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CHAPTER 1 1 

INTRODUCTION 2 

1.1 Background 3 

The advancement of through-silicon-via (TSV) fabrication technology makes three- 4 

dimensional (3D) integration a promising and key integration technique that can achieve 5 

continuous miniaturization of next generation integrated circuits (ICs) and systems. The 6 

3D integration technique provides the capability of integrating multiple dies vertically 7 

using TSVs and silicon carriers [1, 2]. A general 3D integrated system consisting of 8 

stacked dies, a silicon interposer (or a package), and a printed circuit board (PCB) is 9 

shown in Figure 1. Because of the vertical stacking of IC dies, the power density of 3D 10 

integrated systems is expected to increase dramatically according to the International 11 

Technology Roadmap for Semiconductors [3]. Alleviating the thermal problem for 3D 12 

systems requires novel thermal management approaches such as microfluidic cooling 13 

using built-in microchannels [4, 5, 6], as shown in Figure 1. Compared to a two- 14 

dimensional (2D) integrated system, the design and modeling of a 3D system becomes 15 

challenging because of increasing geometry scales and complexities.  16 

1.2 Motivation 17 

Designing a successful 3D integrated system requires efficient numerical modeling and 18 

simulation methods that can simultaneously validate electrical performance, thermal 19 

integrity, and mechanical reliability. In this regard, the early-design stage modeling and 20 

analysis of 3D systems at the system level is important. Modeling includes the extraction 21 

of physical parameters and the building of physical or mathematical models that capture 22 

electrical, thermal, and mechanical phenomena described by governing equations. 23 



 2 

Analysis includes solving problems using numerical solvers to obtain final solutions. As 24 

multiple domains such as electrical, thermal, and mechanical domains are included in an 25 

integrated system, modeling and analysis become critical. The challenges for the 26 

modeling and analysis of 3D systems are discussed in the following subsection.  27 

 28 

Figure 1. A 3D integrated system.  29 
 30 

1.2.1 Major Modeling and Analysis Challenges 31 

The major challenges for the modeling and analysis of a 3D integrated system mainly 32 

stem from four aspects:  electrical-thermal coupling and interaction, the multiscale nature 33 

of 3D systems, the requirement for fast simulation with varying design parameters, and 34 

efficient modeling of microfluidic cooling, all explained below: 35 

1. Coupling and interaction between electrical and thermal domains 36 

For an integrated system, since materials such as metal conductors and the silicon 37 

substrate usually have temperature-dependent properties, a non-uniform temperature 38 

profile can affect electrical performance both in steady state and at high frequencies. The 39 

temperature-dependent electrical resistivities of metal conductors such as silver, copper, 40 



 3 

and aluminum are shown in Figure 2a while the electrical resistivity of silicon carrier is 41 

shown in Figure 2b. In steady state, a power delivery network (PDN), which consists of 42 

metal conductors and can be represented using a resistance network, delivers DC voltage 43 

and current to IC chips [7, 47]. As the electrical resistivities of metal conductors are 44 

temperature-dependent, the effect of temperature on the steady-state voltage drop in a 45 

power delivery network needs to be investigated. In addition, because of current flowing 46 

in a PDN, generated Joule heating can affect thermal distribution. Thus, the electrical and 47 

thermal characteristics interact and form a coupling system in the steady state.  48 

 49 

        50 
(a)                                                        (b) 51 

Figure 2. Temperature-dependent resistivities of (a) conductors including silver, 52 

copper, and aluminum, and (b) silicon substrate.  53 
 54 

At higher frequencies, for the electrical modeling of TSV arrays in a silicon 55 

interposer (Figure 1), as the electrical resistivity of silicon substrate is a function of 56 

temperature (Figure 2b), the electrical performance of TSV arrays such as insertion loss 57 

and crosstalk between neighboring TSVs can be affected by the thermal profile. 58 

Therefore, designing and modeling TSV arrays must take into account the effect of 59 

20 40 60 80 100 120
0.09

0.1

0.11

0.12

0.13

0.14

0.15

Temperature (Degree)

R
e
s
is

ti
v
it

y
 (

O
h

m
*
m

)



 4 

system thermal profile. Addressing the thermal effect on TSVs and facilitating TSV array 60 

design requires combined thermal-electrical modeling for TSV arrays.  61 

In summary, the inclusion of simultaneous electrical and thermal phenomena 62 

complicates the modeling of 3D systems and requires the development of co-simulation 63 

methods. Although thermal and mechanical characteristics also interact because of the 64 

mismatch between coefficients of thermal-expansion (CTE) of materials, the co- 65 

simulation methods in this dissertation mainly focus on electrical-thermal modeling and 66 

analysis.   67 

2. Multiscale nature of 3D systems 68 

For a 3D system shown in Figure 1, the stacked IC region, which has a smaller 69 

footprint than the PCB and package, usually contains a great number of small features 70 

such as TSVs, vias, and micro-bumps. Consequently, the stacked IC requires finer 71 

meshing grids than the package and PCB. Because of the co-existence of both small-sized 72 

features and the large-sized package and PCB, the scale difference of features in a 3D 73 

system can reach 1:50,000. In addition, as each chip has its own functional blocks, it 74 

requires different meshing grids as compared to other chips. The layout difference 75 

between stacked chips can cause the mesh grids to propagate from one chip to another 76 

with a conformal meshing approach. Therefore, performing thermal or voltage drop 77 

modeling of the entire 3D structure requires millions of meshing cells using either 78 

conformal finite element or finite volume-based meshing grids. The large number of 79 

meshing cells can lead to extensive simulation time and large memory consumption. The 80 

multiscale nature of 3D systems poses a critical requirement in terms of fast early-stage 81 

modeling and analysis at the system level. Therefore, performing system-level modeling 82 
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and achieving fast simulation requires novel multiscale modeling and simulation methods 83 

for both DC voltage drop and thermal analysis.  84 

3. The requirement of fast thermal simulation with varying design parameters 85 

Performing fast simulation for a 3D system with varying design parameters becomes 86 

challenging when a great number of meshing cells are present. The varying design 87 

parameters include power maps of dies, the thermal conductivity of a certain layer, and 88 

air convection coefficients on boundaries. To accelerate the thermal simulation with 89 

various power maps, model order reduction (MOR) techniques can be utilized. However, 90 

because of multiple scales in a 3D system, meshing the entire system can lead to a large 91 

number of cells and large thermal capacitance/conductance stiffness matrices. Therefore, 92 

for thermal modeling of a 3D system, creating reduced-order models (ROMs) using 93 

existing MOR techniques becomes challenging when the size of the system matrix is 94 

large and many MOR ports are present. Although iterative matrix-solving techniques can 95 

be used to compute projection matrices during the process of MOR, the time 96 

consumption increases dramatically because of iterative solving procedures. To 97 

circumvent this problem, a new thermal modeling methodology that can handle 3D 98 

systems with varying design parameters needs to be developed.   99 

4. Efficient modeling of microfluidic cooling 100 

As the microchannel-based fluidic-cooling technique (Figure 1) has become a 101 

promising way of mitigating the thermal problem of 3D systems, the thermal modeling of 102 

microfluidic cooling has become a requirement. The inclusion of a large number of 103 

microchannels and the fluid velocity complicates the thermal modeling process. Although 104 

the computational fluid dynamic (CFD)-based modeling approach can be used to model 105 
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one or two microchannels, it becomes computationally intensive when microchannel 106 

arrays are used for cooling 3D stacked ICs. Therefore, facilitating early-design stage 107 

thermal modeling requires compact thermal models for microchannels that can accurately 108 

represent the fluidic cooling behavior and effectively reduce the simulation time using 109 

fewer meshed cells/unknowns than that of the CFD approach. 110 

Addressing the aforementioned challenges for the electrical/thermal modeling and 111 

analysis of 3D systems requires the development of novel numerical modeling methods, 112 

which is the motivation of the research work elaborated in this dissertation.  113 

1.3 Contributions 114 

This dissertation mainly focuses on developing efficient electrical and thermal numerical 115 

modeling and co-simulation methods for 3D integrated systems. The research work can 116 

be classified into two parts. The first part aims to investigate the interaction between 117 

electrical and thermal characteristics for PDNs (power delivery networks) in steady state 118 

and the thermal effect on characteristics of TSV arrays at high frequencies. The steady- 119 

state electrical-thermal interaction for PDNs is addressed by developing a DC voltage 120 

drop-thermal co-simulation method while the thermal effect on TSV characteristics is 121 

studied by proposing a thermal-electrical co-analysis approach for TSV arrays. The 122 

second part of the research focuses on developing fast numerical methods for (a) 123 

multiscale modeling for thermal and voltage drop analysis, (b) compact thermal modeling 124 

of microfluidic cooling, and (c) system-level thermal modeling with varying design 125 

parameters. As part of the research effort, several numerical methods have been 126 

developed. The contributions of the research are listed as follows:  127 
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1. The development of a steady-state voltage drop-thermal co-simulation method for 128 

PDNs. This co-simulation method ultimately takes into account the temperature effect 129 

on electrical resistivity and the Joule heating effect on temperature increases. As a 130 

result, accurate voltage drop analysis can be performed considering non-uniform 131 

temperature profiles in 3D systems. The developed co-simulation solver also allows 132 

identifying hotspots created by Joule heating.   133 

2. The development of a thermal-electrical analysis method for TSV arrays in 134 

interposers. The temperature-dependent material properties of silicon substrates and 135 

TSV conductors can be taken into account for the modeling of TSV arrays. As a 136 

result, the temperature effect on the insertion loss, crosstalk, and noise coupling of 137 

TSV arrays can be investigated.   138 

3. The development of a multiscale modeling approach for both thermal and voltage 139 

drop analysis. The proposed approach provides the capability of meshing 3D 140 

problems containing objects with multiple scales using the domain decomposition 141 

approach, which allows independent meshing of subdomains with non-matching grids 142 

at interfaces.  143 

4. The development of a compact thermal model for microchannel-based fluidic cooling. 144 

The compact thermal model can represent a microchannel using much fewer 145 

unknowns/cells than the CFD approach. As a result, the compact thermal model can 146 

enable efficient thermal modeling of 3D systems with a large number of micro- 147 

channels.   148 

5. The development of a system-level thermal modeling method using domain 149 

decomposition and model order reduction. The proposed method can be applied to 150 

both steady-state and transient thermal modeling with varying design parameters.   151 



