthogonal polynomials converge to an RMS error

value of 10−6, meaning that a higher order does not improve the accuracy of

the approximation for this example.

For comparison, Figure 14 shows the original frequency response (solid line) of

the power plain pair, the frequency response (dotted line) generated from the rational

function with order NS = 50 using Chebyshev II polynomials, and the deviation

(dashed line).

2.2 Scalable Macromodels

Due to the increasing demand for portable wireless devices, the integration of basic

electrical components such as resistors, capacitors, and inductors is one of the most
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challenging tasks for accomplishing higher levels of integration. These embedded pas-

sive components, which have several physical variations in multilayer configurations,

have been developed for reducing the physical size and manufacturing cost [1]. For

commercializing these devices fabricated using new technologies, it is essential that

an electrical model for these devices be available to designers [36]. Hence, design

libraries which map the electrical response to the physical (and material) parameters

is required, which are the goal of developing the scalable macromodel discussed in

this section.

The generalized multidimensional rational function shown in Equation (1.2)

can be written as a multiplication of one-dimensional rational functions in the form:

H(s, p1, p2, · · · , pn) =




NS∑
ns=0

a(0)nss
ns

DS∑
ds=0

b(0)dssds







N1∑
n1=0

a(1)n1p
n1
1

D1∑
d1=0

b(1)d1pd1
1


 · · ·




NN∑
nn=0

a(n)nnp
nn
n

DN∑
dn=0

b(n)dnpdn
n




(2.8)

where pk is the kth design parameter of the device. In this dissertation, Equation

(2.8) is called a scalable macromodel, which can be used for parameterizing intercon-

nect networks and embedded passive devices. The scalable macromodel provides a

mapping between the frequency response and physical or material parameters of the

device. The power series expansion in the numerator and denominator of Equation

(2.8) can be replaced with orthogonal polynomials discussed in the previous section

as:

(2.9)

2.2.1 Test Case: Power plane pair with two design parameters

For demonstrating the methods used for generating scalable macromodels, consider

an example of a power plane pair shown in Figure 12. It is assumed here that the data
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from 20 different power plane pairs having two design parameters such as the width

(1200mil to 2000mil in 200mil increment) and dielectric thickness (1.5mil to 3.0mil in

0.5mil increment) are available along with 50 uniform frequency samples (40.0 MHz

to 2.0 GHz) per structure. The frequency response of the 20 different plane pairs

with two design parameters was computed using the cavity resonator model in [49].

The scalable macromodel using Chebyshev I polynomials in Table 1 was used.

However, since there is no method for estimating the orders NS, DS, N1, D1, N2,

D2 of the scalable macromodel in the literature, the orders have been swept from

0 to 10 for frequency and from 0 to 5 for two design parameters. It is important

to note that the minimum eigenvalue tracking method is only valid for frequency,

meaning that it is valid for a single parameter. As a result, the orders NS = 10,

DS = 10, N1 = 2, D1 = 2, N2 = 2, D2 = 2 in Equation (2.9), which provide

the most accurate approximation, have been used for the construction of the scal-

able macromodel. The comparison between the original frequency response and the

response of the constructed macromodel for 20 plane pairs is shown in Figure 15.

As shown in Figure 15, the variations of two design parameters affect the resonant

frequency of each plane pair, and therefore makes it difficult to estimate the shape of

the frequency response. In Figure 15, the maximum deviation of 10−2 calculated as

the maximum RMS error between the original data and the scalable macromodel at

each frequency point demonstrates the accuracy of the scalable macromodel.

To further evaluate the accuracy of the scalable macromodel at an interme-

diate design point, the frequency response of the plane pair with width of 1.750in

and dielectric thickness of 1.8mil was calculated. The result is shown in Figure 16.

The maximum RMS error in Figure 16 occurs at the resonant frequency resulting in

an error of 1.0 percent as compared to the original frequency response, which was

calculated using the cavity resonator model. This result demonstrates the accuracy
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Deviation

Original frequency responses

Responses of scalable macromodel
(Chebyshev I polynomial)

Figure 15: Frequency response of a power plain pair with two design parameters

of the scalable macromodel. The macromodeling method discussed captures reso-

nances accurately and is relevant for developing design libraries for embedded passive

components in multilayer configurations.

2.3 Selective Sampling

The electromagnetic behavior of embedded passive devices having many design pa-

rameters can be extracted using an electromagnetic simulation or from measurements.

If an electromagnetic simulator is used to construct the scalable macromodel, the

number of sampling points (which is a function of frequency and design variables) re-

quired to represent the electromagnetic behavior of the device becomes an important

consideration. Since full wave electromagnetic simulations are often computationally

expensive for generating the frequency response over a large frequency bandwidth,

methods that minimize the number of simulations are required. This is especially true

for devices requiring fine mesh size. Similarly, if a scalable macromodel is constructed
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Original frequency response

Response of scalable macromodel
(Chebyshev I polynomial)

Deviation

Figure 16: Performance of the scalable macromodel having width of 1.750in and
thickness of 1.8mil

from measurements, test vehicles having several embedded passive devices are neces-

sary. At the same time, systematic design variations are required for minimizing the

fabrication cost of test vehicles.

Therefore, a selective sampling method shown in Figure 17 has been developed

in this dissertation, which iteratively selects the values of the parameters used to

construct the scalable macromodel. The method is described below:

1. The process begins with two groups G1 and G2 having different sampling points

(frequency and design variables) in the computational domain. Then, two mul-

tidimensional rational functions H1 and H2 are used to approximate the two

groups G1 and G2, respectively.

2. Frequency responses R1 and R2 are then computed using the two multidimen-

sional rational functions H1 and H2 in the computational domain, respectively.

According to the error criterion, the maximum deviation point between the
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Figure 17: Selective sampling

responses R1 and R2 is chosen as the next sampling point. In this implemen-

tation, the RMS error is used as the error criterion. The new sampling point is

then included in the two groups G1 and G2, and the multidimensional functions

H1 and H2 are recalculated.

3. The algorithm repeats step 2 until the error criterion is satisfied over the entire

range of variables.

In general, it is recommended that the initial sampling points be distributed

over the computational domain and the number of sampled points can be arbitrarily

chosen for constructing two distinct functions.

2.3.1 Test Case 1: Frequency response of a power plane pair

For demonstrating the performance of the selective sampling method, it was applied

to the power plane pair shown in Figure 12. Assume initially that the computational

domain consists of 1000 frequency points, which are uniformly distributed from 10.0
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Star: Initial samples for G1
Circle: Initial samples for G2
Rectangle: Added samples 

Figure 18: Frequency samples of two groups G1 and G2

MHz to 10.0 GHz in 10.0 MHz interval. Initially, two groups G1 and G2 having

20 different frequency samples each were selected. These points were randomly dis-

tributed. Then, two rational functions H1 and H2 based on the Legendre polynomial

having order NS = DS = 30 were used to approximate the two groups G1 and G2,

respectively.

Figure 18 shows the frequency samples of the two groups G1 and G2. The 20

stars and 20 circles in the figure represent the initial frequency samples for two groups

G1 and G2, respectively, and the rectangle represents the additional 50 frequency

samples generated through the selective sampling method.

During the iteration process, the maximum deviation (RMS error) between

the responses R1 and R2 is shown in Figure 19. Since the method converges to the

final solution after 50 iterations, it only requires 90 frequency samples instead of 1000

frequency samples that would otherwise be required. This results in a speed up of 11.

Figure 20 shows the original frequency response (solid line) of the power plane
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Iteration

Figure 19: Maximum deviation between two frequency responses vs. the number of
iterations

pair, the frequency response (dotted line) generated from the rational function, and

the deviation (dashed line), which demonstrates the accuracy of the selective sampling

method.

2.3.2 Test Case 2: Power plane pair with two design parameters

Consider the power plane pair shown in Figure 12, which has two design variables,

namely, the width and dielectric thickness. The computational domain is the same

as the domain used in Section 2.2.1, which has 5 variations for plane width (1200mil

to 2000mil in 200mil increment), 4 variations for dielectric thickness (1.5mil to 3.0mil

in 0.5mil increment), and 50 uniform frequency samples (40.0 MHz to 2.0 GHz) for

each combination of design parameters. Hence, the number of samples required to

generate the data is 1000 (5× 4× 50).

Two groups G1 and G2 having 20 different frequency samples per group were
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Deviation

Original frequency response

Response of macromodel
- Legendre polynomial
- Selective sampling algorithm (50 iterations)

Figure 20: Comparison between the original response and the response of rational
functions

randomly generated using the cavity resonator model and distributed over the compu-

tational domain. Using the scalable macromodel having estimated orders NS = 10,

DS = 10, N1 = 2, D1 = 2, N2 = 2, D2 = 2 in Equation (2.8), the frequency

response was approximated. Two scalable macromodels were developed using Cheby-

shev II polynomials, which were used to approximate the two groups G1 and G2,

respectively.

Figure 21 shows the maximum deviation (RMS error) between the responses

R1 and R2 of the two scalable macromodels H1 and H2 during the iteration of the

selective sampling method. Since the method converges to the final solution after 200

iterations, it only requires 240 frequency samples instead of 1000 frequency samples.

A speed up of 4 was therefore achieved.

The comparison between the original frequency response and the response of

the scalable macromodel is shown in Figure 22. For evaluating the performance of

46



Figure 21: Maximum deviation between two frequency responses vs. the number of
iterations

the scalable macromodel, the frequency response of the power plane pair with width

of 1.750inch and thickness of 1.8mil, which was not included during the construction

of the macromodel, was compared with the response of the macromodel, as shown in

Figure 23. The maximum RMS error is less than 10−1.6.

2.4 Embedded Inductors

The everlasting trend in mobile wireless electronic systems requires the integration of

digital and microwave circuits into the chip, package and/or board. One of the most

challenging tasks in this trend is the integration of off-chip passive devices such as

capacitors and inductors, which use up a lot of real estate, consume large electrical

power and require additional manufacturing cost. This resulted in the development

of embedded passive components in multilayer configurations, which can reduce the

physical size and manufacturing cost and provide a good alternative to surface mount

components for high-density integration [1].
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Original frequency responses

Responses of scalable macromodel
(Chebyshev II polynomial)

Deviation

Figure 22: Frequency response of power plane pair with two design parameters

Original frequency response

Response of scalable macromodel
(Chebyshev II polynomial)

Deviation

Figure 23: Performance of the scalable macromodel having width=1.750in and
thickness=1.8mil
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Although some empirical models of passive devices are available in RF design

tools such as Advanced Design System (ADS) [63], these models are inaccurate for

new technologies. This is because of the parasitic effects associated with embedded

passive inductors and capacitors. One of the goals in this dissertation is to develop

scalable electrical models for embedded inductors fabricated using printed wiring

board (PWB) based technologies. To achieve this goal, the methods discussed in

the previous sections have been used for building design libraries. In the following

sections, scalable macromodels from electromagnetic simulations and measurements

have been constructed.

2.4.1 Scalable Macromodels from Electromagnetic Simulation

In this section, scalable macromodels were constructed from the frequency response

of embedded rectangular spiral inductors extracted from electromagnetic simulations.

It was assumed that the inductors were designed on the board with two metal layers

and an ideal ground plane, as shown in Figure 24(a). The board with thickness of

40mil had a dielectric constant, εr = 3.7, and loss tangent, tanδ = 0.02. The dielectric

material with thickness of 1mil between the first and second layers has a dielectric

constant, εr = 3.3, and loss tangent, tanδ = 0.015. It has been assumed that the

metal layers have zero thickness and are lossless. The top view of the inductor is also

shown in Figure 24(b). The center point of the inductor is connected to the ground

layer through vias.

The inductors have two design parameters, namely, inner diameter distance

(12mil to 92mil with 8mil increments) and number of turns (1 to 6) with fixed conduc-

tor width (4mil) and conductor spacing (4mil). With the area of the inductor fixed

at less than ≤ 160 × 160[mil2], the 36 inductors shown in Table 2 were simulated

to generate the frequency response (impedance parameter) using the electromagnetic

49



Layer 1

Layer 2

(a)

(b)

Figure 24: Embedded rectangular spiral inductor: (a) cross section and (b) top view
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solver, SONNET [62]. The inductor with cross mark in Table 2 was reserved for eval-

uating the accuracy of the scalable macromodel. If 249 frequency samples per device

that are randomly generated from 0.05GHz to 5.0GHz are required to extract the

electromagnetic behavior of the inductors, a total of 8964 frequency samples would

be required for construction of the scalable macromodel.

Table 2: Embedded rectangular spiral inductors

Diameter \ Turn 1 2 3 4 5 6
12 [mil] o o o o o o
20 [mil] o o o o o
28 [mil] o o o o o
36 [mil] o o o o
44 [mil] o o o o
52 [mil] o o o
60 [mil] o x o
68 [mil] o o
76 [mil] o o
84 [mil] o
92 [mil] o

Two groups G1 and G2 having 100 different frequency samples were randomly

computed over the computational domain using SONNET. The frequency response

of 36 inductors was approximated using the scalable macromodel having estimated

orders NS = 6, DS = 6, N1 = 2, D1 = 2, N2 = 2, D2 = 2. Two scalable

macromodels based on Chebyshev I polynomials were used to approximate the two

groups G1 and G2, respectively.

Figure 25 shows the maximum deviation (RMS error) between the responses

R1 and R2 of the two macromodels H1 and H2 during the iteration of the selective

sampling method. Since the method converges to the final solution after 90 itera-

tions, it only requires 290 frequency samples instead of 8964 frequency samples. This

resulted in a speed up of 30.

