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Abstract— In this paper, a fast transient simulation scheme
using Laguerre polynomials, called Laguerre-MNA, has been
developed for FDTD and circuit simulation. Companion models
for the Yee cells and circuit components have been derived,
permitting the use of MNA analysis to perform FDTD/transient
circuit simulation using the Laguerre method. Companion models
help simplify the matrix setup and reduce the matrix dimension
that needs to be solved without employing long cumbersome
equations. FDTD simulation using Laguerre polynomials is un-
conditionally stable and has shown to be much faster than con-
ventional FDTD scheme. Prior work on transient electromagnetic
simulation using Laguerre polynomials has a drawback of being
able to simulate only for a certain time-duration. A memory/time
efficient solution has been proposed by which simulation can be
done for all time.

I. INTRODUCTION

Time-domain techniques, such as the finite-difference time-
domain (FDTD) method, Latency Insertion Method (LIM)
[1] and Spice transient simulation, have been widely used
to analyze power-integrity (PI), signal-integrity (SI) and elec-
tromagnetic interference (EMI) problems. The limitation of
FDTD and LIM is the Courant-Friedrich-Levy stability con-
dition that limits the maximum time-step that can be used,
in order to obtain stable simulation results [2]. An uncondi-
tionally stable transient EM simulation method using Laguerre
polynomials was proposed in [3]. The method proposed in [3]
for electromagnetic simulation has shown to be 80× faster
than conventional FDTD scheme.

In this paper, companion models for the FDTD grid
and linear circuit components have been proposed, so that
modified nodal analysis (MNA) can be used to carry out
FDTD/transient circuit simulation. The advantages of this
are (1) Laguerre-MNA can be integrated seamlessly with
Spice to do FDTD/transient circuit simulation, and (2) circuit
representation simplifies the matrix setup and helps reduce
the matrix dimension to be solved without long cumbersome
equations. The requirement for using LIM is that, all branches
should have an inductor and all nodes must have a capacitor
connected to ground, in order carry out the time-stepping.
However, in the Laguerre-MNA method for circuit simulation,
there are no such conditions and can be applied to any arbitrary
linear network, comparable in performance to Spice.

Reference [3] has the drawback of being able to simulate
only for a certain time-duration. As a consequence of this

limitation, [3] can only be applied to structures where the fields
decay to zero within the time-duration for which simulation
can be carried out. Typically, in the analysis of SI/PI/EMI,
resonant structures can cause the waveforms to decay very
slowly and simulation needs to be carried out longer than
the time-duration supported by [3]. A time/memory efficient
solution has been proposed, so that simulation can be done for
all time, as well as all structures.

The remaining sections are organized as follows: transient
simulation methodology is presented in Sec. II; each of the
steps in the method is explained in more detail in Sec. III-
VII; limitations from prior work and solution to overcome this
limitation is given in Sec. IV and a summary of this paper in
Sec. VIII.

II. TRANSIENT SIMULATION METHODOLOGY

Transient FDTD/circuit simulation using Laguerre polyno-
mials is presented in this section. Laguerre-MNA can be used
for (1) EM analysis by FDTD, and (2) transient simulation
in circuits composed of resistors, capacitors, inductors, volt-
age/current sources. The flowchart for simulation is shown in
Fig. 1. The first step is to represent the source waveforms in
time-domain into equivalent representations in the Laguerre-
domain. The time-domain waveforms are represented as a sum
of Laguerre-polynomials that are scaled by Laguerre basis
coefficients. This representation is explained in Section III.
The second step is to replace (1) the FDTD grid, or in the case
of circuit simulation, (2) capacitors and inductors with their
equivalent Laguerre-domain companion models. The circuit
models are given in Sec. V. The transient sources are replaced
with DC sources. For each of the values in the Laguerre-
domain that represents the time-domain source waveform, a
DC analysis is done once. The solution at the end of each DC
analysis is used to update the companion models, before the
next DC analysis is performed. After updating the companion
models, a DC analysis is carried out using the next value in the
Laguerre-domain that represents the source waveform. These
series of steps are given by Steps 3-5 in Fig. 1. The final step
is to construct the time-domain waveform for the output of
interest from the DC solutions.
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Fig. 1. Flowchart for transient simulation using Laguerre polynomials

III. STEP 1: LAGUERRE BASIS FUNCTIONS

The first step is to represent the time-domain source
waveforms into equivalent Laguerre-domain representations.
A transient source waveform W (t) can be represented as a
sum of N Laguerre basis functions ϕp(t̄), scaled by Laguerre
basis coefficients Wp as shown in Eq. 1 [3].