 8 

1.4 Organization of the Dissertation 152 

This dissertation consists of eight chapters. In Chapter 1, the background and motivation, 153 

contributions, and the organization of this dissertation are introduced. The major 154 

challenges for modeling and analysis of 3D systems are discussed. In Chapter 2, the 155 

research problems to be addressed and prior art that have been developed in the open 156 

literature are investigated. In Chapter 3, the steady-state voltage drop-thermal co- 157 

simulation approach for PDNs is presented. In addition, the thermal-electrical analysis for 158 

TSV arrays is discussed, and the temperature effect on TSV characteristics is investigated. 159 

The multiscale modeling technique for voltage drop and thermal analysis using the non- 160 

conformal domain decomposition is introduced in Chapter 4. In Chapter 5, the derivation 161 

of a compact thermal model for microfluidic cooling is discussed. The transient thermal 162 

analysis using the proposed compact thermal model for microfluidic cooling and domain 163 

decomposition is presented. In Chapter 6, a system-level thermal modeling approach 164 

using domain decomposition and model order reduction is elaborated. In Chapter 7, the 165 

domain decomposition technique for thermal analysis is extended to electromagnetic (EM) 166 

modeling, which is the future work. A 2D finite-difference non-conformal domain 167 

decomposition method for solving 2D electromagnetic problems is presented. Finally, the 168 

summary and conclusion of the research work in this dissertation are shown in Chapter 8.  169 

 170 

 171 

 172 

 173 

 174 

 175 
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CHAPTER 2 176 

ORIGIN AND HISTORY OF THE PROBLEM 177 

2.1 Design and Modeling of 3D Integrated Systems 178 

The computer-aided design (CAD) of 3D integrated systems requires modeling and 179 

simulation tools that can verify the steady-state and transient performances of 180 

components before mass production. The electrical and thermal performances considered 181 

in the scope of the research include DC voltage drop, temperature distribution, signal 182 

crosstalk and noise coupling between TSVs, and electromagnetic behaviors of plane 183 

structures in a power delivery network. For a 3D system with microfluidic cooling, the 184 

performance of microchannels also needs to be validated. To reduce the design cycle of 185 

today’s electronic products, the development of efficient numerical modeling and 186 

simulation methods becomes more and more important.   187 

The advancement of 3D integration technology brings in new contents for modeling 188 

and simulation. First, as TSVs become key components for chip stacking in 3D 189 

integration, capturing the TSV characteristics (e.g., insertion loss and crosstalk) 190 

necessitates the development of electrical models for TSV arrays for circuit designers. 191 

Second, the vertical integration of IC dies resulting in high power densities in 3D systems 192 

makes the temperature an important factor to be considered in real designs. The 193 

temperature effects on electrical performances such as voltage drop and the 194 

characteristics of TSV arrays need to be investigated through co-simulation or co- 195 

analysis approaches. Third, emerging thermal management approaches using 196 

microchannel arrays make the thermal modeling of microfluidic cooling very important. 197 

As a contrast to the computational fluid dynamic modeling approach, efficient thermal 198 



 10 

simulation of a large microchannel array requires developing a compact thermal model 199 

for microchannels.  200 

On the other hand, the advancement of 3D integration technology also brings in new 201 

challenges for modeling and simulation. The first challenge stems from the requirements 202 

of performing the thermal, voltage drop, and electromagnetic modeling of multiscale 203 

structures arising in 3D systems. The second challenge comes from the requirement of 204 

performing fast thermal modeling with varying design parameters. As a 3D system 205 

integrates multiple functional blocks with many tunable design parameters, optimizing a 206 

design requires repeating the modeling and simulation process with various design 207 

parameters. As usual, numerical modeling and simulation involves solving a matrix 208 

equation with a given excitation. As a result, the increase in problem size and modeling 209 

complexity can complicate the matrix solving process. The specific challenges are 210 

depicted in Figure 3 and elaborated from a numerical modeling standpoint.  211 

Numerical electrical/thermal modeling of 3D structures becomes challenging 212 

particularly when the problem scale is large and many unknowns are present. A practical 213 

3D problem usually contains inhomogeneous material stack-ups and both small-sized and 214 

large-sized objects such as TSVs, micro-bumps, small apertures and voids, and large 215 

planes in PCBs. Using the finite difference method (FDM) or finite element method 216 

(FEM), non-uniform meshing grids can be used to reduce the number of meshing 217 

cells/unknowns. However, when a problem contains many objects with multiple scales, 218 

the large scale difference can still result in a large-scale stiffness matrix (Figure 3) 219 

because of extremely dense meshing grids in certain regions using non-uniform meshing. 220 

Efficiently modeling multiscale structures requires numerical modeling techniques such 221 
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as domain decomposition methods for voltage drop modeling, thermal simulation, and 222 

electromagnetic modeling.  223 

 224 

 225 
 226 

Figure 3. Numerical modeling challenges arising from 3D integration.  227 
 228 

In addition to the multiscale nature of 3D problems, difficulties arise in numerical 229 

thermal modeling when fast simulation is required with various excitations and many 230 

tunable design parameters (Figure 3). As an example, steady-state thermal modeling 231 

requires re-solving a matrix equation when the thermal excitation is changed while 232 

transient thermal modeling requires repetitively solving a matrix equation at each time 233 

step with a dynamic thermal profile. Accelerating the modeling process requires building 234 

small-sized reduced-order models that can accurately represent the original large- 235 

dimension models using model order reduction techniques. Furthermore, building 236 
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reduced-order models for problems containing tunable design parameters requires 237 

parameterized model order reduction techniques. Reduced-order modeling using MOR 238 

has shown promise when modeling small-sized problems or components such as a 239 

MEMS device or a chip. However, as 3D integrated systems consist of many functional 240 

blocks (e.g., dies, an interposer, a package, and a PCB), directly creating a reduced-order 241 

model using model order reduction becomes challenging because (a) 3D systems usually 242 

require a large-scale stiffness matrix and (b) the computational cost of MOR increases 243 

dramatically with the size of the stiffness matrix, the number of excitations (e.g., MOR 244 

ports), and the number of tunable design parameters.  245 

In the next section, the prior methods for thermal modeling, reduced-order modeling, 246 

DC voltage drop simulation, microfluidic cooling modeling, and modeling using domain 247 

decomposition are investigated. As investigating the electrical-thermal interaction and 248 

coupling for PDNs in steady state and for TSV arrays at high frequencies composes part 249 

of the research, the methods for electrical-thermal modeling and the electrical modeling 250 

for TSV arrays are also introduced.  251 

2.2 Methods for Modeling and Simulation of Integrated Systems 252 

2.2.1 Methods for Thermal Modeling of Solid Media 253 

In the past decade, a considerable number of approaches have been devoted to both 254 

the steady-state and transient thermal modeling of IC chips and packages [8, 9, 10, 11, 12, 255 

13, 14, 15, 16, 17, 18, 19, 20]. These thermal modeling methods can be classified into 256 

two categories: (1) differential equation-based methods and (2) integral equation-based 257 

methods. The differential equation-based method starts by formulating thermal problems 258 

based on differential governing equations and then constructs numerical schemes based 259 
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on discretizing entire structures using volumetric mesh grids or cells. Using the 260 

constructed numerical schemes, the stiffness matrix can be created, and the original 261 

problem is converted to a system matrix equation. Because of the localized finite-element 262 

basis functions or finite-difference approximations used to derive the scheme, the 263 

coupling between nodes exists for only nearby cells or grids. As a result, the system 264 

stiffness matrix is large and sparse.  265 

The differential equation-based thermal modeling methods include the finite 266 

difference method and the finite element method. For a finite difference-based solver, a 267 

straightforward finite-difference approximation is used to approximate the first- and 268 

second-order derivatives of the heat equation. For a finite element-based solver, linear- or 269 

high-order basis functions with unknown coefficients are used to approximate the 270 

solution. For thermal modeling with conventional heat-sink cooling, the methods in [8, 9, 271 

10] are based on the FEM (finite element method), and the approaches in [11, 12, 13] are 272 

based on the FDM (finite difference method). For thermal simulation with a large number 273 

of unknowns, iterative solving techniques such as the preconditioned conjugate gradient 274 

(PCG) method are required. To alleviate the effect of the increasing problem size on 275 

simulation time, thermal modeling using the 3D geometrical multigrid approach has been 276 

proposed for the thermal simulation of IC chips in [14, 15]. For transient thermal 277 

modeling of IC chips, implicit methods such as the backward Euler method and the 278 

Crank–Nicolson (CN) method [16] can be adopted. Because of the implicit formulation, 279 

an implicit method requires solving a system matrix equation at each time step. To reduce 280 

the computational cost using the implicit scheme, a 3D transient thermal solver based on 281 

the alternating direction implicit (ADI) method has been introduced in [17]. Instead of 282 
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solving the original stiffness matrix that has a large bandwidth, the ADI method 283 

alternately solves three system matrix equations with tri-diagonal stiffness matrices in the 284 

x, y, and z directions. Therefore, simulation efficiency greatly improves.    285 

An integral equation-based method formulates the problem using an integral 286 

governing equation. The method only discretizes structure surfaces, boundaries, and 287 

excitation layers. Therefore, avoiding the volumetric meshing of the entire structure leads 288 

to a reduced number of meshing cells and unknowns. However, because of global 289 

coupling between cells, the resulting system stiffness matrix is small but dense. The 290 

integral equation-based methods include the boundary element method (BEM) [18, 19, 291 

20]. The boundary element-based approach employs a Green’s function to estimate the 292 

thermal profile. Because of the Green’s function, the accuracy can be limited when 293 

applied to 3D inhomogeneous problems that contain a complex material stack-up for ICs, 294 

packages, and PCBs.  295 

2.2.2 Methods for Thermal Modeling of Microfluidic Cooling 296 

For the modeling of microfluidic cooling, computational fluid dynamic simulation 297 

[21], which is based on solving the Navier–Stokes equations, can be applied. However, 298 

because of the computationally intensive nature of CFD simulation approaches, 299 

simplified compact thermal models that can capture the fluidic cooling behavior using 300 

fewer unknowns are preferred. To capture the microfluidic cooling effect, several 301 

approaches have been proposed in [5, 6, 22, 23, 24, 25, 26] for steady-state thermal 302 

analysis. A one-dimensional (1D) thermal resistance network with constant heat transfer 303 

coefficients from all four surfaces of the microchannel has been proposed in [22] to 304 

model the microchannel. A similar thermal resistance network-based microchannel model 305 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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has been proposed in [23]. The model is combined with a 3D resistance network model 306 

for a solid medium to predict the temperature of multi-layered mini-channel heat sinks. In 307 