The comparison between the original frequency response and the response of
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Figure 25: Maximum deviation between two frequency responses vs. number of
iterations

the scalable macromodel constructed is shown in Figure 26, indicating the accuracy of

the scalable macromodel. From the figure, the resonant peaks have been successfully

captured. For evaluating the accuracy, the original frequency response of the embed-

ded inductor with inner diameter distance (60mil) and number of turn (2), which was

not included during the construction of the scalable macromodel, was compared with

the response of the macromodel, as shown in Figure 27.

2.4.2 Scalable Macromodels from Measurements

For building design libraries of embedded inductors from measurements, over 150

spiral embedded inductors with design variations were designed and fabricated on

standard organic substrate using low-cost laminate technology at the Packaging Re-

search Center [58]. The cross section for the test vehicle is shown in Figure 28.

As illustrated in Figure 2.19, the embedded circular spiral inductors were

designed on FR-4 board that consisted of two metal layers with a floating metal
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Solid: Original frequency response
Dot: Response of the scalable macromodel

Figure 26: Frequency response of embedded inductors with two design parameters

Solid: Original frequency response
Dot: Response of the scalable macromodel

Figure 27: Performance of the scalable macromodel having inner diameter of 60mil
and number of turns of 2
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Layer 2

Layer 1

Figure 28: Cross-section of the test vehicle

layer. The dielectric material between the first and second layers is a 25µm thick

Vialux material with a relative permittivity, εr = 3.3 @ 1.0 GHz, and loss tangent,

tanδ = 0.015 @ 1.0 GHz. The dielectric material between the second and third layers

is a 1mm thick FR-4 layer cladded with copper of 9µm thickness with a relative

permittivity, εr = 3.7 @ 1.0 GHz, and loss tangent, tanδ = 0.02 @ 1.0 GHz.

The fabrication process of the device is described as follows:

1. A 1mm thick, copper cladded (9um) FR-4 organic substrate (epoxy-glass fiber

composite) was used.

2. A 15um thick photoresist dry film was laminated on the substrate (@ 75◦C)

using a vacuum pressure type laminator and then patterned.

3. The first conductor coil layer was patterned by copper etching.

4. The photoresist was then stripped off and a 25um thick photosensitive dielec-

tric epoxy dry film was laminated using a vacuum pressure type laminator to
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insulate the conductor coil layer.

5. Photo-via openings were then formed through exposure to ultra violet (UV)

light, pre-baking in oven at 110◦C for 1.0hr, developing in gamma-butyro lac-

tone, and curing the dielectric polymer at 150◦C (the maximum temperature

used in this process) for 1.5hr.

6. The vias and the upper conductor lines were then formed through copper seeding

by electroless plating followed by electrolytic copper plating into the photoresist

mold made through lamination.

7. For electroless copper plating, the surface of dielectric polymer was catalyzed

through such process steps as swell, etch, neutralize, pre-catalyst, and catalyst.

8. After plating, the photoresist was stripped off and the copper seed layer was

wet-etched in micro-etch solution.

The top view of a one-port embedded spiral inductor is shown in Figure 29.

The ground ring of the inductor is on the second metal layer and the core of the

spiral embedded inductor is embedded on the first layer. The center of the inductor

on the first layer is connected to the ground ring though the photo-via and the bridge

on the first layer. The embedded spiral inductors fabricated in this dissertation

were designed with geometrical variations except for the width of the ground ring

(24mil) and the width of the bridge connecting the ground ring to the center of the

inductor (6mil). As shown in Figure 3, the design variations are conductor width

(W), conductor spacing (S), inner diameter distance (D), width of bridge (B), via

diameter distance (V), and number of turns (N). In addition to the variations in the

core of the inductor, the additional design variations shown in Figure 29 are vertical

distance (GV) and lateral distance (GH) between the ground ring and the core of the

inductor.

55



Spiral InductorSpiral Inductor
CoreCore

24mil 24mil

24mil

24mil

6mil

Gap (GV)

GV

Gap (GH) GH

Bridge (B)

Ground RingGround Ring

Ground RingGround Ring

Figure 29: Top view of the inductor

Among several kinds of embedded circular spiral inductors in the test vehicle,

inductors with fixed conductor width (6mil) and conductor spacing (6mil) were con-

sidered. The design variables of the inductors were inner diameter distance (16mil to

80mil with 16mil increments) and number of turns (1 to 5). The 15 inductors with

circle and cross marks shown in Table 3 were designed and measured for extract-

ing the frequency response using HP8720ES vector network analyzer and Cascade

Microtech ground-signal-ground microwave probe. Network analyzer calibration was

done using short-open-load calibration standards. The one-port S-parameters were

recorded from 0.1GHz up to 10GHz.

For the construction of the scalable macromodel, the 14 inductors with circles

in Table 3 were used. If 1601 frequency samples per device distributed from 0.05GHz

to 10.0GHz with 198MHz interval are required to extract the electromagnetic behav-

ior of the inductors, a total of 22414 frequency samples would be required for the

construction of design libraries of the inductors with two design variables.
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Table 3: Embedded circular spiral inductors

Diameter \ Turn 1 2 3 4 5
16 [mil] o o o o o
32 [mil] o o o o
48 [mil] o o o
64 [mil] x o
80 [mil] o

For initializing the selective sampling method, two groups G1 and G2 having 20

different frequency samples per group were randomly selected over the computational

domain. Then, the frequency response of 14 inductors was approximated using the

scalable macromodel having estimated orders NS = 10, DS = 10, N1 = 2, D1 = 2,

N2 = 2, D2 = 2. Two scalable macromodels were developed using Chebyshev I

polynomials, which were used to approximate the two groups G1 and G2, respectively.

Figure 30 shows the maximum deviation (RMS error) between the responses

R1 and R2 of the two scalable macromodels H1 and H2 during the iteration of the

selective sampling method. Since the error continued to decrease, 500 iterations was

selected as the final iteration and the method required 540 frequency samples instead

of 22414 frequency samples. A speed up of 41 was therefore achieved.

The comparison between the original frequency response and the response of

the scalable macromodel constructed is shown in Figure 31, indicating the accuracy

of the scalable macromodel. From the figure, the resonant peaks were successfully

captured. For evaluating the performance of the scalable macromodel, the frequency

response of the embedded inductor with inner diameter distance (64mil) and number

of turns (1), which was not included during the construction of the scalable macro-

model, was compared with the response of the scalable macromodel as shown in

Figure 32.
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Figure 30: Maximum deviation between two frequency responses vs. number of
iterations

Solid: Original frequency response
Dot: Response of the scalable macromodel

Figure 31: Frequency response of embedded inductors with two design parameters
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Solid: Original frequency response
Dot: Response of the scalable macromodel

Figure 32: Performance of the scalable macromodel having inner diameter of 64mil
and number of turns of 1

2.5 Summary

In this chapter, the power series expansion was replaced with orthogonal polynomials

for increasing the accuracy of the scalable macromodel. The orthogonal polyno-

mials implemented in this chapter were Legendre, Chebyshev I, and Chebyshev II

polynomials. For building design libraries of embedded passive devices, the scal-

able macromodel based on multidimensional rational functions was implemented as a

multiplication of one-dimensional rational functions having frequency and design pa-

rameters. For reducing the number of frequency samples, a selective sampling method

was developed.

For demonstrating the performance of the methods proposed in this disser-

tation, a rectangular power plane structure with two design variations was used.

This was also applied to build design libraries of embedded spiral inductors using an

electromagnetic simulator and from measurements. The selective sampling method

discussed in this chapter provided a method for reducing the sampling points required.
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This reduced the computational time, which was demonstrated using numerous ex-

amples.
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CHAPTER III

PASSIVE MACROMODELS

For time-domain simulation, the macromodel used for capturing the electromagnetic

behavior of passive devices needs to satisfy three conditions, namely, 1) the macro-

model has to use real coefficients, 2) the macromodel should be stable, and 3) the

macromodel needs to be passive. The first condition has been satisfied in this dis-

sertation by construction and the second condition has been satisfied by removing

unstable poles located in the right half of the s-plane and prohibiting multiple poles

along the imaginary axis of the s-plane. For checking and enforcing passivity of the

macromodel, this chapter presents multiport passivity formulae, which have been an-

alytically derived from the pole-residue form of the rational function. Using filter

theory, a generalized pole-residue form of filters has been derived and the properties

of filters are presented. Finally, this chapter presents the properties and limitations

of the multiport passivity formulae followed by the synthesis of passive macromodels

for time-domain simulation.

3.1 Filters

Using filter theory, the rational function H(s) can be represented as a summation of

filters as:

H(s) =
∑
m

Hm
LP (s) +

∑
n

Hn
BP (s) +

∑

k

Hk
HP (s) +

∑
r

Hr
AP (s) (3.1)

where Hm
LP (s), Hn

BP (s), Hk
HP (s), Hr

AP (s) represent low pass, band pass, high pass and

all pass filters, respectively. The term ”filter” is defined as a rational function gener-

ating a specific frequency response over a certain frequency band. The filters shown

in Equation (3.1) represent a complete set for representing any transfer function.
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It is important to note that there are two types of roots of the polynomial in

Equation (1.1), namely, real and complex roots. It is assumed that the root is simple

(or non-overlapping) in this dissertation. Based on the constraint of real coefficients

for the rational functions, the complex roots must always occur in complex conjugate

pairs. Therefore, combining the pole-residue form in Equations (1.4) and (3.1) results

in:

H(s) =
LPN∑
m=1

rm

s− pmr

+
BPN∑
n=1

αn + jβn

s− pnr − jpni

+
αn − jβn

s− pnr + jpni

+
HPN∑

k=1

ψks

s− pkr

+ δ + ηs

(3.2)

where the coefficients pmr, rm, pnr, pni, αn, βn, pkr, ψk, δ, η are real and the su-

perscripts LPN , BPN , HPN are the number of low pass, band pass and high pass

filters, respectively. By combining the complex conjugate poles, Equation (3.2) can

be rewritten as:

H(s) =
LPN∑
m=1

rm

s− pmr

+
BPN∑
n=1

2αn(s− pnr)− 2βnpni

(s− pnr)
2 + p2

ni

+
HPN∑

k=1

ψks

s− pkr

+ δ + ηs

(3.3)

Hence, Equation (3.1) can be rewritten as a summation of filters shown in

Equation (3.3). The low pass filter Hm
LP consists of a real pole pmr with its residue

rm; the band pass filter Hn
BP consists of a complex conjugate pole pair pnr± jpni with

its corresponding residues αn ± jβn; the high pass filter Hk
HP consists of a real pole
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pkr with its residue ψk; and the all pass filter Hr
AP consists of residues, δ and η. It is

important to note that the coefficients of filters in Equation (3.3) are all real.

Equation (3.3) can be generalized for a distributed multiport network contain-

ing common poles as:

[H(s)] =
LPN∑
m=1

[γm]

s− pmr

+
BPN∑
n=1

2[αn](s− pnr)− 2[βn]pni

(s− pnr)
2 + p2

ni

+
HPN∑

k=1

[ψk]s

s− pkr

+ [δ] + [η]s

(3.4)

where the matrices [αn], [βn], [γm], [ψk], [δ], [η] are PxP residue matrices for a P-port

network.

3.2 Properties of Filters

This section shows the relationship between the frequency response and the coeffi-

cients of the rational function. Specifically, the low pass and band pass filters are

considered in this section since the response of the high pass filter is similar to the re-

sponse of the low pass filter and the response of the all pass filter is simply a constant

or linear line in the frequency response.

It is assumed that the low pass filter in Equation (3.3) consists of a real pole

pr and its residue r. The frequency response (admittance) of the low pass filter is

shown in Figure 33. The properties of the low pass filter are discussed below:

1. As shown in Figure 33(a), the real part pr of a real pole for a fixed residue

r = 200 determines the slope of the frequency response.

2. As the absolute value of the real part pr of the real pole becomes smaller, the

frequency response becomes sharper near the low frequency range.
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3. The residue r for a fixed pole pr = −2.0e6 (say) determines the amplitude of

the frequency response and the sign of the real part of the frequency response,

as shown in Figure 33(b).

6100.1 ×−=rp

8100.1 ×−=rp

200=r

R
ea

l p
ar

t 
of

 a
dm

it
ta

nc
e

(a)

100−=r

100=r

6100.2 ×−=rp
R

ea
l p

ar
t 

of
 a

dm
it

ta
nc

e
(b)

Figure 33: Frequency response for a low pass filter: (a) real part of a real pole for
a fixed residue and (b) real part of a real residue for a fixed pole

Similarly, the frequency response of the band pass filter in Equation (3.3) is

shown in Figure 34. It is assumed that the band pass filter in Equation (3.3) consists

of a complex conjugate pole pair pr ± jpi and its corresponding residues α ± jβ. In

Figure 34, the frequency response has been plotted by varying one parameter while the

other parameters are kept fixed. The properties of the band pass filter are discussed

below:

1. In Figure 34(a), the real part pr of the poles determines the slope and sharpness

of the frequency response.

2. In Figure 34(b), the imaginary part pi of the poles determines the resonating

frequency.

3. In Figure 34(c), the real part α of the residues determines the amplitude and

sign of the real part of the frequency response.

64



4. In Figure 34(d), the imaginary part β of residues determines the shape and sign

of the real part of the frequency response.
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Figure 34: Frequency response for a band pass filter: (a) varying pr for fixed coef-
ficients pi, α, β, (b) varying pi for fixed coefficients pr, α, β, (b) varying α for fixed
coefficients β, pr, pi, and (b) varying β for fixed coefficients α, pr, pi

3.3 Multiport Passivity Formulae

Based on the maximum modulus theorem [60], the passivity condition for a one-port

network can be written as:

Re{H(s = jω)} ≥ 0 ∀ω (3.5)
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It is important to note that s = jω in Equation (3.3) (and not s = σ +

jω) simplifies the derivation of the analytical formulae for satisfying passivity of the

macromodel. The basic idea behind the construction of passive macromodels for a

passive system is that the summation of passive sub-networks is always passive. The

rational function H(s) in Equation (3.3) can be regarded as a summation of passive

sub-networks consisting of low pass, band pass, high pass and all pass filters. If every

sub-network in Equation (3.3) satisfies the passivity condition, the rational function

H(s) satisfies the passivity condition as well.