W (t) =
p=N−1∑

p=0

Wpϕp(t̄) (1)

t̄ = s · t (2)

In Eq. 2, t̄ is the real time t multiplied by a scaling factor
s. The actual time scale at which the simulation is run is
very small, typically picoseconds when rise/fall times are in
the order of picoseconds. To make the basis function work,
the real time is multiplied by s to scale the magnitude in the
order of seconds. The basis functions for orders p = 0−4 are
plotted in Figure 2 [3]. The basis functions span a time in the
order of seconds as shown by the x-axis in Figure 2, hence
the need for the scale factor.

The definition of the basis function is given by Eq. 3.

ϕu(t̄) = e−t̄/2Lu(t̄) (3)

Laguerre polynomials are defined recursively as follows:

L0(t̄) = 1 (4)

L1(t̄) = 1 − t̄ (5)

pLp(t̄) = (2p − 1 − t̄)Lp−1(t̄) − (p − 1)Lp−2(t̄),
for p ≥ 2 (6)

The transient source waveforms are replaced by DC sources.
The values of the DC sources are the set of Laguerre basis

Fig. 2. Laguerre basis functions for order p=0-4

coefficients {Wp}, which represent the transient source wave-
form in the Laguerre-domain. {Wp} is generated from W (t)
using Eq. 7.

Wp =
∫ ∞

0

W (t)ϕp(t̄)dt̄ (7)

Laguerre basis functions satisfy the orthonormal property,∫ ∞

0

ϕu(t̄)ϕv(t̄)dt̄ = δuv (8)

In Eq. 8, δuv is the Kronecker delta function. Equation 7
can be derived by multiplying both sides of Eq. 1 with
ϕq(t̄), integrating the two sides from [0,∞] and using the
orthonormal property given by Eq. 8.

The output of Step 1 is to compute the set of Laguerre basis
coefficients {Wp} for each of the transient source waveforms.

IV. LIMITATIONS IN PRIOR WORK AND SOLUTION

Transient simulation using Laguerre polynomials was orig-
inally used in electromagnetic simulation. A drawback of the
methodology in [3] is that the transient simulation can be
performed only for a certain time-duration and cannot be done
for all time. There are two reasons for this limitation: The first
reason is due to the nature of the Laguerre basis functions and
the second reason is due to the finite precision of the computer,
which makes it impossible to represent very large numbers or
very small numbers.

The first reason for the limitation is due to the nature of the
basis functions. The Laguerre basis functions for p = 0 − 4
are plotted in Figure 2. As shown in the figure, all of the
basis functions approach 0, as t tends to ∞. Therefore, any
time-domain waveform that is spanned by these set of basis
functions also goes to 0 as t tends to ∞. Circuits that are
lossless or have a low loss cannot be simulated accurately,
because the waveforms can be non-zero for a long period of
time.

The second reason for the limitation is due to the finite
precision of the computer. The Laguerre basis function is
an exponentially decaying function multiplied by a Laguerre
polynomial, as given by Eq. 3. The exponential function
quickly decays to 0, and beyond a certain time-point the



exponential function is approximated with a 0. Laguerre
polynomials become very large with increasing time. Beyond a
certain time, the numbers become very large to be represented
with the limitation of finite precision and is represented as
Inf in the IEEE 754 floating point standard. Consequently,
beyond a certain time-point, the basis function is represented
as 0 × Inf or NaN, not a number.

The solution to overcome this limitation is to divide the
simulation time into different intervals. Let Interval I span
from time t = t0 to t = t1, Interval II span from time t = t1
to t = t2, and so on. The length of each interval is chosen
such that, simulation can be accurately performed in that time
duration. The final values at the end of Interval I are used
as initial conditions to simulate in Interval II. This process is
repeated until the time duration for which the simulation needs
to be done is completed.

The differential equations have been modified to include ini-
tial conditions, before converting them into Laguerre domain.
The companion models presented in this paper include initial
conditions. Using the proposed solution, simulation can done
for all time duration.

V. COMPANION MODELS FOR FDTD-GRID AND CIRCUIT

COMPONENTS

A. FDTD-grid 1D

Consider a 1D FDTD grid shown in Fig. 3. The fields
present are Hy and Ez , excited by Jz current source. The
positions of the electric fields are marked by | and those of
the magnetic fields are shown by ×. The boundary conditions
on either side of the grid are perfect electric conductor (PEC)
boundary conditions.