[24], for modeling the convection of boiling water in stacked ICs, an equivalent thermal 308 

resistance model has been proposed based on a one-dimensional conservation equation. A 309 

thermal-wake function-based model has been proposed in [25] to model microchannel- 310 

based fluidic cooling. The thermal-wake function can be extracted using CFD simulations 311 

or analytical formulae. The thermal-wake aware microchannel model can be combined 312 

with the conventional thermal resistance network for heat conduction to predict the 313 

temperature of 3D stacked ICs.   314 

For transient thermal analysis, a compact transient thermal modeling approach based 315 

on the FDM has been proposed for stacked ICs with inter-tier liquid cooling in [27]. 316 

Instead of using four nodes to represent one microchannel cell as in [25], the proposed 317 

model uses only one node per-cell. The modeling method in [27] has demonstrated 318 

having higher efficiency than that of the full CFD model.   319 

2.2.3 Methods for DC Voltage Drop Simulation  320 

Because of the finite electrical conductivity of metal conductors, a voltage drop 321 

occurs when current flows through a PDN in an integrated system. For a PDN with a 322 

regular shape, the voltage drop can be calculated using analytical equations and the 323 

method of equivalent resistance. However, in a package or a PCB, a PDN usually 324 

contains irregular shapes such as apertures, via arrays, and holes. Estimating the voltage 325 

drop in a PDN with complex structures requires numerical simulation. Voltage drop 326 

analysis based on an equivalent-circuit approach has been proposed in [28]. A finite 327 

volume-based 2D voltage-drop analysis method has been developed for the package-level 328 
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voltage-drop analysis in [29]. By meshing PDN conductors and formulating the problem 329 

using the finite-volume scheme, the current density and voltage drop can be computed for 330 

a 2D irregular power plane structure.   331 

2.2.4 Methods for Electrical-Thermal Co-simulation 332 

In the past, the interaction between electrical and thermal characteristics has been 333 

studied. A transistor thermal model that accounts for the self-heating (Joule heating) 334 

effect was proposed in [30]. Later on, methods for combined electrical-thermal 335 

simulation were proposed for the circuit-level simulations in [31, 32, 33]. Among these 336 

methods, an electrothermal simulator that utilizes the coupling between the SPICE circuit 337 

simulator and a finite-element thermal solver was proposed in [31] and a similar 338 

electrothermal simulation method was discussed in [32].  An electrothermal CAD method 339 

was proposed for power devices and circuit analysis in [33]. Unlike the thermal modeling 340 

methods in [31, 32], which were based on the finite element method, an analytical 341 

thermal model based on a spectral domain decomposition technique has been derived for 342 

3D complex geometries in [33]. For the modeling of passive devices, electrothermal 343 

modeling approaches have been proposed for planar transformers in [34], GaAs-based 344 

interconnects in [35], and integrated thin-film resistors in [36].  345 

2.2.5 Modeling using Domain Decomposition  346 

Domain decomposition, a divide-and-conquer approach, allows the dividing of a 347 

large complex problem into many sub-domains that are smaller and easier to handle. For 348 

non-overlapping domain decomposition with geometrical conformal meshing grids at 349 

interfaces, the coupling between domains can be captured using the relationship between 350 

interface nodes and interior nodes [37]. However, because of the conformal mesh used, 351 
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the total number of meshing cells cannot be effectively reduced. Therefore, finite-element 352 

non-conformal domain decomposition methods such as the Mortar FEM [41] that uses 353 

geometrical non-matching meshing grids at domain interfaces have been proposed. The 354 

finite-element non-conformal domain decomposition has been applied to eddy-current 355 

calculations in [38] and electromagnetic simulations in [39, 40]. 356 

Finite-difference time-domain (FDTD) methods [42, 43] and finite-difference 357 

frequency-domain (FDFD) approaches [44, 45, 46, 47] have been proposed for solving a 358 

variety of electromagnetic problems. To enhance simulation efficiency, domain 359 

decomposition finite-difference methods have been proposed for solving electromagnetic 360 

scattering using parallel computing in the time domain [43] and using overlapping grids 361 

and virtual boundaries in the frequency domain [48]. However, the methods in [43, 48] 362 

are based on conformal meshing grids. Since the finite-difference formulation requires 363 

conformal grids at interfaces to approximate derivatives in space, modeling using non- 364 

conformal domain decomposition based on finite-difference formulations can become 365 

challenging for electromagnetic simulations. A finite-difference domain decomposition 366 

approach using characteristic basis functions has been proposed for electrostatic problems 367 

[49].  368 

2.2.6 Methods for Reduced-Order Modeling 369 

For the computer-aided design of IC chips, model order reduction techniques, which 370 

can create low-dimensional reduced-order models that can reduce simulation time, have 371 

been developed. In the past few decades, a considerable number of MOR methods have 372 

been devoted to building ROMs for interconnect systems and thermal modeling. Among 373 

the MOR approaches for interconnects, asymptotic waveform expansion (AWE) [50], 374 
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Padé approximation via the Lanczos process [51], a passive reduced-order interconnect 375 

macromodeling algorithm (PRIMA) [52], and efficient nodal order reduction (ENOR) 376 

[53] have been proposed. To accommodate the variability arising from interconnect 377 

design, several parameterized MOR techniques have been proposed based on matrix 378 

perturbation expansion theory [54], multi-parameter moment matching [55, 56], and a 379 

two-directional Arnoldi process [57]. For thermal modeling using MOR, since thermal 380 

models consist of only thermal resistance and capacitance, MOR approaches such as the 381 

block Arnoldi algorithm [58] and PRIMA can also be applied [59, 60, 61]. To handle the 382 

variability in thermal modeling, parameterized MOR methods [62, 63] have been 383 

proposed based on projection techniques [64] and the multi-series expansion, 384 

respectively.   385 

2.2.7 Methods for Electrical Modeling of TSV Arrays 386 

As TSVs provide signal and power supply paths for 3D stacked chips, the electrical 387 

modeling and characterization of TSV pairs and TSV arrays becomes important. Several 388 

approaches have been devoted to the modeling and characterization of TSV parameters 389 

based on measurements [65], closed form formulae [66, 67], and the partial element 390 

equivalent circuit method [68]. For the modeling of TSV arrays, the numerical TSV 391 

modeling method using cylindrical modal basis functions (CMBFs) has been proposed in 392 

[69]. Using a small number of basis functions, the method in [69] can efficiently model 393 

large TSV arrays, and the modeling results have been correlated with full-wave solvers 394 

and measurements. The modeling method using CMBFs has been used for the coupling 395 

analysis of large TSV arrays in both frequency and time domains in [70]. For thermal 396 

effects on TSVs, the temperature effect on TSV pair capacitance and conductance has 397 
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been studied in [71]. The temperature-dependent modeling of a single TSV capacitance 398 

has been proposed and verified with measurements in [72]. However, the thermal effect 399 

on characteristics of TSV arrays has not been addressed so far.   400 

2.3 Technical Focus of This Dissertation 401 

The investigation of the aforementioned prior art provides the understanding of the 402 

advantages and limitations of existing modeling and simulation techniques. With the 403 

evolution of 3D integration technology, novel modeling and simulation methods must be 404 

developed to facilitate 3D design. The technical focus of this dissertation is listed as 405 

follows: 406 

 The investigation of electrical-thermal interactions through the development of a 407 

voltage drop-thermal co-simulation approach for PDNs and the thermal-electrical co- 408 

analysis for TSV arrays.  409 

 The development of a multiscale thermal and voltage drop modeling approach to 410 

handle 3D problems containing multiple scales.  411 

 The development of a compact thermal model for microfluidic cooling to facilitate 412 

the thermal simulation of 3D systems with a large number of microchannels.  413 

 The development of a system-level thermal modeling approach that can achieve fast 414 

steady-state and transient thermal modeling with many tunable design parameters and 415 

hundreds of MOR ports. 416 

 The development of a finite-difference non-conformal domain decomposition method 417 

for 2D electromagnetic modeling.  418 

 419 
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CHAPTER 3 420 

ELECTRICAL-THERMAL CO-SIMULATION FOR POWER 421 

DELIVERY NETWORKS AND TSV ARRAYS 422 

3.1 Introduction 423 

In the past decade, the power supply voltage of IC chips has been continually scaled 424 

down to reduce power consumption. Maintaining the functionality of high-speed low- 425 

voltage IC circuitry requires ensuring the power integrity and signal integrity of the 426 

system. One basic requirement of power integrity is to deliver steady-state power supply 427 

voltages and currents to IC chips with less voltage drop via a power delivery network. A 428 

power delivery network consists of passive metal conductors:  power and ground metal 429 

planes, vias, apertures, power and ground bumps, power and ground TSV interconnects, 430 

and on-chip power grids, as shown in Figure 4. Because of the finite electrical 431 

conductivities of metal conductors, a PDN can be represented using a resistance network. 432 

Voltage drops occur when electrical currents flow through a PDN. Because of the 433 

temperature-dependent electrical resistivity of metal conductors as shown in Figure 2a, 434 

the thermal profile of an electronic system can affect the voltage drop in a PDN. On the 435 

other hand, when currents flow in a PDN, the Ohmic loss is converted to Joule heat, 436 

which can increase the system temperature. As a result, the electrical characteristics of a 437 

PDN interact with the thermal gradient. Capturing the temperature effect on voltage drop 438 

and Joule heating effect on temperature necessitates a voltage drop-thermal co-simulation 439 

approach.  440 

In addition to maintaining power integrity, ensuring signal integrity requires 441 

transmitting clean high-speed signals with less insertion loss, crosstalk, coupled noise, 442 
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power and ground bounce, and jitters via signal communication paths [7]. In a 3D system, 443 

signal communication paths include on-chip interconnects, package- and PCB-level vias 444 

and interconnects, bumps, and TSV arrays. Among a TSV array in a silicon interposer 445 

(Figure 4), the pitch between TSVs is usually in the range of 10 - 60 microns, which can 446 

result in tight coupling among neighboring TSVs. Most importantly, as the silicon 447 

substrate has a temperature-dependent conductivity (Figure 2b), the temperature can 448 

affect the insertion loss and crosstalk of TSV arrays. The measurements reported in [87] 449 

have shown the effect of temperature variation on the noise coupling of a TSV pair. 450 

However, modeling high-density TSV arrays with temperature effects has not been 451 

carried out so far. To take the thermal effect into account for TSV arrays, a thermal- 452 

electrical analysis method is required.  453 

 454 

 455 
 456 

Figure 4. A power delivery network and TSV arrays in a 3D electronic system. 457 
 458 