Substituting s = jω into Equation (3.3), the rational function H(s = jω) can

be separated into the real and imaginary parts as:

H(s = jω) = HR(jω) + jHI(jω) (3.6)

By regrouping terms, the real HR(s = jω) and imaginary HI(s = jω) parts of the

rational function can be written as:

HR(jω) =
LPN∑
m=1

−γmpmr

p2
mr + ω2

+
BPN∑
n=1

2ω2(−αnpnr + βnpni)

(p2
nr + p2

ni − ω2)
2
+ (2pnrω)2

+
BPN∑
n=1

2(p2
nr + p2

ni)(−αnpnr − βnpni)

(p2
nr + p2

ni − ω2)
2
+ (2pnrω)2

+
HPN∑

k=1

ψkω
2

p2
kr + ω2

+ δ

(3.7)
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HI(jω) = ω

LPN∑
m=1

−γm

p2
mr + ω2

+ ω

BPN∑
n=1

2αn(−p2
nr + p2

ni − ω2)

(p2
nr + p2

ni − ω2)
2
+ (2pnrω)2

− 4ω
BPN∑
n=1

βnpnipnr

(p2
nr + p2

ni − ω2)
2
+ (2pnrω)2

− ω

HPN∑

k=1

ψkpk

p2
kr + ω2

+ ωη

(3.8)

The passivity of each sub-network can be satisfied using one-port passivity

formulae in Equation (3.9), which can be analytically derived from Equation (3.7) by

satisfying the maximum modulus theorem in Equation (3.5).

γm ≥ 0

−αnpnr ± βnpni ≥ 0

ψk ≥ 0

δ ≥ 0

(3.9)

For a multiport network, the rational function matrix [H(s)] in Equation (3.4)

has to be positive semi-definite at all frequencies according to the passivity constraints

discussed in Chapter 1. Using the property of positive semi-definiteness, the one-port

passivity formulae in Equation (3.9) can be extended to multiport passivity formulae

as:

eigenvalues of [γm] ≥ 0

eigenvalues of [−αnpnr ± βnpni] ≥ 0

eigenvalues of [ψk] ≥ 0

eigenvalues of [δ] ≥ 0

(3.10)

The following properties of multiport passivity formulae in Equation (3.10)

are apparent during the construction of the passive macromodel. These properties
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have been used for the construction of broadband passive macromodels in the next

chapter.

1. The multiport passivity formulae only depend on the poles and residue matri-

ces, which are independent of frequency. Hence, the passivity of the circuit is

satisfied over infinite frequency.

2. The multiport passivity formulae are only enforced on each sub-network of

[H(s)], and there is no relationship for passivity between sub-networks except

that they contribute to the overall frequency response of the macromodel. This

makes the method simple to use.

3. For compensating negative eigenvalues in Eq. (3.11), there are two free matrix

variables [αn] and [βn] related to two free variables of complex conjugate poles

pnr ± jpni, a free matrix variable [γm] related to a real pole pmr, a free matrix

variable [ψk] related to a real pole pkr, and a free matrix variable [δ]. These can

be suitably changed.

3.4 Enforcing Passivity

The non-passive macromodel that does not satisfy the passivity condition needs to

be appropriately modified so that the macromodel becomes passive. For enforcing

passivity of the macromodel in this dissertation, fixed common poles and symmetric

residue matrices are assumed during compensation. Figure 35 shows the procedure

for compensating the non-passive macromodel using multiport passivity formulae.

If negative eigenvalues are obtained in the residue matrices [γ], [ψ], [δ] in Equa-

tion (3.10), negative eigenvalues are set equal to zero or changed to a small positive

value and then a new residue matrix is reconstructed. If the passivity formulae for

complex conjugate poles with two residue matrix variables [α] and [β] are violated,

negative eigenvalues of [α] are set equal to zero or changed to a small positive value
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Figure 35: Enforcing passivity using multiport passivity formulae

and then a new residue matrix [α] is reconstructed. Based on the compensated matrix

[α], the residue matrix [β] is iteratively found for satisfying the passivity formulae in

Equation (3.10). A small positive value is used to ensure that the macromodel does

not violate the passivity condition even though this may cause small numerical errors

in the solution. Figure 35 shows the procedure described in this section.

3.5 Discussion of Multiport Passivity Formulae

3.5.1 Residue Matrix [η]

In [23]-[47], several methods for checking and enforcing passivity of the macromod-

els have been discussed. However, it is important to note that these methods were

based on scattering (S), admittance (Y ), or impedance (Z) parameters. For discus-

sion, this section begins by defining the transfer function H(s) representing S, Y ,

or Z parameters as a scattering S(s), admittance Y (s), or impedance Z(s) function,

respectively.
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For discussing the property of the residue matrix [η] which can affect the

stability and passivity of the network, assume that a one-port macromodel can be

represented as an impedance function Z(s) = R − Cs, where R and C are positive

numbers. It is obvious that the impedance parameter Z generated from the transfer

function Z(s) does not violate the maximum modulus theorem. Similarly, the admit-

tance parameter Y = 1/Z generated from the transfer function Z(s) does not violate

the maximum modulus theorem since the real part of the admittance parameter Y

over infinite frequency bandwidth is always positive. However, it is important to

note that after converting Z(s) to Y (s) using Y (s) = 1/Z(s), the transfer function

Y (s) = 1/(R−Cs) is unstable since the pole is located in the right half of the s-plane

due to the positive values R and C. This leads to a diverging time-domain waveform

during transient simulation.

Consider another example where a one-port macromodel can be represented

as an admittance function Y (s) = −Cs, where C is a positive number, and the

macromodel is connected to a resistor R1 > 0 and a resistor R2 > 0, as shown in

Figure 36.

R1

R2 -C
Z(s)

+

-

Figure 36: Unstable circuit
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In Figure 36, the transfer function Z(s) at the input port can be written as:

Z(s) =
R1 − sC(R1R2 + 1)

1− sR2C
(3.11)

which does not violate the maximum modulus theorem since the real part ZR of

Z(s = jω) is

ZR =
R1 + ω2R2C

2(R1R2 + 1)

1 + ω2R2
2C

2
(3.12)

which is always positive over infinite frequency bandwidth. However, the function

Z(s) violates the stability condition since C, R1, and R2 are all positive. There-

fore, even though the frequency response of any transfer function does not violate

the maximum modulus theorem, both examples considered violate the stability con-

dition, which results in diverging waveform during transient simulation. Hence, if

a method uses the parameters generated from the transfer function matrix [H(s)]

having a residue matrix [η] for detecting the frequency bands having negative eigen-

values corresponding to the real part of the parameters, the method may enforce the

passivity condition on the transfer function matrix, but not the stability condition.

Therefore, it is important to revisit the definition of the stability condition.

Several methods in [60] based on the S(s), Y (s), or Z(s) function matrix have

been discussed for checking stability of the macromodel. The primary condition for

stability is that the poles of H(s) lie on the left half of the s-plane. This condition

implies that the poles of both Y (s) and Z(s) lie on the left half of the s-plane.

According to Talbot’s test in [60], the poles of S(s) become stable if the poles of both

Y (s) and Z(s) are stable. The stability of the transfer functions Y (s) and Z(s) can

be checked using the Hurwitz’s test as described in [60]. Hence, the stability and

passivity of the macromodel can be guaranteed using both the Hurwitz’s test and

maximum modulus theorem.

For discussion, assume that the rational function H(s) can be written as
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H(s) = Q(s)/P (s), where Q(s) and P (s) are the numerator and denominator polyno-

mial, respectively. It is important to note that Y (s) and Z(s) can both be represented

using the same polynomial Q(s) + P (s). For satisfying the stability condition, it is

required that the polynomial Q(s) + P (s) must be strict Hurwitz. If the roots of

P (s) and Q(s) lie on the left half of the s-plane, the rational function satisfies the

strict condition. The polynomial Q(s) + P (s) is Hurwitz if the continued fractional

expansion of the ratio of its even part polynomial to its odd part polynomial (or vice

versa) yield coefficients that are all positive [60]. For instance, consider a rational

function

H(s) =
Q(s)

P (s)
=

s2 + 2s + 3

s3 + s2 + 2s + 3
(3.13)

to determine if it is Hurwitz. The polynomial L(s) = Q(s) + P (s) becomes

L(s) = Q(s) + P (s) = s3 + 2s2 + 4s + 6. (3.14)

The fractional expansion ϕ(s) of the ratio of the even part polynomial E(s) = 2s2 +6

to odd part polynomial O(s) = s3 + 4s becomes

ϕ(s) =
s3 + 4s

2ss + 6

=
1

2
s +

1

2s + 1
1
6
s

(3.15)

Since the coefficients are all positive, the function is Hurwitz. Using the passivity

formulae in Equation (3.9), consider the filters in Equation (3.3) to determine if they

satisfy the Hurwitz condition.

• For the low pass filter, the polynomial L(s) = s+γm−pmr satisfies the Hurwitz

condition since γ ≥ 0 for pmr ≤ 0.

• For the band pass filter, the polynomial L(s) = s2 + 2(αn − pnr)s + p2
nr + p2

ni −
2αnpnr− 2βnpni satisfies the Hurwitz condition since the coefficients become all

positive due to the passivity formulae.
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• For the high pass filter, the polynomial L(s) = (ψk + 1)s − pkr satisfies the

Hurwitz condition since ψk ≥ 0 for pkr ≤ 0.

• For δ in the all pass filter, the polynomial L(s) = δ satisfies the Hurwitz condi-

tion since δ ≥ 0.

Hence, the filters in Equation (3.3) except η, which does not have any pole,

have already satisfied the stability and passivity conditions based on the passivity

formulae, which satisfy the Hurwitz’s test as well as the maximum modulus theorem.

The stability of η can be enforced using the Hurwitz’s test, which results in η ≥ 0. For

a mulitport network, the enforcement can be extended to positive semi-definiteness for

[η]. If the matrix [η] is positive semi-definite, the circuit elements become all positive

during the synthesis of the macromodel, as discussed in Section 3.6. Enforcing the

positive semi-definiteness on all filters makes the circuit elements to be physically

realizable passive devices during the synthesis of the macromodel.

In addition, the basic concept that the summation of passive sub-networks is

passive is preserved. Therefore, the passivity formulae for a multiport network can

be modified as:

eigenvalues of [γm] ≥ 0

eigenvalues of [−αnpnr ± βnpni] ≥ 0

eigenvalues of [ψk] ≥ 0

eigenvalues of [δ] ≥ 0

eigenvalues of [η] ≥ 0

(3.16)

3.5.2 Overlapping Real Poles

Consider a low pass filter with double real poles written in the form:

H(s) =
as + b

(s− pr)2
(3.17)
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Substituting s = jω into Eq. (3.17), the real part HR(s) of the rational function can

be written as:

HR(s) =
bp2

r − (b + 2apr)ω
2

(p2
r − ω2)2 + (2ωpr)2

(3.18)

which results in another passivity formula for double real poles, namely:

b ≥ 0

−b− 2apr ≥ 0

(3.19)

Equation (3.4) can therefore be extended as:

[H(s)] =
LPN∑
m=1

[γm]

s− pmr

+
DPN∑

d=1

[εd]s + [θd]

(s− pdr)2

+
BPN∑
n=1

2[αn](s− pnr)− 2[βn]pni

(s− pnr)
2 + p2

ni

+
HPN∑

k=1

[ψk]s

s− pkr

+ [δ] + [η]s

(3.20)

where the coefficient pdr is real, the superscript DPN is the number of double real

poles and the matrices [εd] and [θd] are PxP residue matrices for a P-port Network.

Therefore, the passivity formulae for a multiport network in Equation (3.20)

can be modified as:

eigenvalues of [γm] ≥ 0

eigenvalues of [θd] ≥ 0

eigenvalues of [−θd − 2εdpdr] ≥ 0

eigenvalues of [−αnpnr ± βnpni] ≥ 0

eigenvalues of [ψk] ≥ 0

eigenvalues of [δ] ≥ 0

eigenvalues of [η] ≥ 0

(3.21)
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3.5.3 Limitations of Multiport Passivity Formulae

Though the summation of passive sub-networks results in a passive network, the

enforcement of passivity on sub-networks represents a sufficient but not necessary

condition. Since the summation of non-passive sub-networks may result in a passive

network, a concern is that the passivity constraints discussed in this dissertation may

not apply for all frequency data. For a network containing only complex conjugate

poles, the passivity constraints enforced on sub-networks can be satisfied due to the

form of Equations (3.10) and (3.21). The problem arises when the network contains

real poles. As an example, consider the transfer function,

H(s) = 10− 3

s + 2
(3.22)

which is stable and passive but contains a non-passive sub-network. Using Equation

(3.3), the above transfer function can be re-written in the form:

H(s) = 8 +
1

s + 2
+

2s

s + 2
(3.23)

where the sub-networks are passive and the resulting transfer function is the same

as Equation (3.22). The passivity constraints can now be enforced on each sub-

network. In certain rare cases, when the frequency response cannot be represented as

a summation of passive sub-networks as in Equation (3.3), enforcement of multiport

passivity formulae may lead to some loss of accuracy.