The companion model of the FDTD grid is described before
the derivation. The circuit model of a unit-cell in an FDTD
grid in terms of resistors and voltage sources are given by the
second subfigure in Fig. 3. At the end of qth DC analysis, the
nodal voltages and branch currents represent the qth Laguerre
basis coefficients of the electric fields and the magnetic fields,
respectively. The value of the qth Laguerre basis coefficient
of the electric field Ez|qi is represented by the nodal voltage
marked V q

i and the magnetic fields on either side of Ez|qi ,
Hy|qi−1/2 and Hq

y |i+1/2, are given by the branch currents
Iq
i−1/2 and Iq

i+1/2, respectively. The circuit model of the unit
cell is cascaded to represent as many unit cells as needed. The
model is terminated by a short-circuit on both the sides to
represent the perfect electric conductor boundary conditions.
The values of the components are,

R1 =
sµ∆x

2
(9)

Iq
val,i−1/2 = 2Hinit

y |i−1/2 − 2
( q−1∑

k=0,q>0

Hk
y |i−1/2

)
(10)

RTH =
2

sε∆x
(11)

V q
TH =

−2Jq
z |i

sε
− 2

( q−1∑
k=0,q>0

Ek
z |i

)
+ 2Einit

z |i (12)

µ, ε represent the material properties of the medium; ∆x is the
unit-cell dimension; Hinit

y and Einit
z are the initial conditions

of the electric and magnetic fields at the location marked by
their subscripts; s is the time-scale factor given by Eq. 2.

The remaining section presents the derivation of the circuit
model. Maxwell’s equations with initial conditions in 1D can
be written as,

∂Hy

∂t
− Hy(�r, 0)δ(t) =

1
µ

∂Ez

∂x
(13)

∂Ez

∂t
− Ez(�r, 0)δ(t) =

1
ε

[
∂Hy

∂x
− Jz

]
(14)

Hy(�r, 0) and Ez(�r, 0) are the initial values of the magnetic and
electric fields at position �r, and beginning of a time-interval;
δ(t) is the Dirac delta function. Hy(�r, t), Ez(�r, t) and Jz(�r, t)
can be written as a sum of N Laguerre basis coefficients given
by,

Hy(�r, t) =
N−1∑
q=0

Hq
y (�r)ϕq(t̄) (15)

Ez(�r, t) =
N−1∑
q=0

Eq
z (�r)ϕq(t̄) (16)

Jz(�r, t) =
N−1∑
q=0

Jq
z (�r)ϕq(t̄) (17)

Substituting Eq. 15-17 into Eq. 13-14, using the time-
derivative relationship given in [3], and by applying the
orthonormal property of the Laguerre basis functions given
in Eq. 8, the following equations can be obtained:

Hq
y |i+1/2 = −2

( q−1∑
k=0,q>0

Hk
y |i+1/2

)
+

2Hinit
y |i+1/2 +

2
sµ∆x

(
Eq

z |i+1 − Eq
z |i

)
(18)

Eq
z |i = −2

( q−1∑
k=0,q>0

Ek
z |i

)
+ 2Einit

z |i +

2
sε∆x

[
Hq

y |i+1/2 − Hq
y |i−1/2

]
− 2

sε
Jq

z |i (19)

In deriving Eq. 18-19, Eq. 20 is used when integrating the
delta function term.∫ ∞

0

δ(t)ϕp(t̄)dt̄ = sϕp(0) = s (20)

The circuit model of the FDTD grid in Fig. 3 satisfies Eq.18-
19. The PEC boundary condition dictates that the electric
field be zero for all the Laguerre coefficients. This is taken
care of by a short circuit, forcing the electric field Laguerre
coefficients to be 0.

The number of unknowns to be solved in MNA analysis are
the unknown nodal voltages and the unknown currents through
the voltage sources V q

TH . One possible way of reducing the
matrix dimension that needs to be solved is by substituting
Eq. 18 into Eq. 19, so that the unknowns to be solved



Fig. 3. Companion model for a unit cell in an FDTD grid

are only the coefficients of the electric field; other terms
involving coefficients of the magnetic field represent history
terms that have been solved in previous analyses. However,
this procedure is very cumbersome due to the length of the
equations that needs to be manipulated. An easier approach is
to convert the Thevenin representation of the circuit, looking
into the circuit marked by the double arrow, into a Norton
form as given by the third subfigure in Fig. 3:

RN = RTH (21)

Iq
N =

V q
TH

RTH
(22)

In the Norton representation, the unknowns are only the
nodal voltages (electric field coefficients). The branch currents
that represent the magnetic field Laguerre coefficients can
be obtained by applying Ohm’s law using the solved nodal
voltages.

The companion model is updated using the qth DC solution,
before performing the q + 1 DC analysis.