 459 

In this chapter, the electrical-thermal modeling is carried out for power delivery 460 

networks in steady state and for TSV arrays at high frequencies. To capture the 461 

temperature effect on voltage drop in PDNs, a steady-state voltage drop-thermal co- 462 

simulation method is presented. This co-simulation approach allows the voltage drop 463 
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analysis to take into account the non-uniform temperature distribution in a system, 464 

accounting for the temperature effect on electrical resistivities. This approach also 465 

provides the capability of performing thermal modeling with Joule heating effects. In 466 

addition, to study the thermal effect on TSV characteristics, the thermal-electrical 467 

analysis of TSV arrays is carried out. The temperature effect on insertion loss, crosstalk, 468 

and coupled noise are discussed.   469 

3.2 DC Voltage Drop-Thermal Co-simulation for PDNs 470 

3.2.1 Co-simulation Flow 471 

In steady state, the governing equation for voltage distribution can be expressed as 472 
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where ),,,( Tzyx and ),,( zyx represent the temperature-dependent electrical resistivity 474 

and voltage distribution, respectively. For the steady-state thermal analysis, the governing 475 

heat equations for solid media and fluid flow can be expressed as follows: 476 
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where ),,( zyxk and ),,( zyxT represent the thermal conductivity of the solid medium and 479 

temperature distribution, respectively;  , pc , and ),,( zyxv


 represent the density, heat 480 

capacity, and velocity distribution of the fluid, respectively; fk is the thermal 481 

conductivity of the fluid [73, 74].  In Equation (2a), ),,( zyxP  is the total heat excitation 482 

including the heat source from the chip and the Joule heating converted from the Ohmic 483 

loss in a PDN. The Joule heating can be expressed as 484 
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where J


is the current density and  zyxE ,,


 is the electric field distribution in a PDN. It 486 

should be noted that the chip power map (heat source) considered in the simulation is 487 

fixed. A temperature-dependent chip power map (e.g., leakage power of chips) can also 488 

be used in the formulation presented, which has not been included in the simulation. 489 

The temperature-dependent electrical resistivity can be expressed as 490 
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where 
0

  is the electrical resistivity at 0T , which is 20 C , and   is the temperature 492 

coefficient of electrical resistance. As shown in Figure 2a, with increasing temperature, 493 

the electrical resistivities of conductors increase and can eventually affect the voltage 494 

drop in a PDN. Because of the temperature-dependent electrical resistivity ),,,( Tzyx  495 

and Joule heating generated in a PDN, the electrical and thermal characteristics couple to 496 

each other and form a nonlinear system, as shown in Figure 5. 497 

 498 

Figure 5. Relationship between electrical and thermal fields. 499 

Obtaining an accurate voltage distribution in a PDN with temperature and Joule 500 

heating effects requires simultaneously solving the electrical-thermal equations (1-4). To 501 

account for the temperature and Joule heating effects, an iterative voltage drop-thermal 502 

co-simulation method has been developed, as shown in Figure 6.  503 
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 504 

 505 
 506 

Figure 6. An iterative voltage drop-thermal co-simulation flow. 507 
 508 

The iterative simulation technique consists of the following procedures:  509 

1. Setting input information on layout parameters, initial material properties, excitations, 510 

and boundary conditions for the steady-state voltage drop and thermal analysis.  511 

2. The steady-state voltage distribution simulation is carried out to obtain voltage and 512 

current distributions in a PDN. 513 

3. Heat sources (Joule heat) are calculated from the obtained voltage and current 514 

distributions. 515 

4. By updating the Joule heat excitation, the steady-state thermal simulation is carried 516 

out to obtain the temperature distribution of the system. 517 

5. Based on the temperature distribution obtained, the electrical resistivities of 518 

conductors in a PDN are updated; thereby, the thermal effect on voltage drop is 519 

included.  520 
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6. The convergence of temperature and voltage distributions is determined. The final 521 

thermal and voltage distributions are obtained if convergence is reached; else, the 522 

iterations are continued.  523 

For establishing an iterative co-simulation procedure, the voltage-distribution 524 

equation (1) with temperature-dependent resistivities and the thermal equations (2a) and 525 

(2b) with Joule heating effect need to be solved. In general, the Joule heating generated 526 

by the PDN in an electronic system can cause limited temperature increases and 527 

convergence can be achieved. However, for designs without careful considerations, the 528 

Joule heating can cause sharp temperature increases that lead to non-convergence, which 529 

can also be captured using the iterative electrical-thermal co-simulation method. To 530 

efficiently update the distributions of temperature, Joule heat, and voltage drop, the same 531 

mesh grids need to be used for both the voltage drop and thermal simulations. As a 3D 532 

system contains large-sized planes and small-sized structures such as TSVs, C4s, and 533 

apertures, 3D nonuniform mesh grids are required to reduce the number of unknowns, to 534 

reduce the simulation time, and also to accurately capture all geometries. In the next 535 

section, the numerical schemes based on the finite volume method are introduced using 536 

nonuniform rectangular grids.    537 

3.2.2 Finite-Volume Schemes 538 

The formulations for solving the DC voltage drop and heat equations are discussed in this 539 

section. Although 3D nonuniform rectangular grids are used in the simulation, the finite- 540 

volume formulation is explained on 2D nonuniform grids for simplicity. 541 

 542 
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3.2.2.1 Voltage Distribution Equation 543 

 544 

The formulation for solving the voltage-distribution equation (1) is performed using the 545 

temperature-dependent resistivity. The 2D rectangular mesh for computing the voltage 546 

distribution is shown in Figure 7. In Figure 7, ji, represents the voltage at grid point 547 

),( ji , which is surrounded by four nodes. 1x , 2x , 1y , and 2y are the nodal distances 548 

between node ),( ji  and its adjacent nodes in x and y directions, respectively. It is 549 

assumed that the four surrounding cells of node ),( ji  have different temperatures 1T , 2T , 550 

3T , and 4T , which can be obtained from the thermal simulation.  551 

 552 

Figure 7. A 2D rectangular mesh for computing voltage distribution. 553 
 554 

To apply the finite volume method, node ),( ji  is surrounded by a finite-volume cell 555 

(dashed line) in Figure 7. The intersection points between the dashed cell and other four 556 

cells are the center points of each cell. By integrating Equation (1) over the dashed cell 557 

and applying the divergence theorem, we obtain   558 

0ˆ),,(
),,,(

1


line
dashed

dlnzyx
Tzyx




                                 (5) 559 

where n̂ is the outward pointing unit normal vector at the boundary of the dashed cell. 560 
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Initially, the temperature distribution is assumed uniform; thus, the electrical resistivity 561 

),,,( Tzyx is a constant. By applying the finite-difference approximation to the first- 562 

order derivative of   in Equation (5), the finite-volume scheme at node ),( ji can be 563 

obtained as  564 
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where 2/)( 21 xxw    and 2/)( 21 yyd   . Note that the finite-volume scheme of 566 

Equation (6) is analogous to the Kirchhoff’s current law. 567 

To include the temperature effect on voltage distribution, the temperature 568 

distribution 1T , 2T , 3T , and 4T  in the surrounding cells are considered. Finally, the 569 

finite-volume scheme with the temperature-dependent resistivity is generalized as      570 
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 573 

3.2.2.2 Heat Equation for Solid Media 574 

In thermal simulation, the thermal conductivity k  is considered as a constant. For heat 575 

transfer in a solid medium, only heat conduction needs to be considered. As the heat 576 

equation (2a) has the same form as Equation (1), the same finite-volume formulation can 577 

be applied. The scheme for heat conduction can be obtained as [16]  578 
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where  

celldashed

total dSzyxPP ),,(  is the total heat excitation in the dashed cell.  580 

To obtain an accurate temperature distribution of a realistic system, the convection 581 

boundary condition 582 

)( ac

convection

TTh
n

T
k 



                                       (9) 583 

needs to be taken into account. In Equation (9), aT and ch  represent the ambient 584 

temperature and convection coefficient, respectively. The finite-volume formulation 585 

procedure can also be applied at the convection boundary with nonuniform mesh grids, as 586 

shown in Figure 8. In Figure 8, node ),( ji  at the convection boundary is surrounded by a 587 

finite-volume cell (dashed line). By integrating Equation (2a) over the dashed cell and 588 

applying the divergence theorem, we obtain   589 

 

celldashedlinedashed

dSzyxPdlnzyxTzyxk ),,(ˆ),,(),,(                           (10) 590 

 591 
Figure 8. A convection boundary with nonuniform mesh grids.  592 

 593 

Then, by applying the finite-difference approximation to the first-order derivative of 594 

),,( zyxT in Equation (10) and incorporating Equation (9), the finite-volume scheme for 595 

heat equation with a convection boundary condition at node ),( ji can be expressed as  596 
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where 2/)( 21 yyd   .  598 

3.2.2.3 Heat Equation for Fluid Flow 599 

For a fluid-cooled integrated system, the modeling of fluidic cooling is required. For 600 

fluidic cooling using built-in microchannels (Figure 1), as the cross-sectional dimension 601 

of a microchannel is much smaller than its length, the flow velocity along the 602 

longitudinal direction is much larger than that in the lateral direction. Therefore, it can be 603 

assumed that the fluid only flows in the longitudinal direction and the flow velocity is 604 

constant. The 2D nonuniform mesh of a microchannel inside a chip is shown in Figure 9. 605 

The average flow velocity ‘ v ’ along the y direction has been used for simulating the fluid 606 

flow in microchannels. As a result, Equation (2b) can be converted as 607 

   )),,((
),,(

f zyxTk
y

zyxT
vcp 




                                       (12) 608 

 609 

Figure 9. Nonuniform mesh grids for simulating a microchannel in a chip. 610 
 611 
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By integrating Equation (12) over the dashed cell in Figure 9 and applying the 612 

divergence theorem, Equation (12) becomes 613 

 

 linedashed

f

SS

p dlnTkdlnyvTc ˆˆˆ

21

                                        (13) 614 

where S1 and S2 are the upper and bottom boundaries of the dashed cell, as shown in 615 

Figure 9. For the right-hand side of Equation (13), the same formulation for a solid 616 

medium can be used. For the left-hand side, since the central finite-difference scheme can 617 

generate instability in certain cases [16], the backward difference approximation is used. 618 

The finite-volume scheme for fluid flow can be derived as 619 
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where 2/)( 21 xxw   and 2/)( 21 yyd  .  621 