3.6 Network Synthesis

Using the pole-residue representation of the rational function matrix [H(s)] represent-

ing the admittance parameters, electrical networks consisting of resistors, inductors,

capacitors, and controlled sources can be constructed [51]. For a one-port network

in Equation (3.3), RL networks can be used to represent a real pole and residue of

the low pass filter, RLC networks can be used to represent a complex conjugate pole
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Figure 37: Values of the electrical elements

and residue pair of the band pass filter, and RC networks can be used to represent a

real pole and residues of the high pass filter. A resistor and a capacitor can be used

to represent the all pass filter. The values of the electrical components, which use

frequency scaling, are shown in Figure 37. The frequency scaling will be discussed in

Chapter 4. It is important to note that the sign of all elements becomes positive if

multiport passivity formulae are satisfied.

For a multiport network in Equation (3.4), the configurations of electrical

networks, which consist of a dummy voltage source, a current controlled voltage

source, and a current controlled current source, are shown in Figure 38. The local

ground for SPICE sub-circuits has been used in the circuit implementation. The self-

admittance and trans-admittance networks are shown in Figure 39. It is important to

note that the circuit elements in the trans-admittance network are also all positive.

Hence, multiport passivity formulae enable the circuit elements to be all positive by

using controlled sources.
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IB=IBA

Port A Port B

VA

VBA=VA

Dummy
V=0

IBA

VBA
IBYBAYAA

Figure 38: Electrical network configurations for the macromodel using admittance
parameters

3.7 Summary

Using filter theory, any transfer function can be represented as a summation of low

pass, band pass, high pass, and all pass filters. Using this property, the relationship

between the frequency response and the coefficients of filters has been derived. This

results in the conclusion that the magnitude, shape of the resonant peaks and the

passivity of the macromodel depend on both poles and residues.

Using the pole-residue form of the rational function, multiport passivity formu-

lae were successfully derived for checking and enforcing passivity of the macromodel.

If the macromodel violated the multiport passivity formulae, negative eigenvalues in

the residue matrix were set equal to zero or changed to a small positive value to

ensure that the macromodel does not violate the passivity condition and then the

residue matrix was reconstructed.

For ensuring stability and passivity for the all pass filter, positive semi-definiteness

was enforced on the residue matrix [η], which does not have explicit poles. This was
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Figure 39: (a) Self-admittance YAA and (b) trans-admittance YBA realizations
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based on the Hurwitz test. In addition, a low pass filter containing double real poles

was included in the construction of the passive macromodel. It is important to note

that the passivity formulae described in this chapter are sufficient but not necessary

conditions. This may lead to some loss of accuracy in certain rare cases.

A method was developed for the synthesis of the macromodel into equivalent

circuit elements. Based on the passivity formulae developed, the synthesis always

results in positive circuit elements.
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CHAPTER IV

BROADBAND MACROMODELS

For interconnect networks supporting fast transient waveforms, the macromodel needs

to capture the frequency response of distributed networks accurately. In the past,

numerical methods such as Pade approximation [23]-[28], least squares approximation

[33]-[41], and vector fitting [42]-[47] have been used. However, since these methods

use a single matrix for the construction of the macromodel, they do not capture a

large number of resonant peaks due to the behavior of the ill-conditioned matrix.

Hence, this chapter addresses the ill-conditioned matrix problem arising during the

construction of broadband macromodels. In this chapter, several methods based on

band division, selector, subband reordering, subband dilation, and pole replacement

are presented.

For the automated construction of broadband macromodels, methods that de-

termine the subbands automatically using the magnitude of the frequency response

are presented. During the construction of multiport broadband macromodels, a

method that reduces the size of the matrix for computing the common poles of the

rational function matrix is discussed after discussing the property of common pole

systems. For reducing the order of broadband macromodels, a method for eliminating

filters that have minimal effect on the frequency response is presented.

4.1 Ill-conditioned Matrix Problem

The ill-conditioned matrix problem is apparent in Equation (1.1) where the power

series expansion can have a large dynamic range. For instance, if the frequency

response ranging from DC to 2.0 GHz needs to be approximated using the orders
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NS = 22 and DS = 22, the dynamic range of elements in the matrix A in Equation

(1.6) is from 1 to (2π×2.0×109)22, which causes the matrix to become ill-conditioned.

The ill-conditioned matrix problem can be improved by scaling the frequency

using a constant factor ωo. Using frequency scaling, Equation (1.5) can be rewritten

in the form:
NS∑

ns=0

ans

(
s

ωo

)ns

−H(s)
DS∑

ds=0

bds

(
s

ωo

)ds

= 0 (4.1)

However, it has been shown that the scaling factor ωo in Equation (4.1) does not result

in significant improvement in the approximation beyond 20-30 poles [38], [39]. Hence,

the author in [38] has used the Chebyshev polynomial expansion to approximate the

frequency response using the orthogonal property of Chebyshev polynomials. How-

ever, it is important to note that the power series expansion with frequency scaling is

comparable to the Chebyshev polynomial expansion for low order systems [39]. This

property has been illustrated in Section 2.1 during the comparison between power

series and orthogonal polynomials. In addition, a major problem with the Chebyshev

polynomial expansion is that it needs to be finally converted into the pole-residue

representation for implementation in SPICE. It is to be noted that since the size of

the matrix has not changed, the ill-conditioned matrix problem still exists when the

frequency response having a large number of poles needs to be approximated.

4.2 Limitations of Least Squares Approximation

In the following test cases, the performance of least squares approximation (LSA) is

discussed by sweeping the order NS = DS − 1 from 1 to 40 in Equation (4.1). The

frequency scaling factor used is 2π × 1.0 × 109. In this section, only the stability

condition is enforced on the rational function.
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Table 4: Poles and residues of a known transfer function - Low order system

Filter Original Poles [MHz] Original Residues [MHz]
Low Pass (LP=1) −0.2 0.001
Band Pass (BP=2) −4 ± 162j 0.22 ± 0.0015j

−5 ± 437j 0.04

4.2.1 Low Order System

A known transfer function with poles and residues shown in Table 4 was used to

generate the frequency response from 1.0 Hz to 1.0 GHz with 500 equally spaced fre-

quency samples. Using the frequency response, the transfer function was constructed

by sweeping the order NS = DS − 1 from 1 to 40 to check the performance of the

LSA discussed earlier.

The frequency response of the system was successfully captured, as shown in

Figure 40. As shown in Figure 41, the extracted number of low pass and band pass

filters is LP = 1 and BP = 4, respectively. For further discussion, Figures 40 and 41

have been analyzed with details as follows:

• Figure 40(a) shows the root-mean-square (RMS) error between the actual re-

sponse and the approximated response as the order NS is increased for the

rational function. From the figure, the accuracy of the rational function is not

improved as the order NS increases beyond NS = 14. In fact, the RMS error

increases beyond NS = 15.

• Figure 40(b) shows the original frequency response (solid line) generated from

the known transfer function, the frequency response (dotted line) generated

from the rational function of order NS of 14, and the deviation (dashed line).

For the order NS of 14, the rational function has successfully approximated the

frequency response of the system.

• Figure 41(a) shows the distribution of the poles of the known transfer function
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and the extracted rational function. From the figure, two spurious filters with

complex conjugate poles located far away from the imaginary axis have been

extracted. It is important to note that a pole pair at 2.07 GHz has been ex-

tracted, which is located outside the frequency band of 1.0 GHz. This issue will

be discussed in a later section.

• Figure 41(b) shows the distribution of the residues of the known transfer func-

tion and the rational function approximated. From the figure, residues of the

two spurious poles have negligible values compared to the other residues. As

discussed in Chapter 3, this results in the small magnitudes of resonant peaks

corresponding to the two spurious poles. In a later section, this property will

be used for reducing the order of the macromodel.

4.2.2 High Order System

To see the performance of the LSA for a high order system having increased real

and complex conjugate pair poles, a known transfer function with poles and residues

shown in Table 5 was used to generate the frequency response from 1.0 Hz to 1.0 GHz

with 500 equally spaced frequency samples.

As compared to the low order system, the frequency response has more res-

onant peaks within the frequency of interest. Similarly, the transfer function was

constructed by sweeping the order NS = DS − 1 from 1 to 40 to check the perfor-

mance of LSA. For order NS = 14 having the minimum error in Figure 42(a), the

extracted number of low pass and band pass filters is LP = 2 and BP = 6, respec-

tively. However, both the frequency response and transfer function of the system were

inaccurately captured as shown in Figures 42 and 43. Figures 42 and 43 have been

analyzed with details as follows:

• In Figure 42(a), the RMS error between the frequency response of the original

83



(a)

Original frequency response

Response of the rational function (NS=14, DS=15)

Deviation

(b)

Figure 40: Performance of LSA for LP = 1 and BP = 2: (a) the RMS error of the
deviation vs. the order NS and (b) the original frequency response (solid line) of the
known transfer function, the frequency response (dotted line) of the rational function
of order NS = 4 and DS = 5, and the deviation (dashed line)
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The known transfer function
Circle: Real poles
Rectangle: Complex conjugate poles

The rational function 
Cross: Real poles
Plus: Complex conjugate poles

Two spurious
band pass filters

(a)

The known transfer function
Circle: Real residues
Rectangle: Complex conjugate residues

The rational function 
Cross: Real poles
Plus: Complex conjugate residues

Two spurious
band pass filters

(b)

Figure 41: Performance of LSA for LP = 1 and BP = 2: (a) comparison of pole
distributions and (b) comparison of residue distributions
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Table 5: Poles and residues of a known transfer function - High order system

Filter Original Poles [MHz] Original Residues [MHz]
−0.2 0.001

Low Pass (LP=3) −2.3 0.076
−4.5 0.841

−4 ± 52j 0.1
−4 ± 162j 0.22 ± 0.0015j
−5 ± 291j 0.5

Band Pass (BP=8) −2 ± 309j 0.02
−4 ± 325j 0.52 ± 0.0011j
−5 ± 437j 0.04
−5 ± 488j 0.12
−11 ± 818j 1.19 ± 0.0090j

transfer function and the extracted transfer function is plotted as a function of

the order NS. Beyond NS = 15, the error increases.

• In Figure 42(b), the frequency response is compared between the extracted

rational function and known transfer function for order NS = 14. The error is

also plotted as a deviation in Figure 42(b). Based on Figures 42(a) and (b), it is

clear that the LSA is limited to low order systems, meaning that the minimum

eigenvalue tracking method is also limited to only low order systems.

• Figure 43(a) shows the distribution of the poles of the known transfer function

and the extracted rational function. From the figure, only a complex conjugate

pole pair is accurately captured.

• Figure 43(b) shows the distribution of the residues of the known transfer func-

tion and the extracted rational function. From the figure, the residues of the low

pass and band pass filters are inaccurately extracted and all the filters become

spurious filters.

Figure 43 shows several real and complex conjugate poles and residues ex-

tracted for the rational function with order NS = 14. The extracted number of low
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pass and band pass filters is LP = 2 and BP = 6, respectively. However, it should be

noted that the minimum eigenvalue tracking method is valid for low order systems.

4.3 Band Division

As shown in Equation (3.4), the rational function matrix [H(s)] has been represented

in the pole-residue form as a summation of sub-networks. Both the stability and

passivity conditions in each sub-network were satisfied using stability constraints and

multiport passivity formulae described earlier. Since stability constraints and passiv-

ity formulae were only enforced on each sub-network, there is no relationship for the

stability and passivity conditions between sub-networks except that they contribute

to the overall response of the macromodel. This enables the entire frequency response

to be divided into smaller frequency bands that alleviate the ill-conditioned problem

discussed in the previous section.

The basic idea for the construction of the broadband macromodel is that if

complex conjugate poles and real poles can be extracted from a localized region of the

frequency response, then the original frequency response can be divided into smaller

frequency bands (or subbands), as shown in Figure 44. In Figure 44, poles from

the localized region within a subband can be extracted. The process of dividing the

entire frequency band of interest into smaller subbands is called as band division in

this dissertation. The subbands can be either of uniform or non-uniform width and

contain a set of sampled frequency data, as shown in the figure. The criterion for

choosing the width of each subband depends on the nature of the frequency response.

It is desirable to divide the entire frequency band into subbands where resonant

peaks exist. In areas where no resonant peaks exist, the subbands are overlapped

to minimize the number of subbands required. The orders NS and DS for each

subband can be estimated by using the minimum eigenvalue tracking method based

on the least squares approximation or counting the number of resonant peaks in the
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(a)

Solid: Original frequency response
Dotted: Response of the rational function

(NS=14, DS=15)

Dash: Deviation

(b)

Figure 42: Performance of LSA for LP = 3 and BP = 8: (a) the root-mean-square
error of the deviation vs. the order NS and (b) the original frequency response
(solid line) of the known transfer function, the frequency response (dotted line) of the
rational function of the order NS of 14, and the deviation (dashed line)
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The known transfer function
Circle: Real poles
Rectangle: Complex conjugate poles

The rational function 
Cross: Real poles
Plus: Complex conjugate poles

(a)

The known transfer function
Circle: Real residues
Rectangle: Complex conjugate residues

The rational function 
Cross: Real poles
Plus: Complex conjugate residues

(b)

Figure 43: Performance of LSA for LP = 3 and BP = 8: (a) comparison of pole
distributions and (b) comparison of residue distributions
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Figure 44: Band division: (a) 10 uniform subbands and (b) 5 non-uniform subbands
(subbands 1, 2, 3: non-overlapping, subbands 4, 5: overlapping)

4.4 Band Interactions

During the least squares approximation process discussed in Chapter 1, the residues

have been computed after computing the stable poles. In the algorithm, the stable

poles are retained after removing the unstable poles, which are often present. How-

ever, it is important to note that the stable poles are affected by the unstable poles

during least squares approximation. Hence, inaccurate residues can be extracted due

to the inaccurate stable poles, which results in the violation of the passivity condi-

tion. Therefore, it is critical to extract the accurate poles from the frequency band of

interest. This is caused by the interaction between poles and residues, which affects

the accuracy of the macromodel.