B. FDTD-grid 2D

Consider a 2D FDTD grid with Hz, Ex, Ey fields and Jy

source. The field arrangement is shown in Fig. 4(a). Time-
domain Maxwell’s differential equations without including the
initial conditions are given in [3]. Including initial condi-
tions, similar to the 1D case, the Laguerre representation of
Maxwell’s equations for the 2D case, consists of the following
set:

Eq
y |i,j+ 1

2
− 2Einit

y |i,j+ 1
2

= −CE
x |i,j

(
Hq

z |i+ 1
2 ,j+ 1

2
−

Hq
z |i− 1

2 ,j+ 1
2

)
− 2

sε
Jq

y |i,j+ 1
2
− 2

q−1∑
k=0,q>0

Ek
y |i,j+ 1

2
(23)

Eq
x|i+ 1

2 ,j − 2Einit
x |i+ 1

2 ,j = CE
y |i,j(

Hq
z |i+ 1

2 ,j+ 1
2
− Hq

z |i+ 1
2 ,j− 1

2

)
− 2

q−1∑
k=0,q>0

Ek
x |i+ 1

2 ,j (24)

Hq
z |i+ 1

2 ,j+ 1
2
− 2Hinit

z |i+ 1
2 ,j+ 1

2
= −CH

x |i,j(
Eq

y |i+1,j+ 1
2
− Eq

y |i,j+ 1
2

)
+ CH

y |i,j
(

Eq
x|i+ 1

2 ,j+1 −

Eq
x|i+ 1

2 ,j

)
− 2

q−1∑
k=0,q>0

Hk
z |i+ 1

2 ,j+ 1
2

(25)

where,

CE
y |i,j =

2
sεi,j∆yj

;CE
x |i,j =

2
sεi,j∆xi

(26)

CH
x |i,j =

2
sµi,j∆xi

;CH
y |i,j =

2
sµi,j∆yj

(27)

The two subfigures in Fig. 4(b) represent the circuit model of
the unit-cell shown in Fig. 4(a). The nodal voltages Vi,j+1/2

and Vi+1,j+1/2 in the first subfigure in Fig. 4(b) represent
qth Laguerre electric field basis coefficients, Eq

y |i,j+1/2 and
Eq

y |i+1,j+1/2, respectively. The nodal voltages Vi+1/2,j and
Vi+1/2,j+1 in the second subfigure in Fig. 4(b) are qth La-
guerre electric field coefficients Eq

x|i+1/2,j and Eq
x|i+1/2,j+1,

respectively. The branch current marked Ii+1/2,j+1/2 are the
same values in both the subfigures and represent the qth

Laguerre magnetic field coefficients Hq
z |i+1/2,j+1/2.

The values of R1 and VTH |i,j+1/2 are,

R1 = CE
x (28)

VTH |i,j+1/2 = 2Einit
y |i,j+ 1

2
− 2

sε
Jq

y |i,j+ 1
2



(a) 2D FDTD Grid (b) Circuit model for the 2D FDTD grid

Fig. 4. Simulation results

−2
q−1∑

k=0,q>0

Ek
y |i,j+ 1

2
(29)

The values of R2 and VTH |i+1/2,j are,

R2 = CE
y (30)

VTH |i+1/2,j = 2Einit
x |i+ 1

2 ,j − 2
q−1∑

k=0,q>0

Ek
x |i+ 1

2 ,j (31)

Eq. 28-29 model Eq. 23; Eq. 30-31 model Eq. 24.
The values of Ival,1, Ival,2, Ival,3, R3 and R4 are,

Ival,1 = 2Hinit
z |i+ 1

2 ,j+ 1
2
− 2

q−1∑
k=0,q>0

Hk
z |i+ 1

2 ,j+ 1
2

(32)

Ival,2 = CH
y

(
Vi+1/2,j+1 − Vi+1/2,j

)
(33)

Ival,3 = CH
x

(
Vi,j+1/2 − Vi+1,j+1/2

)
(34)

R3 =
1

CH
x

;R4 =
1

CH
y

(35)

Eq. 32-35 model Eq. 25. Ival,2 and Ival,3 in Fig. 4(b) are
shown by dotted circles and are voltage controlled current
sources, that couple the two circuits together. It can be seen
from KCL and KVL equations that Eq. 28-35 represent Eq.
23-25.

The number of unknowns that needs to be solved using
MNA analysis can be reduced by converting Thevenin rep-
resentations into Norton equivalents. Looking into the circuit
marked by the double arrow shown in Fig. 4(b), Thevenin
circuit can be converted into a Norton model, as explained in
Sec. V-A. The number of unknowns can also be reduced by
substituting Eq. 25 into Eq. 23-24, such that only the electric

field Laguerre coefficients needs to be solved. However, this
is a lot more cumbersome than converting from Thevenin to
Norton equivalent circuit form. It should be noted that both
of these methods to reduce the number of unknowns, result in
the same matrix dimension. However, reducing the unknowns
by Thevenin to Norton conversion is much simpler.