As the average flow velocity along the longitudinal direction is used in the model, 622 

the heat transfer coefficient h needs to be applied at the boundaries of microchannels to 623 

model the heat transfer between the solid medium and the fluid flow. The effect of this 624 

boundary condition is important since eliminating it can cause incorrect chip 625 

temperatures [75]. For water flow in microchannels, the Reynolds number is usually less 626 

than 2300; thus, the flow is laminar [77]. For a fully developed laminar flow inside 627 

rectangular microchannels with constant heat flux, the Nusselt number can be expressed 628 

as [77] 629 


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Nu                    (15)                             630 

where   is the aspect ratio of a rectangular microchannel.  631 
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The average heat transfer coefficient h can be obtained analytically from the Nusselt 632 

number and expressed as 633 

hDkNuh /                                                             (16) 634 

where hD is the hydraulic diameter of a microchannel [76]. The same formulation for air 635 

convection boundaries in the last subsection can be used to model the water convection 636 

boundary between the solid medium and water flow.  637 

Based on the aforementioned finite-volume schemes for the voltage-distribution 638 

equation, heat equation for solid media, and heat equation for fluid flow, a steady-state 639 

voltage drop-thermal co-simulation solver “PowerET” has been developed. This solver 640 

has been used to simulate voltage distribution and thermal distribution with Joule heating, 641 

air convection, and fluidic cooling effects. Several numerical test cases are discussed in 642 

the following section.  643 

3.2.3 Numerical Test Cases  644 

3.2.3.1 Model-Verification Examples 645 

To verify the correctness and accuracy of the models for heat conduction, air convection, 646 

and Joule heating, a PCB example has been simulated. In addition, two examples of 647 

microfluidic cooling have been simulated to validate the finite-volume thermal model for 648 

microfluidic cooling.  649 

A. A PCB example with Joule heating effect 650 

A two-layer PCB with the size of 10 cm  5 cm is shown in Figure 10. A 2.5 V voltage 651 

source is placed at one end of the top power plane. Uniform current flows from the 652 

voltage source to the current sink, which is placed at the other end of the board. The 653 
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thicknesses of copper plane and dielectric layer are 36 m and 350 m , respectively. Air 654 

convection is applied to both the top and bottom surfaces of the board. In this example, 655 

the thermal conductivity of the dielectric layer is 0.8 )/(mKW .  656 

 657 

Figure 10. A PCB with rectangular planes.  658 
 659 

Because of the rectangular shape of the power plane, the voltage drop across the 660 

plane can be calculated using the analytical equation  661 

S

L
IIRV


                                                   (17) 662 

where L is the length and S is the cross-sectional area of the power plane. Because of 663 

Joule heating VIP   generated from the Ohmic loss, the temperature of the PCB can 664 

increase. The PCB temperature can be obtained by  665 

totalRPTT  a                                                      (18) 666 

where aT is the ambient temperature of 25 C  and
total

R is the total thermal resistance 667 

because of heat conduction and air convection.  668 

Without the Joule heating effect, the analytical Equations (17) and (18) can be used 669 

to directly calculate the voltage drop and temperature for the power plane. With the Joule 670 

heating effect, the iterative classic Newton’s method [78] has been used to obtain the 671 

voltage drop and temperature. This example has been simulated with and without the 672 
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Joule heating effect using the PowerET solver. The comparisons of simulated results and 673 

the results from the classic Newton’s method and analytical equations are shown in 674 

Figure 11.  675 

As shown in Figure 11, without the Joule heating effect, the temperature of the 676 

power plane is kept at the constant room temperature of 25 C  (Figure 11b). Therefore, 677 

the voltage drop increases linearly with increasing current, as shown in Figure 11a. 678 

However, with the effect of Joule heating under the condition of air convection with a 679 

heat transfer coefficient of 5 )/( 2KmW , we observe that the temperature increases 680 

nonlinearly with increasing current (Figure 11b). As a result, the voltage drop also 681 

increases nonlinearly with increasing current (Figure 11a). In addition, Figure 11 shows 682 

that the simulated results match well with the results from the analytical Equations (17- 683 

18) and classical Newton’s method, indicating the accuracy of the proposed method.   684 
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 685 
(a)                                                              (b) 686 

Figure 11. (a) Voltage drop and (b) temperature of the power plane with and 687 

without Joule heating effect. 688 
 689 

B. An example of microfluidic cooling 690 

To test the accuracy of the model for microfluidic cooling, an example of a single 691 

microchannel is simulated first. The microchannel and its cross-sectional view are shown 692 
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in Figure 12. The length of the microchannel is 20 mm, and the cross-sectional dimension 693 

is 0.12 mm 0.24 mm. The thermal conductivity of the bulk silicon is 150 )(/ KmW   as 694 

in [75]. The thickness of the cover is 0.05 mm, and its thermal conductivity is set to be 695 

0.2 )(/ KmW  . The heat flux density of 400000 ２mW / is applied at the bottom of the 696 

silicon substrate. The temperature of the input water is set to be 20 C . To test the 697 

convergence of the simulation, the cross-section of the microchannel is meshed with 2   698 

2, 4   4, 8   8, 16   16, and 32   32 cells (mesh level-1 to mesh level-5), respectively.  699 

With a flow rate of 14.4 mg/s (0.864 ml/min), the simulated average outlet 700 

temperature of the microchannel and average base temperature of the substrate with 701 

different cross-sectional mesh refinements are shown in Figure 13. It shows that both the 702 

microchannel outlet temperature and base temperature converge with cross-sectional 703 

mesh refinement. As shown in Figure 13, using 4   4 meshed cells (mesh level-2) for the 704 

cross-section of the microchannel, the average microchannel outlet temperature and base 705 

temperature are 46.070 C and 41.93 C , respectively. Compared to the final converged 706 

outlet temperature and base temperature of 46.074 C and 42.17 C , the errors for the 707 

average microchannel outlet temperature and base temperature are both less than 1%. 708 

Therefore, using 4   4 meshed cells to represent the microchannel cross-section is 709 

adequate to obtain accurate results for this example. Using 4   4 meshed cells for the 710 

microchannel cross-section, this example is also simulated with different flow rates 711 

ranging from 5.76 mg/s (0.3456 ml/min) to 28.8 mg/s (1.728 ml/min). The simulated 712 

average base temperatures of the bulk silicon, the CFD simulation results using 713 

COMPACT
TM

, and the analytical results reported in [75] are shown in Figure 14. From 714 

Figure 14, we observe that the simulated results from the PowerET solver agree well with 715 
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the CFD simulation results using COMPACT
TM

 and the analytical results in [75]. 716 

Compared to the simulated temperatures using COMPACT
TM

, the maximum error is less 717 

than 6%, showing the accuracy of the presented method.  718 

 719 

               720 

 721 

Figure 12. A microchannel and its cross-section.  722 
 723 

 724 

 725 

 726 

Figure 13. Average outlet temperature of the microchannel and base temperature of 727 

the bulk silicon with mesh refinement (unit: Celsius).  728 
 729 

 730 

 731 
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 732 

Figure 14. Average base temperatures of the bulk silicon with different flow rates.  733 
 734 

C. An experimental example 735 

An experimental test vehicle consisting of a silicon chip with fluidic cooling using 736 

microchannels has been described in [4]. To verify the finite-volume model for 737 

microfluidic cooling against measured results, the test vehicle of microfluidic cooling in 738 

[4] has been simulated. The structure is shown in Figure 15. The chip size is 1 cm   1 739 

cm, and the power consumption is 45 W. A total of 51 microchannels are uniformly 740 

distributed on the chip as described in [4]. The cross-sectional dimension of each 741 

microchannel is 0.1 mm   0.2 mm. A Pyrex glass cover plate is placed on the top of the 742 

microchannels. Natural air convection with a convection coefficient of 5 )/( 2KmW  is 743 

applied to both the top and bottom surfaces of the package. The thermal conductivity of 744 

the chip is set to be 110 )/(mKW . The temperature of water at the inlets of 745 

microchannels is 22 C , and the heat capacity of water pc is set to be 4180 )(/ KKgJ  . 746 

The material thicknesses and thermal conductivities are listed in Table 1.  747 
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      748 
(a)                                              (b) 749 

Figure 15. A package with microfluidic cooling, (a) system view, (b) cross-sectional 750 

view. 751 
 752 

 753 

Table 1. Material thicknesses and thermal conductivities for the experimental 754 

example. 755 
 756 

 Thickness 

(mm) 

Thermal Conductivity     

(W/mK) 

Substrate  0.35 0.8 

Copper 0.036 400 

Chip 0.3 110 

Underfill 0.2 4.3 

C4  0.2 60 

Microchannel 0.2 0.6 

Pyrex glass 0.1 1.1 

Channel pitch 0.094 — 

 757 

A 3D nonuniform mesh has been used to approximate the chip, underfill layer, 758 

substrate, and microchannels. For each microchannel, the cross-section is meshed using 4 759 

  4 cells, as shown in Figure 16. This test vehicle has been simulated with different 760 

water flow rates. The comparisons of the simulated and measured average outlet 761 

temperatures of the microchannels and average chip temperatures are plotted in Figure 762 

17. As shown in the figure, with the water flow rates of 65 and 104 ml/min, the 763 

differences between the simulated average outlet temperatures and measurements [4] are 764 

0.1 and 0.28 C , respectively. The relative error is less than 4.5% for the outlet 765 

temperature. For the average chip temperature, with water flow rates of 65 and 104 766 



 38 

ml/min, the temperature differences between the simulation and measurements are 2.6 767 

and 1.7 C , respectively, as shown in Figure 17. Considering the inlet temperature as the 768 

basis, the calculated corresponding errors are 13.7% and 13.9%, respectively. The 769 

relative larger error for the average chip temperature may be caused by the average heat 770 

transfer coefficient h used in the model for fluidic cooling.  771 

 772 

Figure 16. Cross-sectional mesh of a microchannel. 773 
 774 

 775 
 776 

Figure 17. Average outlet temperature and average chip temperature using 777 

simulation and measurements.  778 

3.2.3.2 A Practical Design Example 779 

In an IC package or a printed circuit board, a PDN usually has an irregular shape with 780 

many voids and apertures. To simulate practical designs, a new interface that can import 781 

board and package design files from Cadence SPB software into the PowerET solver has 782 
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been employed. A PCB example is shown in Figure 18a. In Figure 18a, the board 783 

dimension is 60 mm   31 mm, and the chip dimension is 9 mm   9 mm. The total 784 

power consumption of the chip is 50 W, and its nonuniform power map is illustrated in 785 

Figure 18b. The thermal conductivity of thermal interface material (TIM) is 2 )/(mKW . 786 

The heat sink is modeled as an ideal heat sink with a constant room temperature of 25 787 