Using band division, the macromodel for each subband can be extracted in

parallel. However, the macromodel from each subband can interact with each other

since the extrapolation of each macromodel outside the subband of interest can pro-

duce a non-zero frequency response in adjacent subbands. This interaction, called a

band interaction in this dissertation, can result in an erroneous frequency response

when sub-macromodels are combined, as shown in Chapter 5. Hence, four methods,
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namely, selector, subband reordering, subband dilation and pole replacement methods

have been developed for compensating the interaction between subbands.

4.4.1 Selector

In Chapter 3, the multiport passivity formulae were derived from the pole-residue

form of the rational function using filter theory. This led to the representation of the

frequency response of any linear time-invariant passive network as a summation of

low pass, band pass, high pass and all pass filters. Therefore, the interaction between

subbands can be regarded as the interaction between filters. For alleviating the

interaction between subbands, a method of handling the filter interaction is required,

which is called as the selector method in this dissertation. The terminology ‘selector’,

which selects the filters, is used to differentiate it from the terminology ‘filter’, which

generates the frequency response. Since there are four types of filters, namely, low

pass, band pass, high pass and all pass filters, the selector method requires handling

of all the filters.

For applying the selectors on filters, it is important to determine the filters

within and outside the subband of interest. This is because undesirable filters can be

found during the construction of the macromodel from each subband since there are

no constraints that limit the type and position of the filters. This was demonstrated

during the discussion on the limitations of least squares approximation in Section 4.2.

As shown in Figure 33, the low pass filter can be located in the first subband

since the peak (magnitude) of the low pass filter is located at DC. Similarly, the high

pass filter can be located in the last subband since the peak of the high pass filter is

located at infinite frequency. Hence, the low pass and high pass filters can be selected

by passing and removing the filters, depending on the subband of interest. However,

the band pass filter can be located in any subband, depending on the imaginary

value of the poles of the filter. The band pass filter has several types of selectors.
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For discussion, consider a subband shown in Figure 45(a). In the figure, region BB

between frequency points α and β is the frequency response to be interpolated. The

remaining regions, namely, LB and HB are outside the frequency region BB. Hence,

several scenarios aries during the approximation of the frequency response of the

region BB. These are:

1. Region BB is dominated by the band pass filters in the regions LB

and BB: For accurate approximation of the region BB, it is necessary to

extract the band pass filters that approximate the regions LB (extrapolation)

and BB (interpolation). This can be achieved using the L-type selector shown

in Figure 45(b). The L-type selector ensures smooth extrapolation when the

band-limited frequency response is approximated.

2. Region BB is dominated by the band pass filters in the region HB:

For accurate approximation of the region BB, it is necessary to extract the

band pass filters that approximate the region HB (extrapolation). This can be

achieved using the H-type selector.

3. Region BB is dominated by the band pass filters in the region BB:

For accurate approximation of the region BB, it is necessary to extract the

band pass filters in the region BB (interpolation). This can be achieved using

the B-type selector.

4. Region BB is dominated by the band pass filters in the regions LB and

HB: For accurate approximation of the region BB, it is necessary to extract

the band pass filters approximating the regions LB and HB (extrapolation).

This can be achieved using the R-type selector.

5. Region BB is dominated by the band pass filters in the region LB: For

accurate approximation of the region BB, it is necessary to extract the band
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Figure 45: (a) Frequency subband and (b) selectors
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pass filters approximating the region LB (extrapolation). This can be achieved

using the K-type selector.

6. Region BB is dominated by the band pass filters in the regions BB

and HB: For accurate approximation of the region BB, it is necessary to

extract the band pass filters approximating the regions BB (interpolation) and

HB (extrapolation). This can be achieved using the G-type selector.

Hence, the L-type, H-type, B-type, R-type, K-type and G-type selectors can

be used for selecting and retaining the band pass filters appropriately. As shown in

Figure 45(b), the A-type and D-type selectors can be used for passing and removing

all the band pass filters, respectively.

4.4.2 Subband Reordering

Often times, realistic distributed networks having a large amplitude variation need to

be approximated. In this case, for minimizing the interaction between subbands, the

construction sequence is reordered based on the magnitude of the frequency response

at every stage. This is called as subband reordering in this dissertation. The sub-

macromodel of the subband with the largest magnitude is constructed first, prior

to the other subbands. This is shown in Figure 46, where subbands 2 and 3 in

Figure 44(a) are interchanged during the macromodel construction process. Subband

reordering reduces numerical errors caused by dominant poles in an adjacent subband.

For the construction of the sub-macromodel from the subband of interest, three steps

are used. First, the frequency response of the subband of interest is prepared by

subtracting the frequency response of the broadband macromodel from the original

frequency response. Second, the sub-macromodel from the subband of interest is

constructed using least squares approximation. Third, the selectors are applied to

select the filters in the sub-macromodel.
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Figure 46: Subband reordering

4.4.3 Subband Dilation

In subband dilation, the subbands are dilated to provide local correction in the region

between adjacent subbands. This method results in an overlap between subbands, as

shown in Figure 47. In the figure, subband ’n’ is dilated to overlap subbands ’n-1’ and

’n+1’. The amount of overlap is determined by the position of poles in each subband.

If the poles are located at the boundary between bands, then these poles have the

maximum effect on both frequency bands. As the poles are located farther away from

the boundary, the effect of these poles on adjacent bands is minimized. Using this

criterion, the subbands are suitably dilated such that the poles at the boundary lie in

the overlapped region. The macromodels of the three subbands are then iteratively

corrected by monitoring the error in the three subbands using the pole replacement

method discussed in the next section.

4.4.4 Pole Replacement

Though subband reordering and subband dilation methods minimize the interaction

between subbands, correction may once again be necessary since these methods may
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Figure 47: Subband dilation

sometimes miss the poles at the boundary between subbands or generate spurious

poles within the subband. This dissertation uses a pole replacement method to im-

prove the accuracy of the constructed macromodel by discarding spurious poles and

extracting accurate poles, as shown in Figure 48. The pole replacement method is

applied after the macromodel for each subband is constructed. The details of the pole

replacement method are described below.

1. The process begins with the comparison between the original frequency response

[Ho(s)] and the frequency response [Hm(s)] from the macromodel.

2. Based on the error criterion, the maximum difference value Emo and location

Lmo between [Ho(s)] and [Hm(s)] are calculated and stored.

3. The algorithm searches for a set of poles around the location Lmo and deter-

mines the width of the subband to be recalculated.

4. The root-mean-square error RMSe between [Ho(s)] and [Hm(s)] in the sub-

band is calculated and stored. The frequency response associated with the

poles in the subband is then subtracted from [Hm(s)] in order to recalculate
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Figure 48: Pole replacement

the frequency response of the subband. Then, the difference between [Ho(s)]

and [Hm(s)] is calculated and stored in [He(s)].

5. Using [He(s)], new poles and residues are recalculated in the subband.

6. The frequency response using new poles and residues [Hn(s)] is computed and

the root-mean-square error RMSn between [He(s)] and [Hn(s)] in the subband

is again calculated and stored.

7. If RMSn < RMSe, then old poles and residues are replaced with new poles

and residues. If RMSn > RMSe, then old poles and residues are retained.

8. Steps 1 to 7 are repeated until the error is minimized.

The location and size of each subband is recalculated iteratively in the pole

replacement method. The error criterion determines the maximum error value Emo,

the location Lmo, and the width of the subband being recalculated. In this research,
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the root-mean-square error has been used as the error criterion and the subband

width around the location Lmo is determined based on the position of poles being

replaced. Assuming the number of poles being replaced is k, the algorithm searches

for k + 2 poles around the location Lmo. The k + 2 poles are then reordered in

increasing frequency such that pole p(1) corresponds to the lowest frequency and

pole p(n) corresponds to the highest frequency. The left and right boundaries of the

subband are then determined as the mid-frequency points between poles p(1), p(2)

and p(n−1), p(n), respectively. If the width and position of the subband remains the

same as before, then the subband is suitably dilated to minimize error. If the location

Lmo is not changed after dilating the subband, then the location Lmo is stored and

ignored in subsequent iterations.

With the use of band division, subband reordering and subband dilation meth-

ods, the number of iterations required for the pole replacement method to converge is

minimum. Even though the pole replacement method was originally intended for in-

creasing the accuracy of poles and residues of the passive macromodel, it can be used

to compensate for negative eigenvalues by inserting additional poles and residues, as

discussed in Chapter 1. After the poles and residues in the entire frequency band or

subbands are calculated, the residue matrices δ and η can be calculated. It is impor-

tant to note that the broadband macromodel can be constructed using band division,

subband reordering, subband dilation, and pole replacement methods along with fre-

quency scaling, without having an ill-conditioned matrix problem. In addition, since

the number of required poles is reduced and the orders NS and DS become small

within a subband, the size of the matrix A in Equation (1.6) becomes small and the

required computational memory and CPU time can be reduced. Therefore, the mini-

mum eigenvalue tracking algorithm which was originally limited to a low-order system

can be used for the construction of broadband macromodels containing hundreds of

poles.
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Figure 49: Illustration of the band division and subband reordering methods

4.5 Illustrative Example

The application of the methods discussed is illustrated in Figure 49. The exact poles

of the network are shown at the top of the figure. It has been assumed that all

the poles are complex conjugate poles. In Figure 49, the good poles are the exact

poles of the network. All the other poles except for the good poles are regarded as

spurious poles. Using the band division method, the entire frequency response has

been divided into 7 non-uniform subbands such that each subband has between one

to four resonant peaks. The bands are numbered from 1 - 7 horizontally and named

A - G vertically. This has been done intentionally to differentiate band division from

subband reordering. The steps illustrated below assume that after the extraction of

the poles from each subband, the corresponding residues are extracted. The frequency

response of the broadband macromodel is then subtracted from the overall response

prior to the macromodel construction for the next subband. The various steps are

described below:
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1. During the construction of the sub-macromodel from subband A, three good

poles and a spurious pole located outside subband A are extracted using the

eigenvalue method discussed earlier. After applying the L-type selector with

bandwidth equal to subband 1, three good poles are extracted.

2. After subtracting the frequency response of the above macromodel from the

overall response, a spurious pole located outside subband B and two good poles

are extracted from subband B. After applying the B-type selector on subband

B, the spurious pole is removed and two good poles are retrieved. Note that

there is an exact pole near the boundary between subbands B and C, which is

not included.

3. During the calculation in subband C, a spurious pole located outside subband

C and two good poles are extracted. After applying the B-type selector, two

good poles are retained. Up to this point, seven good poles have been extracted

and an exact pole near the boundary of subbands B and C has been missed.

4. The next computational domain moves to subband D corresponding to subband

5 instead of subband 4 (subband reordering). This is because the magnitude

of the frequency response is larger in subband 5 than in subband 4. The sub-

macromodel constructed from subband D results in two spurious poles and two

good poles. After applying the B-type selector to remove poles located outside

subband D, a spurious pole and two good poles are extracted.

5. From subband E corresponding to subband 4, a spurious pole and two good

poles are extracted. After applying the B-type selector, a spurious pole and

two good poles are retained.

6. From subband F corresponding to subband 6, two spurious poles located outside

subband F and two good poles are extracted. After applying the B-type selector,
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two good poles are retained.

7. From subband G, a spurious pole and a good pole are extracted after applying

the G-type selector. After collecting sub-macromodels from each subband, 14

good poles and 3 spurious poles are found using the band division and subband

reordering methods. The pole replacement method is now applied to correct

the good poles and eliminate the spurious poles.

4.6 Test Cases

4.6.1 Test Case 1: Frequency response from a known transfer function
(low-order system)

To demonstrate the application of the band division and subband reordering methods

using selectors for handling the filters, the frequency response derived from a known

transfer function of a low-order system has been used. The transfer function has

a low pass filter having a pole −0.2 with its residue 2 and two band pass filters

having two complex conjugate pole pairs at −0.05±j, −0.3±j3.5 with corresponding

residues 2 ∓ 0j and 10.0 ∓ 0.03j. The transfer function was used to extract the

frequency response from 0.001 [radian/sec] to 10 [radian/sec] with 10,000 frequency

samples. The frequency response was divided into 3 irregularly spaced subbands, ω =

0.001−0.2 [radian/sec], ω = 0.9−1.1 [radian/sec], and ω = 3.2−3.7 [radian/sec]. The

criterion for choosing the subbands was based on the given frequency data whereby

at least one resonant peak existed in the subbands. The orders NS of 6 and DS of 7

were used for capturing the frequency response in the first and second subbands and

the orders NS of 10 and DS of 11 were used for capturing the response of the third

subband.

Initially, no selectors were used to remove spurious filters. The poles and

residues of the constructed macromodel are shown in Table 6. The frequency re-

sponse of the macromodel is shown in Figure 50. As is evident in Figure 50, the
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Table 6: Without using selectors

Poles Residuse
Subband 1 -0.19999915 2.00017346

−0.02674632± 1.16151630j 3.77686436∓ 0.08154520j
Subband 2 −0.04999999± 1.00000001j 1.99998865∓ 0.00001349j

−0.30795401± 3.48647974j 9.93377716∓ 0.00230286j
Subband 3 −0.31274900± 3.48027639j 3.93938323± 0.34367262j

macromodels constructed from the three subbands result in an erroneous frequency

response because of the interaction between subbands.