C. Circuit Components: R,L,G,C elements

Laguerre-domain companion models for inductors, capaci-
tors are given in the work done by the authors of this paper
in [4]. Resistors, conductances in Laguerre-MNA are treated
in the same fashion as conventional MNA analysis. Cases for
which Laguerre-MNA can be faster than MNA analysis are
also given in [4].

VI. STEPS 3-5: DC ANALYSIS

This subsection explains Steps 3-5 in the flowchart shown in
Fig. 1. The FDTD grid/R,L,G,C components are replaced with
their companion models. The transient sources are replaced by
DC sources. Assuming that the sources are represented by N
Laguerre basis coefficients, as given by Equation 1, N DC
analysis are performed. In the mth,m ≤ N DC analysis step,
the value of the mth Laguerre basis coefficient is used for the
DC source. At the end of the DC analysis (Step 4), the solution
from the DC analysis are used to update the companion models
(Step 5). Steps 3-5 are repeated for the (m + 1)th Laguerre
basis coefficient as the DC source value, doing the DC analysis
and updating the companion models at the end of the DC
analysis. This process is repeated until N DC analyses have
been done.

The DC solution of the output of interest at the end of
the mth DC analysis step, represents the mth Laguerre basis
coefficient of the corresponding time-domain waveform.



It must be noted that Laguerre-MNA does not require
storing all of the solution from the series of DC analysis that
has been performed. At the end of each DC analysis, once the
companion models have been updated, there is no need for
saving the solution. The only solution that needs to be stored
at the end of each DC analysis is the solution of the output
for which the transient waveform is to be observed.

The final time-domain values at the end of an interval, e.g.
Interval Q, must be computed in order to use these values as
the initial conditions in the next time-interval, Interval (Q+1).
Not all the coefficients, i.e. the DC solution, need to be saved,
in order to compute the final value at the end of a time-
interval. At the end of each DC analysis, the contribution of
pth Laguerre basis coefficient (Wp) to the final value of the
transient waveform at the end of a time-interval (tf ) can be
computed by using Eq. 36.

value(tf ) = value(tf ) + Wpϕp(stf ) (36)

value(tf ) is first initialized to 0, before using Eq. 36.

VII. STEP 6: TIME-DOMAIN WAVEFORM

The final step is to obtain the time-domain waveform, from
all the DC solution of the output quantity. The time-domain
waveform can be obtained by using Eq. 1. The pth basis coeffi-
cient is multiplied by the pth basis function; assuming there are
N basis coefficients that represent the output waveform, the N
waveforms are added to obtain the output transient waveform.

Consider the L,C network shown in Fig. 5 with 102 nodes.
The test-case is similar in structure to a model of the parasitics
of a power/ground plane for power-integrity analysis. The
values of the capacitors and inductors are 1nF and 1nH,
except for the last three marked in red, which are 1fF and
1fH. In Circuit-FDTD, the presence of the small valued
capacitors and inductors, considerably reduces the time-step
due to the Courant condition. Laguerre-MNA, which is un-
conditionally stable, has a significant advantage over Circuit-
FDTD. Simulation using Circuit-FDTD for 100ns will require
over 1.0×108 iterations, but simulation using Laguerre-MNA
for this example requires only an iteration 121 times to solve
for 121 basis coefficients.

Voltage waveform at node 102 are plotted in Fig. 6. The
dotted blue curve is obtained by using WinSpice and the solid
red curve is by using Laguerre-MNA. The input waveform
is a triangular input with a rise/fall time of 4ns, and a delay
of 1ns; the voltage source is connected to node 1; the time-
scale factor used is s = 3.8×109. There is a good correlation
between WinSpice and Laguerre-MNA.

The same structure of the companion models between
Laguerre-MNA and MNA makes it possible to simulate even
very large sized problems using Laguerre-MNA rather than
MNA [4] [5].

VIII. CONCLUSIONS

In this paper, a fast transient simulation method called
Laguerre-MNA has been proposed by which FDTD simu-
lation/linear transient circuit simulation can be done with

Fig. 5. An L,C network
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Fig. 6. Voltage at node 102; dots: WinSpice and solid: Laguerre-MNA

Laguerre polynomials, using MNA analysis. Stamp rule can be
used to setup the MNA matrix, simplifying the matrix setup.
MNA analysis can reduce the matrix dimension to be solved
significantly, without using long cumbersome equations.
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