C . This example has been simulated with a convection coefficient of 5 )/( 2KmW on 788 

both sides of the board. The voltage drop simulation is carried out first with an initial 789 

system temperature of 25 Celsius. The simulated voltage and temperature of the chip with 790 

electrical-thermal iterations are shown in Figure 19. It shows that compared to the initial 791 

voltage drop of 15 mV, the final voltage drop increases to 18.2 mV. Therefore, the 792 

thermal effect on voltage drop is 21.3%. Because of the power density from the chip and 793 

Joule heat from the PDN, the final chip temperature increases to 92.1 C . It is important 794 

to note that in this example, the chip temperature increase is mainly caused by the power 795 

density of the chip. Since on-chip power grids are not included in the simulation, the 796 

Joule heat generated in the PCB only increases the chip temperature by 0.3 C . The final 797 

temperature and voltage distributions of the board are shown in Figure 20.  798 

                 799 

(a)                                                                 (b) 800 

Figure 18. (a) A board example, (b) a nonuniform chip power map (unit: W). 801 
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 802 

Figure 19. The voltage and temperature of chip with electrical-thermal iterations. 803 

 804 

       805 
 806 

(a)                                                         (b) 807 

Figure 20. Final voltage and temperature distributions of the board, (a) voltage, (b) 808 

temperature. 809 
 810 

3.2.3.3 A 3D System with Microfluidic Cooling 811 

A 3D integrated system with microfluidic cooling is also simulated using the 812 

PowerET solver. The 3D integrated system consists of two sets of stacked chips, 36 813 

microchannels, hundreds of TSVs, C4s, and a package substrate. The structure of the 814 

system is shown in Figure 21a. The package has five metal layers:  two signal layers, two 815 

power plane layers, and one ground plane layer, as shown in Figure 21b. The two power 816 

plane layers are shorted together using multiple vias to reduce the voltage drop. A 2.5 V 817 
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voltage source is placed at the corner of the package. In each set of stacked chips, the top 818 

chip is stacked on the bottom chip using TSVs and micro-bumps. The package size is 20 819 

cm   20 cm, and the size of each chip is 1.1 cm   1.1 cm.  820 

In this 3D integrated package, the power consumptions for Chip1, Chip2, Chip3, and 821 

Chip4 are 100 W, 100 W, 50 W, and 50 W, respectively. Uniform power maps are used 822 

for all chips. To efficiently dissipate heat for this high-power 3D system, the method of 823 

microfluidic cooling is used with chilled water, as shown in Figure 21. In each chip, nine 824 

microchannels with a cross section of 0.6 mm   0.2 mm are used. The configuration of 825 

microchannels and TSVs of the stacked chips is shown in Figure 22. The geometrical and 826 

material parameters are summarized in Table 2.  827 

                 828 

(a)                                                             (b) 829 

Figure 21. A 3D integrated system with microfluidic cooling, (a) whole system, (b) 830 

cross-sectional view.  831 
 832 

 833 

Air convection with a heat transfer coefficient of 5 )/( 2KmW  is applied to both the 834 

top and bottom surfaces of the package. This example is simulated with both Joule 835 

heating and fluidic cooling effects. In the simulation, four chips are supplied with the 836 

same water flow rate. The temperature of input water at the inlets of microchannels is 22 837 

C . To validate the effect of fluidic cooling, the traditional cooling method using a heat 838 

sink is also simulated for comparison. The thermal conductivity of TIM is 2.4 )/(mKW , 839 
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and the heat sink is assumed to be an ideal heat sink with a constant room temperature of 840 

25 C . In the simulation, 3D nonuniform rectangular grids are used, resulting in about 841 

166 K unknowns for the thermal simulation. For the voltage distribution simulation, since 842 

only conductor cells are considered as unknowns in the simulation, only 110 K unknowns 843 

are used. The simulation took five iterations to converge. The total simulation time was 844 

401.4 seconds.   845 

 846 

 847 

Figure 22. The configuration of microchannels and TSVs for stacked chips. 848 

 849 

Table 2. Geometrical and material parameters. 850 
 851 

 Material 

Thickness (mm) 

Thermal Conductivity     

(W/mK) 

Glass-ceramic  0.35 5 

Copper 0.036 400 

Chip 0.5 110 

Underfill 0.2 4.3 

C4  0.2 60 

TIM  0.2 2.4 

TSV (Tungsten) 0.5 174 

Microchannel 0.2 0.6 

 852 
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With a water flow rate of 104 ml/min for each chip, the simulated temperatures using 853 

the microfluidic cooling and traditional heat sink are shown in Figure 23. It shows the 854 

simulated results converge in five iterations. As can be seen from Figure 23, using the 855 

heat sink, the final temperatures of Chip1, Chip2, Chip3, and Chip4 are 167.6 C , 156.8 856 

C , 97.5 C , and 91.9 C , respectively. However, using the microfluidic cooling, their 857 

temperatures become 97.5 C , 101.5 C , 60.3 C , and 61.8 C , respectively. Therefore, the 858 

microfluidic cooling can greatly reduce the temperature for high-power 3D stacked ICs.  859 

The simulated voltages with the microfluidic cooling and traditional heat sink are 860 

shown in Figure 24. The initial voltage drops of Chip1, Chip2, Chip3, and Chip4 are 78.8 861 

mV, 83.2 mV, 60.9 mV, and 63.2 mV, respectively. Using the traditional heat sink, the 862 

final voltage drops of Chip1, Chip2, Chip3, and Chip4 are 102.5 mV, 109.6 mV, 75.8 863 

mV, and 78.7 mV, respectively. Therefore, the thermal effect increases the voltage drops 864 

of Chip1, Chip2, Chip3, and Chip4 by 30%, 32%, 24%, and 25%, respectively. However, 865 

with the microfluidic cooling, the thermal effects only increase the voltage drops of 866 

Chip1, Chip2, Chip3, and Chip4 by 20%, 20%, 18%, and 18%, respectively. As the 867 

microchannel-based fluidic cooling can reduce the chip temperatures to less than 102 C 868 

for Chip1 and Chip2 and less than 62 C  for Chip3 and Chip4 (Figure 23), the thermal 869 

effect on the voltage drop is dramatically reduced compared to that using heat sink.  870 

After establishing the convergence of the co-analysis, the final temperature 871 

distributions of chips and microchannels are shown in Figure 25. It shows that the chip 872 

temperature is much higher than the water temperature inside the microchannel. The 873 

large temperature gradient at the boundary is caused by the relative large power density 874 

of the chip and small heat transfer coefficient between the liquid water and silicon chip.  875 
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      876 

(a)                                                                     (b) 877 

Figure 23. Temperatures of (a) Chip1 and Chip 2, (b) Chip3 and Chip4 with 878 

iterations. 879 
 880 

     881 

(a)                                                                          (b) 882 

Figure 24. Voltages of (a) Chip1 and Chip2, (b) Chip3 and Chip4 with iterations. 883 
 884 

 885 

       886 

(a)                                                               (b) 887 

Figure 25. 2D temperature distributions of microchannels and chips, (a) Chip1, (b) 888 

Chip3 with a flow rate of 104 ml/min (top view).  889 
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3.3 Thermal-Electrical Analysis for TSV Arrays 890 

As TSV interconnects become key components in 3D stacked chips and integrated 891 

systems, the modeling and design of TSV arrays becomes important for circuit designers. 892 

For the modeling of TSV arrays, the numerical modeling method using CMBFs 893 

(cylindrical modal basis functions) [69] has been a promising approach, for large TSV 894 

arrays can be efficiently modeled using a small number of basis functions. Because of the 895 

temperature-dependent electrical resistivity of silicon substrate and TSV filling materials 896 

(e.g., copper and tungsten), modeling TSV arrays in silicon carriers (Figure 1) requires 897 

taking into account the thermal effect on TSV characteristics (e.g., crosstalk and insertion 898 

loss). In this section, we present a thermal-electrical analysis method for TSV arrays. The 899 

proposed approach accounts for the temperature effect on TSV arrays by extending the 900 

TSV modeling method in [69] to include temperature-dependent material properties. The 901 

objective of the thermal-electrical analysis is to investigate the temperature effect on TSV 902 

characteristics such as crosstalk, insertion loss, RLCG parameters, and time-domain 903 

coupled noise.  904 

3.3.1 Temperature Effects on Silicon Properties 905 

Modeling a TSV array requires taking into account the temperature-dependent 906 

material properties of the silicon substrate and TSV filling material. The temperature- 907 

dependent electrical resistivity of TSV filling materials (e.g., copper and tungsten) is 908 

described by Equation (4). For a silicon interposer, its electrical conductivity is affected 909 

by the doping density and temperature T. The temperature-dependent silicon conductivity 910 

can be described by [71] 911 

)/()(10602.1)( 17 mSTNT pasi                                   (19) 912 
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where aN  represents the concentration of substrate dopant impurity and )(Tp  represents 913 

the temperature-dependent carrier mobility [88].  914 

To model a TSV array with temperature effects, the temperature-dependent metal 915 

conductivity )(Tm )/1( mm    and silicon conductivity )(Tsi need to be used. In 916 

addition, because of the finite conductivity of silicon, which differs from other substrates 917 

such as glass ceramic and FR-4 substrates, a complex permittivity of silicon needs to be 918 

used and it is described by [89]  919 

)
)(

tan1()(
,0

,0

isi

si

isisi

T
jjT




                                       (20) 920 

where isi,  is the real part of the dielectric constant of silicon and tan  is the intrinsic 921 

loss tangent of an intrinsic silicon without doping;   is the angular frequency.  922 

3.3.2 Thermal-Electrical Analysis Flow for TSV Arrays 923 

Because of the temperature-sensitive material properties, design and modeling of a TSV 924 

array requires taking into account the effect of a realistic system thermal profile. 925 

Capturing the thermal effect on a TSV array necessitates combined thermal-electrical 926 

modeling that consists of thermal modeling of a 3D system and electrical modeling of a 927 

TSV array. The thermal modeling enables obtaining the temperature distribution of the 928 

TSV array in a silicon interposer. The temperature distribution of the TSV array can be 929 

passed to the electrical model of the TSV array, accounting for the temperature effect. 930 

Although the thermal modeling can be performed with assumed boundary conditions 931 

surrounding the interposer region, the accuracy is limited because of the non-uniform 932 

power map and thermal coupling between adjacent regions and stacked dies. Therefore, 933 
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accurate temperature estimation requires thermal modeling of the 3D system consisting 934 

of the dies, interposer, and package.  935 

The thermal-electrical modeling flow for TSV arrays is shown in Figure 26. The 936 

modeling starts with initial design parameters of the TSV array. In general, because of 937 

undetermined system layout, the thermal profile or temperature distribution of the system 938 

may not be available to circuit/TSV designers at the initial design stage. As a result, 939 

thermal analysis is required in the modeling flow. The thermal-electrical modeling 940 

procedure for TSV arrays is listed as follows:  941 

1) Obtaining initial TSV array design parameters including TSV length, diameter, pitch, 942 

oxide liner thickness, material properties, etc.  943 

2) Electrical modeling of the TSV array to obtain TSV RLCG parameters, crosstalk, and 944 

insertion losses at room temperature. 945 

3) Deciding whether the crosstalk and insertion loss of the TSV are within the design 946 

budget or not. If not, go back to step 1 to adjust the TSV layout parameters. 947 