Next, selectors were applied to each subband. From the first subband, a

real pole and two complex conjugate poles were extracted. Of these poles, only the

real pole was located within subband 1. Using a L-type selector with bandwidth

equal to subband 1, only one real pole was retained. The frequency response of the

macromodel generated from subband 1 is shown in Figure 51(a). After subtracting

this macromodel from the original frequency response, the poles were extracted from

subband 2. Four complex conjugate poles were extracted. Two complex conjugate

poles were located within subband 2. Using a B-type selector with bandwidth equal to

subband 2, two complex conjugate poles were retained. The frequency response from

the broadband macromodel generated from subbands 1 and 2 is shown in Figure 51(b).

After subtracting the broadband macromodel from the original frequency response,

two complex conjugate poles were extracted from subband 3. Using a B-type selector

with bandwidth equal to subband 3, two complex conjugate poles were retained. The

poles and residues before and after the construction of sub-macromodels are shown

in Tables 7 and 8, respectively.

In Table 7, the poles (second complex conjugate pole pair) extracted from

subband 1 inaccurately captured the poles of subband 2 and the poles extracted from

subband 2 accurately captured the poles of subband 3, resulting in an erroneous

frequency response without the use of selectors. The comparison between the original
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(a)

(b)

(c)

Figure 50: The magnitude comparison between the original data and the response of
macromodels without using selectors (Solid line: Original, Dashed line: Macromodels,
Dotted line: Deviation): (a) the first subband, (b) the first and second subbands and
(c) the entire frequency band
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(a)

(b)

(c)

Figure 51: The magnitude comparison between the original data and the response
of macromodels with filters (solid: original, dash: macromodel, dot: deviation): (a)
the first subband, (b) the first and second subbands and (c) the entire frequency band
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Table 7: Using selectors (before)

Poles Residues
Subband 1 -0.19999915 2.00017346

−0.02674632± 1.16151630j 3.77686436∓ 0.08154520j
Subband 2 −0.04999999± 0.99999999j 2.00000111± 0.00000335j

−0.30861992± 3.50878764j 10.00240491∓ 0.04257531j
Subband 3 −0.30003413± 3.50022682j 10.00240491∓ 0.04257531j

Table 8: Using selectors (after)

Poles Residuse
Subband 1 -0.19999915 2.00017346
Subband 2 −0.04999999± 0.99999999j 2.00000111± 0.00000335j
Subband 3 −0.30003413± 3.50022682j 10.00240491∓ 0.04257531j

frequency data and the response of the broadband macromodel constructed from

subbands 1, 2, and 3 using selectors is shown in Figure 51(c) indicating the accuracy

of the macromodel. It is interesting to note that for this example, the macromodel of

subband 3 is required even if the frequency response only up to subband 2 is available.

This was possible through the use of the G-type selector in subband 2.

4.6.2 Test Case 2: Frequency response from a known transfer function
(high-order system)

The frequency response of three low pass LP = 3 and eight band pass BP = 8 filters

in Table 4 discussed earlier was considered to check the performance of the proposed

methods. The frequency response was equally divided into 10 subbands and was

approximated using the estimated order NS = DS − 1 of 5 within each subband.

Figure 52 shows the comparison between the frequency response of the known transfer

function and the frequency response of the macromodel, which demonstrates that

the methods proposed in this dissertation provide for accurate approximation of the

frequency response for a high-order system. The extracted number of low-pass and
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Figure 52: Performance of LSA for LP = 3 and BP = 8: the original frequency
response (solid line) of the known transfer function, the frequency response (dotted
line) of the macromodel, and the deviation (dashed line)

band-pass filters was LP = 2 and BP = 8, respectively.

4.6.3 Test Case 3: One-port lossy transmission line

To demonstrate the performance of the pole replacement method, the one-port ad-

mittance parameter for a lossy transmission line up to 2.5 GHz was considered. The

frequency response was equally divided into 10 subbands having a bandwidth of 250

MHz and was approximated using the estimated order NS of 4 within each sub-

band. Figure 53 shows the comparison between the original data and the frequency

response of the macromodel. It is important to note that the number of original

resonance peaks is roughly 32 and the estimated number of complex conjugate poles

is 64. However, the number of complex conjugate poles and real poles extracted was

30 and 1, respectively, because the lower estimated order NS of 4 was used in each

subband. It is obvious that there are many missing poles and spurious poles based on

the comparison in Figure 53. After using the pole replacement method in each sub-

band (number of iterations = 50) and over the entire computational domain (number
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of iterations = 100), the missing poles were extracted and the spurious poles were

discarded. The number of complex conjugate poles and real poles extracted was 66

and 4, respectively. Figure 54 shows the comparison between the original frequency

data and the response of the macromodel after using the pole replacement method.
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Figure 53: Passive macromodel without using the pole replacement method (NS =
4 and DS = 5 in each subband, number of iterations of the local pole replacement
method = 0, number of iterations of the global pole replacement method = 0, number
of complex conjugate poles = 30 and number of real poles = 1)

4.7 Automated Construction

For the automated construction of broadband macromodels, it is important to de-

termine the subbands automatically. This can be achieved by detecting the location

of resonant peaks and nulls in the frequency response, as shown in Figure 55. The

details of the method are described below:

1. The process begins by assuming that the frequency samples are sorted from low

to high frequency. The magnitude Mprev of the first frequency sample is set

equal to zero although it has a non-zero value. This ensures the first frequency

sample to be the left boundary of the first subband.
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Figure 54: Passive macromodel using the pole replacement method (NS = 4 and
DS = 5 in each subband, number of iterations of the local pole replacement method
= 50, number of iterations of the global pole replacement method = 100, number of
complex conjugate poles = 66 and number of real poles = 4)

2. The process computes the magnitude Mnext of the next frequency sample. If

Mprev < Mnext, Mnext is stored in Mprev and the process repeats the second step.

If Mprev ≥ Mnext, Mnext is stored in Mprev and proceeds to the next step. In

this step, the maximum peak location of resonant peaks is detected.

3. The process computes the magnitude Mnext of the frequency response of the

next frequency sample. If Mprev > Mnext, Mnext is stored in Mprev and the

process repeats the third step. If Mprev ≤ Mnext, the location and magnitude of

the previous sample is stored in Lmin and Mmin, respectively. In this step, the

interface between two resonant peaks is detected. The value Lmin is set to the

right boundary of the subband and left boundary of the next subband.

4. The process repeats the steps from 2 to 3.
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Sort the frequency response from low to high
Mprev� 0

The location of the first sample � Left boundary of the subband

Compute Mnext

Mprev < Mnext
Mnext � Mprev

YES

Mnext � Mprev

Compute Mnext

Mprev > Mnext
Mnext � Mprev

YES

Mnext � Mprev

The location of the previous sample � Right boundary of the subband      
� Left boundary of the next subband

Figure 55: A flow chart for detecting the subbands

4.8 Multiport Construction

To estimate the construction time for a multiport macromodel, it is assumed that all

numerator polynomials in [Q(s)] for a N -port network in Equation (1.18) have the

same order NS. Then, the size C of matrix [A]T [A] in Equation (1.7) for computing

the common poles becomes:

C = NS × N(N + 1)

2
+ DS (4.2)

For a matrix of size C, the required computation time is O(2/3×C3) using LU decom-

position [66]. Hence, computation time of ≈ O(NS3 ×N6) is required for computing

the coefficients of the denominator polynomial. For a large N , the construction time

of the macromodel is dominated by the term N .

After multiplying the common denominator polynomial P (s) on both sides in
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Equation (1.15), the resulting equation becomes




H11(s) H12(s) · · · H1N(s)

H21(s) H22(s) · · · H2N(s)

...
...

. . .
...

HN1(s) HN2(s) · · · HNN(s)




P (s) =




Q11(s) Q12(s) · · · Q1N(s)

Q21(s) Q22(s) · · · Q2N(s)

...
...

. . .
...

QN1(s) QN2(s) · · · QNN(s)




(4.3)

Without loss of generality, the denominator polynomial P (s) can be computed using

any rational function element Hij(s), which is an important property for a common

pole system. Hence, the construction time of the macromodel can be reduced by

selecting diagonal elements in the rational function matrix [H(s)] since the diagonal

elements contain the dominant behavior of the common poles, meaning that the poles

of the off-diagonal elements are always a subset of the diagonal elements.

4.9 Model Order Reduction

For fast circuit simulation, it is important to reduce the order of the macromodel.

According to the pole-residue representation used in this dissertation, the order of

the macromodel used depends on the number of filters in the macromodel. Hence,

the reduction in the order of the macromodel depends on the filters that can be

eliminated.

In Section 4.2, two known transfer functions were approximated using least

squares approximation. In Figure 41(b), residues of two complex conjugate poles

have negligible values compared to the other residues, meaning that these two filters

are redundant filters, and therefore do not have large effect on the accuracy of the

macromodel. Hence, these two poles can be removed to reduce the order of the

macromodel. In general, the filters having negligible residue values can be removed

to reduce the order. It is important to note that this method does not violate either

the stability or passivity condition since each filter in the macromodel satisfies these
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Table 9: Output of model order reduction (MOR)

Ratio (percent) Number of low pass filters Number of band pass filters
0 3 48
1 3 18
5 3 10
10 2 6

conditions. Hence, the order of the macromodel can be reduced by eliminating filters

based on the accuracy required.

4.9.1 Test Case: Frequency response from a power distribution network

The performance of the model order reduction method for reducing the order of the

macromodel is demonstrated in this section using the frequency response from the

INC board (Intelligent Network Communicator). This board contains a power plane

pair, as discussed in the Chapter 5. A total of 1286 uniformly distributed frequency

samples from 10KHz to 9GHz was approximated using the methods described in this

chapter, which resulted in a two-port macromodel having 48 band pass filters and

3 low pass filters. Then, the magnitude of the frequency response of each filter was

computed and the maximum magnitude value (MMV ) for 51 filters was stored as a

reference. This was required since the ratio of the maximum magnitude of other filters

to MMV was used for removing spurious filters. For example, since the magnitude of

38 band pass filters of the 48 band pass filters shown in Table 9 is less than 5 percent

of MMV , the 38 band pass filters are filters that can be eliminated. The frequency

response of the macromodels in Table 9 is shown in Figure 56.

The macromodels in Table 9 were simulated to obtain the voltage fluctuation

on the power plane using HSPICE [61] with the configuration shown in Figure 57.

The macromodel was connected to a 3.3V dc source (port 1) and the VDD node

(port 2) of a differential driver with 0.5ns rise and fall times, as shown in Figure
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Bold solid: Original frequency response
Solid:Response of Macromodels 0% MOR
Dot: Response of Macromodels 1% MOR
Dash: Response of Macromodels 5% MOR
Dash dot: Response of Macromodels 10% MOR

Figure 56: Frequency response after removing spurious filters: original data (bold
solid), response of the macromodel with 0 percent MOR (solid), response of the
macromodel with 1 percent MOR (dot), response of the macromodel with 5 percent
MOR (dash) and response of the macromodel with 10 percent MOR (dash dot)

112



Macromodel
(Power Plane)

Zo=50,

Delay=2ns

Zo=50,

Delay=2ns

50 ohm

3.3V

TL

TL

Measured Port

50 ohm

Differential Driver:

Rising time: 0.5ns
Falling time: 0.5ns

Figure 57: Circuit simulated

57. A transmission line having a 50Ω characteristic impedance and 2ns delay and

terminated with a 50Ω resistor was connected to the output of the driver. The time-

domain voltage fluctuation at port 2 is shown in Figure 58, which demonstrates that

the method for reducing the order of the macromodel does not violate the stability

and passivity conditions. Since the waveform of the macromodel with 5 percent MOR

at port 2 provides a result similar to the waveform of the macromodel with 0 percent

MOR, a 75 percent reduction can be achieved using the method discussed in this

section.

4.10 Broadband Efficient Macromodeling Program

The methods discussed in this dissertation have been incorporated into the Broadband

Efficient Macromodeling Program (BEMP) developed at Georgia Tech. The program

was developed using C++ language (10,000 lines) and is executable on a Windows

operating system. The algorithm for BEMP is shown in Figure 59.
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Solid:Response of Macromodels 0% MOR
Dot: Response of Macromodels 1% MOR
Dash: Response of Macromodels 5% MOR
Dash dot: Response of Macromodels 10% MOR

Figure 58: Time-domain simulation

4.11 Summary

For the construction of broadband passive macromodels, efficient methods were devel-

oped based on the concept that a passive system can be represented as a summation

of passive sub-systems. The methods developed in this chapter are band division,

selector, subband reordering, subband dilation, and pole replacement. The major

advantage of these methods are that they can be applied to distributed interconnect

networks that often require many poles for approximation.

The broadband macromodel was constructed using band division, which di-

vides the entire computational domain into sub-computational domains. Numerically,

the band division method alleviates the ill-conditioned matrix problem arising in least

squares approximation. In addition, the method reduces the memory requirement.