Otherwise, go to next step. 948 

4) With updated layout parameters of the TSV array, thermal simulation of the system is 949 

carried out to obtain the temperature distribution across the interposer.  950 

5) Electrical modeling of TSV array is carried out with updated temperature-dependent 951 

material properties. The temperature effect on the characteristics of the TSV array 952 

including RLCG parameters, crosstalk, and insertion loss can be obtained.  953 

6) Deciding whether the new TSV array characteristics meet the design budget or not. If 954 

not, go back to step 1 to adjust TSV layout parameters and then go to step 4. 955 

Otherwise, multiport S-parameters and a Spice-based macromodel are generated.  956 
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 957 

Figure 26. A thermal-electrical modeling flow for TSV arrays. 958 
 959 

The conventional TSV array design and modeling consists of only steps 1-3 without 960 

considering the thermal profile of the system, which can introduce discrepancy. It is 961 

important to note that the thermal profile can also be calculated based on the initial TSV 962 

design parameters; thus, Steps 2 and 3 can be bypassed, as shown in Figure 26. However, 963 

using the initial design parameters may result in inaccurate temperature estimation. In the 964 

second iteration, to reduce the computational cost, the temperature estimation in the first 965 

iteration can also be used if limited geometrical modification is made for the TSV array.  966 

The presented thermal-electrical co-analysis approach for TSV arrays is based on the 967 

combination of the electrical TSV modeling method using CMBFs and the thermal 968 

modeling using the FVM. For the electrical modeling of TSV arrays, we use the 969 
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numerical modeling method using cylindrical modal basis functions. As the modeling 970 

method using CMBFs has been discussed in detail in [69], the modeling process is 971 

omitted here for clarity. The method in [69] is extended to include temperature-dependent 972 

material properties by coupling with the thermal modeling.   973 

For the thermal modeling of a 3D system, the aforementioned finite volume-based 974 

modeling method is used. The obtained temperature distribution can be passed to the 975 

electrical TSV model to update the temperature-sensitive electrical conductivities and 976 

permittivities of TSV conductors and the silicon substrate. The temperature effects on the 977 

insertion loss, crosstalk, RLCG parameters, and time-domain coupled noise of TSV 978 

arrays are investigated and shown using numerical test cases.  979 

 980 
(a) 981 

           982 

(b)                                                          (c) 983 

Figure 27. (a) A 3D system with a silicon interposer, (b) a 5 x 5 TSV array structure, 984 

(c) TSV cross-section. 985 
 986 
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3.3.3 Numerical Test Cases 987 

A 3D system consisting of stacked dies, a thermal interface material, a four-layer package, 988 

micro-bumps, a silicon interposer, and an under-fill layer is simulated. The 3D system is 989 

shown in Figure 27a. The sizes of the stacked dies, silicon interposer, and package are 8 990 

mm  8 mm, 30 mm   30 mm, and 60 mm   60 mm, respectively. In the center of the 991 

silicon interposer, a TSV array consisting of 120   120 TSVs is distributed (Figure 27a). 992 

Among the 120   120 TSV array, a 5   5 TSV array, which is located at the center of the 993 

interposer, is shown in Figure 27b. The TSV diameter is 20 microns, and the pitch 994 

between TSVs is 66.7 microns. The cross-sectional view of a TSV is shown in Figure 27c. 995 

The TSV filling material is copper. The thicknesses of the interposer and oxide layer are 996 

200 m and 0.1 m , respectively. The conductivity of the silicon interposer is 10.4 S/m at 997 

room temperature. The doping density of silicon interposer is 
3151032.1  cm . The 998 

geometrical parameters and material thermal conductivities can be found in [90].  999 

Two design cases are studied. In design Case-1, the power consumptions of die 1 and 1000 

die 2 are 8 W and 2 W, respectively. In design Case-2, the power consumptions of die 1 1001 

and die 2 are 30 W and 12.5 W, respectively. The non-uniform power maps of dies are 1002 

shown in Figure 28a and Figure 28b, respectively. Air convection with a convection 1003 

coefficient of 10 W/(m
2
K) is applied to the top surface of the silicon interposer and both 1004 

sides of the package. The simulated temperature distributions of the silicon interposer for 1005 

the two design cases are shown in Figure 29. As seen from Figure 29, because of the non- 1006 

uniform die power map (Figure 28), the interposer temperature varies from 36.5 to 40.5 1007 

Celsius for Case-1 and from 76 to 92 Celsius for Case-2, respectively. Therefore, the 1008 
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electrical modeling of the TSV array using material properties calculated at the room 1009 

temperature can introduce discrepancy because of system temperature increases.  1010 

In a silicon interposer, the pitch between adjacent TSVs is usually in the range of 50- 1011 

100 microns, depending on the process used. A 55 or 1010 TSV array covers an area 1012 

less than 1 mm
2
. Because of the high thermal conductivity of silicon interposer, the 1013 

temperature variation across the 5   5 TSV array region is usually very small (less than 1014 

one degree in our simulation). As a result, a single temperature (40 degree for Case-1 and 1015 

92 degree for Case-2 for this example) can be used for the 55 TSV array region, and the 1016 

solution accuracy can still be maintained. Although the TSV modeling method using 1017 

CMBFs [69] is applied to a 5  5 TSV array, the method can also be applied to larger 1018 

TSV arrays because of the efficiency of the modeling methodology.  1019 

 1020 

   1021 
(a) 1022 

       1023 
(b) 1024 

 1025 
Figure 28. Power maps of dies for (a) Case-1, (b) Case-2. 1026 
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         1027 

(a)                                                                   (b) 1028 

Figure 29. Temperature distribution across the interposer for (a) Case-1 design, (b) 1029 

Case-2 design. 1030 
 1031 

3.3.3.1 Temperature Effect on TSV Insertion Loss and Crosstalk 1032 

Using the initial TSV design parameters, the electrical modeling of the 55 TSV 1033 

array (Figure 27b) is carried out first at room temperature of 25 Celsius. The simulated 1034 

insertion loss and crosstalk of TSVs are shown in Figure 30 and Figure 31, respectively. 1035 

As the temperature distribution is already simulated for the two cases, the material 1036 

properties of the silicon interposer and TSV conductors can be updated, and the electrical 1037 

modeling of the TSV array is carried out with updated material properties. For 1038 

comparison purposes, the insertion loss and crosstalk with simulated temperatures (40 1039 

Celsius for design Case-1 and 92 Celsius for design Case-2) for the 55 TSV array are 1040 

also shown in Figure 30 and Figure 31, respectively. It is observed that with updated 1041 

temperatures of 40 and 92 Celsius, the insertion losses of TSV-1 and TSV-7 are reduced 1042 

and more design budget is gained. As seen from Figure 30, the temperature effect on the 1043 

insertion loss is not obvious up to 0.2 GHz. From 0.2 - 10 GHz, the insertion loss is 1044 
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reduced with increasing temperature of the TSV array. This is caused by the reduced 1045 

conductivity of the silicon interposer because of increasing temperature.  1046 

As shown in Figure 31, the temperature effect on TSV coupling shows frequency- 1047 

dependent behavior regions. In low-frequency range, the near-end coupling between 1048 

TSV-1 & TSV-2 and TSV-1 & TSV-7 increases with temperature. However, at higher 1049 

frequencies (from 100 MHz to several GHz), the trend is reversed and better isolation is 1050 

obtained with increasing temperature, which is due to the fact that the conductivity of the 1051 

silicon substrate is reduced with increasing temperature, as indicated by Equation (19). 1052 

As frequency further increases to 10 GHz, the coupling converges and the temperature 1053 

effect cannot be observed. The same trend has been shown using measurements for a 1054 

TSV pairs in [87]. The variations of TSV insertion loss and crosstalk caused by the 1055 

temperature indicate the importance of taking into account the temperature effects on 1056 

TSV arrays in real designs.   1057 

 1058 

  1059 

(a)                                          (b) 1060 

Figure 30. Insertion loss of (a) TSV-1, (b) TSV-7. 1061 
 1062 
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 1063 

(a) 1064 

  1065 

(b) 1066 

Figure 31. Near-end crosstalk between (a) TSV-1 & TSV-2, (b) TSV-1 & TSV-7 with 1067 

initial and simulated temperatures.  1068 
 1069 

3.3.3.2 Temperature Effect on TSV Self-parameters 1070 

The self-parameters of TSV-1 including series resistance, series inductance, shunt 1071 

capacitance, and shunt conductance with initial and simulated temperatures are shown in 1072 
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Figure 32(a-d), respectively. As shown in Figure 32a, with updated temperatures, the 1073 

series resistance of TSV-1 increases linearly because of the temperature coefficient of the 1074 

electrical resistance, which is 0.0039 K
-1

 for copper TSVs in this example. As seen from 1075 

Figure 32b, at low frequencies, the temperature has no effect on series inductance 1076 

because of the uniform current distribution inside TSV conductors. At higher frequencies, 1077 

because of the skin effect that becomes significant around 0.1 GHz, the internal current 1078 

distribution is affected by the temperature, resulting in a small variation of TSV 1079 

inductance.   1080 

  1081 

(a)                                                               (b) 1082 

      1083 

(c)                                                                      (d) 1084 

Figure 32. TSV-1 self-RLCG parameters, (a) resistance, (b) inductance, (c) 1085 

capacitance, (d) conductance. 1086 



 56 

For the self-capacitance of the TSV, the temperature effect is obvious in the range of 1087 

0.05 – 1 GHz, as shown in Figure 32c. With increasing temperature, the equivalent 1088 

capacitance is reduced. This is because silicon permittivity also depends on the 1089 

temperature, as indicated by Equation (20). As seen from Figure 32d, in low-frequency 1090 

range, the conductance does not vary with temperature. However, in frequency range of 1091 