However, there are interactions between subbands since the sub-macromodel from

each subband produces a non-zero frequency response in other subbands. This band
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INITIALIZATION :
01 load original admittance parameters Ho and the frequency fo 
02 load subbands BD (Band Division)
03 load estimated orders NS and DS
04 initialize poles and residues
LOCAL LOOP :
05 for n=1 to the number of subbands
06  set sub-computational domain SCD = BD(n) (Subband Reordering)
07         apply the R-type selector on poles and resides
08         calculate the frequency response Hm using poles and residues over the SCD
09         calculate He = Ho - Hm and save Hg = He and maxHg over the SCD
10         initialize good-sub-poles and good-sub-residues
11         for num, den = a range of estimated orders NS and DS
12             initialize sub-poles and sub-residues
13             do frequency scaling on fo (Frequency Scaling)
14             calculate the denominator coefficients using least squares approximation
15             construct stable sub-poles from the denominator coefficients
16             undo frequency scaling on stable sub-poles
17             calculate sub-residue matrices of sub-poles
18             calculate the residues [δ] and [η]
19             apply multiport passivity formulae 
20             if there is a violation, compensate negative eigenvalues, end
21             calculate the frequency response Hm using sub-poles and sub-residues
22             calculate Hs = He - Hm over the SCD
23             if maxHg > maxHs based on error criterion
24                 save maxHg = maxHs 
25                 save good-sub-poles = sub-poles, good-sub-residues = sub-residues 
26             end
27 apply appropriate selectors on good-sub-poles and good-sub-residues
28             add good-sub-poles and good-sub-residues to poles and residues
29         end
30 apply subband dilation and pole replacement methods over the SCD
31      end
GLOBAL LOOP :
32       for n=1 to the number of global optimization
33          apply the pole replacement method over the entire frequency band 
34 update the residues [δ] and [η]
35       end
36       generate SPICE net lists

Figure 59: Flow chart of BEMP
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interaction has been solved using selectors, which selects the filters extracted from the

subband of interest, subband reordering, which provides a construction sequence for

reducing the interaction between subbands, subband dilation, which provides local

correction in the boundary region between subbands, and pole replacement, which

increases the accuracy of the macromodel.

A method, which automatically determines the boundaries of each subband,

has been developed by detecting the resonant peaks and nulls in the frequency re-

sponse. The construction time of the macromodel has been reduced by using diagonal

elements in the rational function matrix since off-diagonal elements are always a sub-

set of the diagonal elements in the common pole system. In addition, a method for

reducing the order of the macromodel without affecting the stability and passivity

conditions has been developed by removing the filters with negligible residue values.

The performance of the band division and subband reordering methods us-

ing selectors was demonstrated through known transfer functions. In addition, the

performance of the pole replacement method was demonstrated using the frequency

response of a one-port transmission line. Details on the performance of the meth-

ods discussed in this chapter using several test cases representative of distributed

interconnect networks are discussed in the next chapter.
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CHAPTER V

EXAMPLES AND TEST CASES

To demonstrate the validity of the methods discussed in Chapter 4, several test cases

representative of distributed interconnect networks have been presented. The macro-

models of these test cases have been constructed using BEMP.

5.1 Test Case 1: Four-port lossy coupled trans-

mission line

Figure 60 shows the transmission line with its self and coupling parameters, which

was modeled using the W-element transmission lines in HSPICE [61], which is a

commercially available circuit simulator.

The frequency response (admittance parameters) for a four-port coupled trans-

mission line with length of 0.43cm, which has uniformly distributed frequency samples

from 0.1 MHz to 1.0 MHz (5 samples) and from 10.0 MHz to 10.0 GHz (4000 samples),

was generated using HSPICE. Using the band division method, the entire frequency

domain was divided into 80 uniform subbands without overlapping subbands. Each

subband had 50 frequency samples. The first subband was again divided into two

smaller subbands having 10 samples and 40 samples, respectively. The number of lo-

cal and global iterations for the pole replacement method was 3 and 50, respectively.

Using the estimated orders NS of 4 and DS of 5 within each subband, the num-

ber of complex conjugate poles and real poles extracted was 240 and 3, respectively.

The comparison between original data and the frequency response of the constructed

macromodel for Y14 admittance parameter over a bandwidth of 10.0 GHz is shown

in Figures 61 and 62.
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A Lossy Coupled Transmission Line (W-element model in HSPICE)

Length=0.43m

Port 1 Port 2
Port 3 Port 4

Self and coupling parameters in W-element



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10164.510221.1

101.221-105.242
][G

Figure 60: Lossy coupled transmission line

Figure 61: Comparison of the real part of Y14 (admittance)
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Figure 62: Comparison of the imaginary part of Y14 (admittance)

To demonstrate the passivity of the macromodel, four eigenvalues are shown

in Figure 63, which are all greater than zero.

To show the difference between the stable and passive macromodel, the stable

macromodel of the transmission line in Figure 60 was constructed without enforcing

the passivity condition. Then, the macromodel was synthesized into an equivalent

circuit and simulated in HSPICE. A trapezoidal current source with 0.1ns rise and

0.2ns fall times was excited at port 1. Resistors with a 30Ω value were terminated

at ports 2 and 4. A 30Ω resistor and a transmission line having a 50Ω characteristic

impedance and 1.2ns delay were terminated at port 3 in series, as shown in Figure

64.

During time-domain simulation, the macromodel violated the passivity con-

dition producing a diverging result, as shown in Figure 65. The circles in Figure 65

represent the waveform at the corresponding ports of the macromodel.

Using the passive macromodel constructed using BEMP, the time-domain
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Figure 63: Comparison of four eigenvalues vs. frequency between original data and
the frequency response calculated from the macromodel

T3

IIN

Macromodels

Current source

T3 model:  T-element  z0=50  td=1.2ns

30ohm 30ohm

30ohm
1

3 4

2

100ps 200ps
IINIIN

50ns

Period=300ns

0

1

Figure 64: Circuit simulated
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Time (ns)

0

Figure 65: Time-domain simulation of the non-passive macromodel

waveform of the original network and the passive macromodel is compared from 0

to 200ns in Figure 66. The macromodel shows good agreement with the HSPICE

result.

5.2 Test Case 2: Four-port transmission line data

from measurement

A total of 799 uniformly distributed frequency samples from 50.0 MHz to 20.0 GHz for

a 4-port transmission line was measured by Rambus using a vector network analyzer.

The entire frequency band was divided into 16 subbands having a bandwidth of 1.25

GHz. The macromodel was constructed from the lower subband using the orders

NS of 8 and DS of 9 in all subbands. The number of local and global iterations for

the pole replacement method was 2 and 200, respectively. The number of complex

conjugate poles and real poles extracted were 224 and 1, respectively. Figures 67

and 68 show the comparison between original frequency data and the response of the

constructed macromodel for real (Y11) and imaginary (Y12) admittance parameters,

respectively.

The macromodel was connected to a 400mV source having 50ps rise/fall times

and a 50Ω termination at port 1. Resistors with a 50Ω value were terminated at ports
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Figure 66: Time-domain comparison between a lossy coupled transmission line and
the passive macromodel

Figure 67: Comparison of real part real of admittance parameter Y11
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Figure 68: Comparison of imaginary part of admittance parameter Y12

2, 3, and 4, as shown in Figure 69. The time-domain waveform at ports 1 and 2 are

shown from 0 to 30ns in Figure 70, demonstrating stability and passivity.

5.3 Test Case 3: Four-port power plane pair with

decoupling capacitors

A 4.0in x 6.0in power plane pair with a dielectric thickness of 62mil is shown in Figure

71. Six decoupling capacitors represented as RLC circuit elements, where ’R’ and ’L’

are the series equivalent resistance and inductance of the capacitor, respectively, were

connected to the power plane.

A total of 1000 uniformly spaced samples was generated from 1.0 MHz to 4.0

GHz using the cavity resonator model described in [49]. Although the frequency re-

sponse of the power plane pair with decoupling capacitors is highly irregular, the entire

frequency domain for admittance parameters was divided into 20 uniform subbands

having 50 samples per subband without overlapping subbands. The number of local
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Figure 69: Circuit simulated
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Figure 70: Time-domain waveform
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Dielectric Properties: Er=5.05    Loss tangent=0.018   Conductivity=5.7e+7
Decoupling Capacitors:

A:   C=130.00pF  L=0.4580nH     R=373.4mOhm            Resonant Freq=650MHhz
B:   C=304.69pF     L=0.4130nH     R=148.6182mOhm      Resonant Freq=450MHz
C:   C=1.3167nF     L=0.5093nH     R=335.875mOhm        Resonant Freq=190MHz

Port 2

Port 3

Port 4

B

A

A B

C

C

4 inch

62mil

Port 1

6 inch

Figure 71: A power plane pair with decoupling capacitors

and global iterations for the pole replacement method was 1 and 200, respectively.

Using the orders NS of 4 and DS of 5 within each subband, the number of complex

conjugate poles and real poles extracted was 78 and 1, respectively. The comparison

between original data and the frequency response of the constructed macromodel for

admittance parameters over a bandwidth of 4.0 GHz is shown in Figures 72 and 73.

The macromodel of the power plane with decoupling capacitors was simulated

to obtain the voltage fluctuation on the power plane using the configuration shown in

Figure 74. The macromodel was connected to a 2.5V dc source (port 1) and the VDD

node (port 4) of a linear driver with 0.7ns rise and 0.3ns fall times. A transmission

line having a 50Ω characteristic impedance and 1.2ns delay, and a 50Ω resistor were

connected in series between the output of the driver and the common ground of the

power plane. The time-domain voltage fluctuations at ports 2 and 4 are shown in

Figure 75, which demonstrates that the macromodel is stable and passive.
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Figure 74: Circuit simulated
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Figure 75: Time-domain simulation of a power plane pair with decoupling capacitors
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Figure 76: Yellowstone test vehicle from Rambus

5.4 Test Case 4: Power distribution network from

Rambus

Figure 76 shows a test board from Rambus, which consists of transmitter and receiver

chips placed on a wirebond plastic ball grid array (PBGA) package [71]. This system

was designed for chip-to-chip communication at a data rate of 3.2 Gbps. The PBGA

package is directly attached to a 12.8in x 9.5in board using solder balls or sockets.

The cross section of the board is shown in Figure 77, which has two signal layers, two

power planes, and two ground planes. The detail of the board is described as follows:

Layer 1 is a low-speed signal layer. The low-speed signal transmission lines are

single ended and their characteristic impedances are designed for 50Ω using

trace width of 7.0mil, trace spacing of 18.0mil, and trace thickness 0.75mil.

Layer 2 is a continuous ground plane of thickness 1.5mil.

Layer 3 is a power plane that provides 5.0V to the peripherals on the board. It

also has two irregularly shaped power islands of 1.2V, called master and slave
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Figure 77: Cross section of the board

islands, to supply voltage to the transmitter and receiver chips on the board,

respectively.

Layer 4 is a 1.2V split power plane which serves the master and slave sections and

includes a small island at the center with 3.3V to supply voltage to the clock

generator chip. These two split planes are connected using a jumper.

Layer 5 is a continuous ground plane. The thickness of the plane is 1.5mil.

Layer 6 is a high-speed signal layer. The high-speed signal transmission lines are

differential and their characteristic impedances are designed for 100Ω using trace

width of 6.0mil, trace spacing of 11.5mil, and trace thickness of 0.75mil.

The conductor in the six layers is copper with conductivity, σc = 5.8×107S/m.

The dielectric material of the board is FR4 with a relative permittivity, εr = 4.5, and

dielectric loss tangent, tanδ = 0.02 at 1.0 GHz.
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Figure 78: Top view of the test vehicle

Figure 78 shows the top view of the test vehicle, which has two irregularly

shaped master and slave islands. The two islands in layer 3 are connected to a

small narrow strip power island and a 1.2V voltage regulator in layer 1 through 7

vias. For reducing power supply noise, a ferrite bead of inductance 120nH and 48

decoupling capacitors mounted on layer 1 were used. The power planes were excited

and measured at three ports as shown in Figure 78. In the figure, port 1 is the

location of the voltage regulator module, and port 2 and port 3 are the locations of

the master and slave chips, respectively.

The irregular power plane was discretized as rectangular grids having a unit

cell size of 0.385cm x 0.385cm, which corresponds to an electrical size of λ/13 at

6.0 GHz. This resulted in 1,087 unit cells for approximating the structure, which

included the narrow rectangular strip in layer 1, the continuous ground plane in layer

2, and the split power plane in layer 3. The seven vias connecting layers 1 and 3 were

represented as short circuits.
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Using the transmission matrix method (TMM) [50], three-port impedance pa-

rameters of the power plane pair shown in Figure 78 were generated and stored from

10.0 KHz to 6.0 GHz. These were converted into admittance parameters for the

construction of the broadband macromodel. Using the band division method, the

frequency response was divided into irregular subbands because the admittance pa-

rameters had a highly unbalanced amplitude, which varied from 7.4498×10−9 to 227.6

[mho] from DC to 6.0 GHz. The number of complex conjugate poles and real poles

extracted was 150 and 4, respectively. The comparison between the original frequency

response and the response of the macromodel is shown in Figure 79, which shows good

agreement between the frequency data and the response of the macromodel. Using

the constructed macromodel, the frequency response from DC to 10MHz is shown in

Figure 80(a) for Y11, Y12, and Y22. In addition, the extrapolated frequency response

from 5GHz to 15GHz is shown in Figure 80(b) for Y11, Y12, and Y22.

The comparison between the three eigenvalues from the original frequency

response and the response of the constructed macromodel over a 6.0 GHz bandwidth

is shown in Figure 81. The eigenvalues are all greater than or equal to zero, which

demonstrates passivity and accuracy of the macromodel.

The time-domain simulation was performed in HSPICE using the three-port

macromodel of the power planes, differential drivers, and transmission lines for com-

puting power supply noise, as shown in Figure 82. For representing four differential

drivers with 50ps rise and fall times connected to four differential transmission lines

with 100Ω characteristic impedance and 1ns delay, the driver model used was a time-

dependent resistive switch. A transmission line model available in HSPICE was used

to represent the transmission lines. The far ends of the transmission lines referenced

to the ground plane were terminated in 50Ω and connected to a 0.3V dc source, which

provides the communication path between the master and slave chips. The two ground

planes were connected to each other using numerous vias. Port 3 representing a 1.2V

131



(a) (b)

(c) (d)

Figure 79: Comparison of admittance parameters: (a) real of Y22, (b) imaginary
of Y22, (c) real of Y23 and (d) imaginary of Y23
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Dash: Y12

Dash dot: Y22
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Solid: Y11
Dash: Y12

Dash dot: Y22

Extrapolation

(b)

Figure 80: Admittance parameters (Y11, Y12, Y22) generated from the constructed
macromodel: (a) from DC to 10MHz and (b) from 5GHz to 15GHz
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Figure 81: Comparison of three eigenvalues vs. frequency between original data
and the frequency response calculated from the macromodel

dc source for the slave chip was left unterminated. The voltage regulator module with

0.6V supply voltage was connected between port 1 and ground.

The time-domain waveform of power supply noise between port 2 and ground is

shown in Figure 83. The bit pattern of the waveform is 0000111100001111..., resulting

in a data speed of 3.2 Gbps/pair with a voltage swing of 271mV. From Figure 83, a

power supply noise of 40mV was measured due to the switching of four differential

transmission lines. The power supply noise is uniform over a time duration of 20ns,

indicating that the macromodel is stable and passive.
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Figure 82: Circuit simulated

Figure 83: Time-domain simulation for measuring power supply noise
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FPGA FPGAMUX

RF amplifier

Figure 84: INC board from Packaging Research Center

5.5 Test Case 5: Fourteen-port power distribu-

tion network for INC board (Intelligent Net-

work Communicator) from the Packaging Re-

search Center

Figure 84 shows the INC(Intelligent Network Communicator) board developed at the

Packaging Research Center. The board incorporates the digital, RF and optoelec-

tronic sections on a 83.31mm x 65.4mm single test bed, which has two FPGA chips,

a MUX and a RF amplifier.

The cross section of the board shown in Figure 85 has a signal layer and two

plane layers. The first layer is the signal layer and the second and third layers are

the irregularly shaped ground and power plane layers, respectively. The dielectric

material with thickness of 60um has a dielectric constant, εr = 3.8, and loss tangent,

tanδ = 0.02. The conductor in the three layers with thickness of 12um is copper with

conductivity, σc = 5.8× 107S/m.

The detailed layout of the three layers is shown in Figure 86. The 16 output

ports of the two FPGA chips are connected to the input port of a MUX with a data
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Layer 2

Layer 1

Layer 3

Figure 85: Cross section of the INC board

rate of 155Mbps/channel using 16 single ended transmission lines and the output of

the MUX is connected to the input of the RF amplifier with a data rate of 2.4Gbps

using a differential transmission line. The FPGA chips and RF amplifier are connected

to a 3.3V dc source and the MUX is connected to a 2.5V dc source.

Fourteen port admittance parameters (uniformly distributed 1286 frequency

samples from 10KHz to 9GHz per port) of the power plane pair were generated

using the transmission matrix method (TMM) [50]. The location of ports depicted

in Figure 86 is shown in Table 10. Using the methods discussed in Chapter 4, the

macromodel was automatically constructed using BEMP version 3.0. The comparison

of the magnitude in logarithm scale between the given frequency response and the

response of the macromodel is shown in Figure 87, which shows good agreement

between the input data and the macromodel. The frequency response shown in Figure

87 is the response of the bare board.

For design and analysis of the INC board, graduate student Prathap Muthana

and Dr. Lixi Wan in the EPSILON group at Georgia Tech have modified the layout

of the board to achieve maximum performance by adding decoupling capacitors and

embedded capacitors based on the frequency response in Figure 87. The frequency

response with the decoupling capacitors and/or embedded capacitors has been ap-

proximated by following the same procedure for the construction of the macromodel

for the bare board. Then, time-domain simulation was performed in HSPICE using
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Figure 86: Layout of the layers (a) signal layer, (b) ground plane layer and (c)
power plane layer
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Table 10: Location of 14 ports

port x(um) y(um)
1 61080 28320
2 23740 28320
3 41140 12060
4 35810 28320
5 49650 28320
6 42290 21460
7 50000 1240
8 41300 64240
9 35900 60870
10 44191 19540
11 43090 64440
12 49610 64440
13 7600 8440
14 9300 8440

Sold: original data
Dot: macromodel

(a)

Sold: original data
Dot: macromodel

(b)

Sold: original data
Dot: macromodel

(c)

Sold: original data
Dot: macromodel

(d)

Figure 87: Comparison of admittance parameters: (a) magnitude of Y(1,1), (b)
magnitude of Y(1,12), (c) magnitude of Y(12,1) and (d) magnitude of Y(12,12)
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three sets of 14-port macromodels of the power planes for computing power supply

noise, as shown in Figure 88. In Figure 88, the macromodel capturing the frequency

response with the decoupling capacitors and embedded capacitors present provides

the smallest noise fluctuation in the time-domain simulation.

5.6 Test Case 6: 32-bit bus from HRL

Figure 89(a) shows the interconnects (32-bit bus) on a Delta-Sigma modulator chip

designed by HRL. The 32-bit bus shown in Figure 89(b) was modeled using an EM

simulator that is proprietary to HRL. Therefore, only the frequency response of the

bus was provided. Using this information, a macromodel of the 32-bit bus was de-

veloped. The comparison of the magnitude in logarithm scale between the given

frequency response of the bus and the frequency response of the macromodel using

BEMP version 3.0 is shown in Figure 90. This result in Figure 90 is for Y(1,19), which

was screen-captured when BEMP version 3.0 was run on Windows. The deviation

(RMS error) in Figure 90 shows the accuracy of the macromodel. For this test case,

it is important to note that only diagonal elements were used for the approximation

of 32-port admittance parameters. Hence, as compared to an original computation

time of C = O(K ×N6) = O(K × 1.0737× 109) in Section 4.8, where N = 32 and K

is a constant, a computation time of C = O(K ×N3) = O(K × 32768) was achieved,

which resulted in a speed up of 32767.

The 32-port macromodel was connected to a 3.3V dc source having 100ps rise

and 200ps fall times at port 1, as shown in Figure 91. Figure 92 show the time-domain

waveform when all the ports were terminated with 30Ω resistors, which was used to

simulate the crosstalk between ports 1 and 9.
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Figure 88: Time-domain simulation for evaluating the performance of the power
distribution network with decoupling capacitors and embedded capacitors: (a) voltage
at port 2 and (b) voltage at port 6
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Figure 89: (a) Layout of Delta-Sigma modulator from HRL and (b) layout of 32-bit
bus
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Figure 90: Comparison of admittance parameter Y(1,9)
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Figure 91: Circuit simulated
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Figure 92: Crosstalk between ports 1 and 9

5.7 Summary

In this chapter, the Broadband Efficient Macromodeling Program, which implemented

the methods in Chapter 4, was used for the construction of the broadband macro-

model. Using BEMP, the efficiency of the methods developed was demonstrated

through six test cases representative of distributed interconnect networks such as the

lossy coupled transmission lines (simulation and measurement), a rectangular power

plane with decoupling capacitors, realistic irregular power distribution networks and

a 32-bit bus for gigabit data transmission.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

The goal of this dissertation was to construct macromodels from frequency data for

simulation of distributed interconnect networks. Using the constructed macromodels,

the electromagnetic behavior of distributed networks can be successfully integrated

into circuit simulators for design and analysis of gigabit systems. In this disserta-

tion, these macromodels have been categorized as scalable, passive and broadband

macromodels. The scalable macromodels can be used to implement design libraries

of passive devices; the passive macromodels can be used to integrate the black box

representation of frequency responses into time-domain simulators; the broadband

macromodels can be used to capture hundreds of resonant peaks over a broad fre-

quency range.

Scalable macromodels for building design libraries of embedded passive de-

vices have been constructed using multidimensional rational functions, orthogonal

polynomials and selective sampling. The multidimensional rational functions were

implemented as a multiplication of one-dimensional rational functions with frequency

and design parameters to construct a mapping between the frequency response and

physical parameters of the device. Orthogonal polynomials such as Legendre, Cheby-

shev I, and Chebyshev II polynomials were used in the multidimensional rational

functions for increasing the accuracy of the macromodel. The selective sampling

method reduced the number of frequency samples and increased the accuracy of the

scalable macromodel. The performance of the above methods was demonstrated

through the rectangular power plane structure with two design variations. Subse-

quently, the methods were successfully applied to build design libraries of embedded
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spiral inductors in multilayer configurations.

Passive macromodels have been constructed using filter theory, the pole-residue

form of the rational function, and multiport passivity formulae. The filter theory and

pole-residue form of the rational function enabled any transfer function of a passive

network to be represented as a summation of low pass, band pass, high pass and

all pass filters. The relationship between the frequency response and coefficients of

filters has been identified. The multiport passivity formulae using the maximum

modulus theorem and Hurwitz test were derived for checking and enforcing passivity

of the macromodel. The passivity formulae derived were sufficient but not a neces-

sary condition. If the macromodel violated the multiport passivity formulae, negative

eigenvalues in the residue matrix were set equal to zero or changed to a small positive

value to ensure passivity of the macromodel and then the residue matrix was recon-

structed. The passive macromodels were synthesized into equivalent circuit elements,

which always had positive values due to the application of the passivity formulae

derived.

Broadband macromodels have been constructed using the band division method,

which divides the entire computational domain into sub-computational domains.

The band division method alleviated the ill-conditioned matrix problem during least

squares approximation and reduced the memory requirement. To solve the inter-

action problem between subbands arising when the band division method is used,

methods such as selector, which selects the filters constructed from the subband of

interest, subband reordering, which provides a construction sequence for reducing the

interaction between subbands, subband dilation, which provides local correction in

the boundary region between subbands, and pole replacement, which increases the

accuracy of the broadband macromodel, have been developed.

During the construction of the macromodels, several issues have been solved
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• Fast multiport construction of broadband macromodels
• Scalable macromodels for building design libraries (orthogonal polynomials)
• Delay extraction of distributed interconnects (model order reduction)

June
2004

BEMP
4.0

• High pass macromodels �Ultra wideband macromodels
• Improved model accuracy compared to that of Release 2.0 (Vector fitting)
• Model order reduction (MOR) based on user’s opinion
• Automated construction of macromodels �Click and run
• Successfully tested on multiport networks (32-bit bus, 14-port power planes,…)
• Reduced amount of user interaction (GUI, touchstone file, MOR)

Sep.
2003

BEMP
3.0

• Pole replacement method (DP) � Improved macromodel accuracy
• Successfully tested on digital and RF circuits (drivers, LNA, filters,…)
• Improved model accuracy in the low frequency band

Oct.
2002

BEMP
2.0

• Generate transfer function-based model order reduction technique
• Multiport passivity formulae (MPF) �Passive macromodels
• Band division � Broadband macromodels
• Limited model accuracy in the low frequency band

Feb.
2002

BEMP
1.0

DetailsRelease DateVersion

Figure 93: Evolution of BEMP

using the properties of the rational function. Since each resonant peak in the fre-

quency response can be represented as a filter, an automated construction method,

which automatically determines the boundaries of each subband, has been developed

by detecting the resonant peaks and nulls in the frequency response. Also, since off-

diagonal elements are always a subset of the diagonal elements in the rational function

matrix, the construction time of the multiport macromodel has been reduced by using

diagonal elements in the common pole system. Using the property that the spurious

filters can be detected by measuring the magnitude of resonant peaks, a method for

reducing the order of the macromodel without affecting the stability and passivity

conditions has been developed by removing the filters with negligible residue values.

These methods have been realized into the Broadband Efficient Macromodeling

Program (BEMP) developed at Georgia Tech. The evolution of BEMP is shown in

Figure 93.

Using BEMP, the efficiency of the methods developed in this dissertation was

demonstrated through embedded passive devices and known transfer functions. The
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methods have been successfully applied to test cases representative of distributed

interconnect networks such as lossy coupled transmission lines, irregular power planes,

and an on-chip bus.

As an extension to the methods described in this dissertation, the following

research needs to be investigated:

Construction of causal macromodels: As described in this dissertation, the broad-

band macromodels capturing the frequency response of long transmission lines

require hundreds of poles. Even if the macromodels accurately captured the

frequency response of distributed circuits, small glitches prior to signal arrival

have been observed, meaning that the macromodels violate the causality condi-

tion during time-domain simulation. Hence, delay and causality are important

considerations especially for timing and false transitioning of circuits. Hence,

macromodels need to be constructed after extracting the delay of the distributed

interconnect network.

Construction of non-linear macromodels for I/O drivers: This dissertation is

limited to the development of macromodels for capturing the behavior of pas-

sive networks. However, design and analysis of gigabit systems require not only

a macromodel for capturing the behavior of passive devices but also a macro-

model that captures the behavior of non-linear circuits for the simulation of

accurate waveforms on interconnect networks. Hence, macromodels capturing

the static and dynamic behavior of non-linear devices need to be investigated.

Construction of orthogonal macromodels for passive networks: In this dis-

sertation, the macromodels have been constructed using filters. However, due

to the non-orthogonality of filters, an interaction problem between subbands

exists when the band division method is used. This interaction can be removed
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if the basis functions of the macromodels are orthogonal in the frequency re-

sponse. The basis functions can be wavelets or orthogonal polynomials.

Optimum order tracking method: As discussed in this dissertation, the mini-

mum eigenvalue tracking method is limited to low order systems due to the

ill-conditioned matrix problem. Hence, this dissertation alleviated the prob-

lem using the band division method, which decreases the required order of the

macromodel. However, since the order of the macromodel sometimes resulted

in the addition of spurious filters with negligible frequency response, it is im-

portant to develop an order tracking method for estimating the optimum order

of the macromodel.
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