0.2 – 10 GHz, the conductance decreases with temperature, which is caused by the 1092 

decreasing silicon substrate conductivity with increasing temperature. For TSVs, since 1093 

the series resistance is in the scale of milliohms (Figure 32a) and inductance in the scale 1094 

of pH (Figure 32b), the insertion loss of TSVs at higher frequencies is mainly caused by 1095 

the shunt capacitance and conductance.  1096 

3.3.3.3 Temperature Effect on Coupled Noise 1097 

The temperature effect on time-domain coupled noise of TSVs is also simulated. In the 1098 

time-domain simulation, a rectangular clock signal with a peak-to-peak amplitude of 2 V 1099 

is excited at the top ends of four signal TSVs:  TSV-1, TSV-3, TSV-11 and TSV-13 1100 

(Figure 27b). The bottom ends of the four TSVs are all terminated using 50 Ohm resistors. 1101 

TSV-7 is the victim TSV used to observe the coupled noise. Since the number of 1102 

neighboring ground TSVs in the system can affect the signal crosstalk, the effect of 1103 

ground/signal (G/S) TSV ratio on coupled noise is first examined. Three cases are studied 1104 

with G/S TSV ratios of 1:4, 2:4, and 4:4, respectively. The ground TSV ID numbers for 1105 

the three cases are shown in Table 3. Note that the top and bottom ends of all other TSVs 1106 

in the 5 5 TSV array (Figure 27b) are all terminated with 50 Ohm resistors connecting to 1107 

ground.  1108 
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With different G/S TSV ratios, the coupled noise at the top end of TSV-7 with an 1109 

input clock frequency of 1GHz is shown in Figure 33a. The rise and fall times of the 1110 

clock signal are both set to 50 ps. The peak values of the coupled noise and percentage 1111 

change with increasing G/S TSV ratio are listed in Table 3. It is observed that by 1112 

increasing the G/S ratio from 1:4 to 2:4 and 4:4, the coupled noise reduces by 18% and 1113 

39%, respectively, indicating the importance of the G/S TSV ratio on crosstalk. With a 1114 

G/S TSV ratio of 4:4, the coupled noise with temperature effect is also investigated. The 1115 

coupled waveform is shown in Figure 33b. As seen from Figure 33b, the coupled noise 1116 

decreases with increasing temperature. The peak values of the coupled noise and 1117 

percentage change because of the temperature effect are listed in Table 4.  As seen from 1118 

Table 4, by increasing the temperature from 25 to 92 Degrees, the temperature effect can 1119 

result in a 13% reduction of the coupled noise.   1120 

 1121 

   1122 

(a)                                                                      (b)  1123 

Figure 33. (a) Coupled noise with different G/S TSV ratios, (b) temperature effect 1124 

on coupled waveforms with a G/S ratio of 4:4. 1125 
 1126 

 1127 

 1128 

 1129 
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Table 3. Effect of ground/signal TSV ratio on coupled noise. 1130 

 1131 

      G/S TSV Ratio 1:4 2:4 4:4 

Ground TSV TSV-2 TSV-2, TSV-12 TSV-2, TSV-6, 

TSV-8, TSV-12 

Peak Value (mV) 97.6 79.6 59.6 

Percentage Change -- 18.4% 38.9% 

 1132 

 1133 

Table 4. Temperature effect on TSV coupled noise. 1134 

 1135 

Temperature  25 Celsius 40 Celsius 92 Celsius 

Peak Value (mV) 59.6 58.3 51.8 

Percentage Change -- 2.2% 13.0% 

 1136 

3.4 Summary 1137 

In this chapter, the electrical-thermal co-simulation approaches are presented to address 1138 

the temperature effect on voltage drop and TSV characteristics. The voltage drop-thermal 1139 

co-simulation method for PDNs is first presented. The finite-volume schemes for the 1140 

modeling of voltage drop with non-uniform temperature distribution and fluidic cooling 1141 

are discussed in detail. The correctness and accuracy of the models for heat conduction, 1142 

air convection, and Joule heating have been verified using a PCB example. In addition, 1143 

two examples of microfluidic cooling including an experimental example have been 1144 

simulated to validate the finite-volume model for microfluidic cooling. The temperature 1145 

effect on voltage drop is demonstrated using several examples. The simulation results 1146 

show that the temperature effect on voltage drop can be 20-30%. The effectiveness of 1147 

fluidic cooling is verified using a 3D-system example. The simulation results show that 1148 

the method of fluidic cooling using microchannels can effectively reduce the temperature 1149 

of high-power stacked chips, compared to the method using heat sinks. 1150 

The thermal-electrical analysis for TSV arrays is also presented to investigate the 1151 
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temperature effect on TSV characteristics. The presented analysis methodology combines 1152 

the electrical TSV modeling technique using CMBFs and the thermal modeling using the 1153 

FVM. We investigated the temperature effect on the insertion loss, crosstalk, RLGC 1154 

parameters, and time-domain coupled noise of TSVs via several numerical test cases. The 1155 

following conclusions have been drawn. First, the increasing temperature can decrease 1156 

the insertion loss of TSVs at high frequencies because the conductivity of the silicon 1157 

interposer decreases with temperature. Second, the temperature increases can cause the 1158 

variation of the crosstalk between TSVs. The temperature effect on crosstalk 1159 

demonstrates frequency-dependent behaviors. Third, the self-parameters of TSVs 1160 

including series resistance, shunt capacitance, and shunt conductance also vary with 1161 

temperature. Fourth, the temperature can also affect the time-domain coupled noise. With 1162 

a G/S TSV ratio of 4:4, the temperature increase from 25 to 92 Celsius can reduce the 1163 

coupled noise by 13% with an input clock frequency of 1GHz in our simulation.  1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 

 1171 

 1172 
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CHAPTER 4 1173 

STEADY-STATE VOLTAGE DROP AND THERMAL MODELING 1174 

USING NON-CONFORMAL DOMAIN DECOMPOSITION 1175 

 1176 

4.1 Introduction 1177 

A 3D integrated system contains stacked chips using TSVs and micro-bumps, a package, 1178 

and a PCB (Figure 1). The small-size features such as TSVs and micro-bumps usually 1179 

have a dimension in the range of 5-60 microns while the large-size objects (e.g., PCB and 1180 

planes) have a dimension in the range of 5-20 centimeters. As a result, the scale contrast 1181 

in a 3D system can reach 1:10000 and beyond. For the thermal and voltage drop 1182 

modeling of a 3D system, the multiscale nature requires meshing a 3D system using a 1183 

large number of meshing cells/unknowns, which represents a critical task for simulating 1184 

the entire system. Simultaneously modeling a 3D system consisting of stacked ICs, 1185 

packages, and PCBs necessitates the development of multiscale modeling methods that 1186 

can dramatically reduce the total number of meshing cells/unknowns.  1187 

In this chapter, the multiscale modeling method using finite-element non-conformal 1188 

domain decomposition is presented for steady-state thermal and voltage drop analysis. 1189 

Using the presented approach, a 3D system can be divided into many individual 1190 

subdomains. The non-conformal domain decomposition technique also provides the 1191 

flexibility of gridding each subdomain using independent meshes while maintaining the 1192 

continuity of heat/current flows across domains by introducing the Lagrange multiplier. 1193 

The non-conformal domain decomposition approach is also applied for the voltage drop- 1194 

thermal co-simulation of 3D problems. To accelerate the co-simulation, the cascadic 1195 

multigrid (CMG) solving approach is applied using hierarchical meshing grids.  1196 
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4.2 Preliminaries  1197 

In this section, the finite-element formulation [79] for steady-state thermal modeling is 1198 

explained with air convection boundary conditions. By multiplying a testing function N 1199 

at the both sides of Equation (2a) and integrating over the volume, after using the 1200 

divergence theorem, the weak form [80] of the heat equation can be obtained as 1201 

 
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T
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By using the convection boundary condition as in Equation (9), Equation (21) can be 1203 

converted as  1204 

 
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S
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S
c dsTNhNPdxdydzNTdshdxdydzTNk                (22)    1205 

For 3D thermal modeling, the 8-node hexahedral elements with trilinear basis 1206 

functions are used. The rectangular mesh of an inhomogeneous material stack-up and a 1207 

hexahedral element with trilinear basis functions are shown in Figure 34. For simplicity, 1208 

the same basis function can also be used as the testing function.  As a result, with n 1209 

meshed cells, the system equation can be written as  1210 
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In Equation (23-24), 
)(e

DK and 
)(e

gK  represent the elementary stiffness matrices for each 1214 

element because of heat conduction and heat convection, respectively; 
)(e

Pf and )(eb  1215 

represent the external heat excitation and temperature gradient because of convection, 1216 
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respectively. For modeling with a homogenous Neumann boundary condition (natural 1217 

boundary condition) [80], we can simply let )(eb  and )(e
gK equal zero in Equation (23).  1218 

 1219 

    
1220 

 
1221 

(a)                                      (b) 1222 

Figure 34. (a) Layer stacking with inhomogeneous materials, (b) an 8-node 1223 

hexahedral element (cell) and trilinear basis functions.  1224 

 1225 

Since the voltage distribution equation and the heat equation share the same form 1226 

except the air convection boundary condition, the same finite-element formulation can be 1227 

used for the modeling of voltage drop. It is noted that the cell-based finite-element 1228 

formulation can handle the material inhomogeneity as shown in Figure 34a [79].  1229 

4.3 Modeling using Non-conformal Domain Decomposition 1230 

In this section, the steady-state voltage drop and thermal modeling using the finite- 1231 

element non-conformal DDM is discussed. The focus is on the modeling of multiscale 3D 1232 

problems with emphasis on the interposer, package, and PCB using the domain 1233 

decomposition with non-conformal gridding based on the Mortar FEM [41, 81].  1234 

4.3.1 Formulation Based on Mortar FEM 1235 

An integrated system consisting of stacked dies, a thermal interface material, micro- 1236 

bumps, and a package is shown in Figure 35a. Because of the feature scale difference in 1237 
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the regions of chip and package, large numbers of meshing cells are required when 1238 

gridding the entire system using the finite-element or finite-volume discretization. To 1239 

alleviate this problem, the integrated system can be divided into separate subdomains:  1240 

the chip domain and package domain, as shown in Figure 35b. The chip domain and 1241 

package domain can be meshed independently using 3D non-uniform grids. As a result, 1242 

the meshing grids from the chip domain do not overlap with the grids from package 1243 

domain. Therefore, the required meshing cells are greatly reduced. For simplicity, the 1244 

thermal analysis using the DDM based on the Mortar finite element formulation [41] is 1245 

explained with 2D rectangular grids, as shown in Figure 35b.  1246 

 1247 

    1248 
 1249 

(a)                                                        (b) 1250 

Figure 35. (a) A 3D integrated system, (b) non-conformal gridding of chip and 1251 

package. 1252 

 1253 

At the interface, the continuity of electrical currents and heat flows needs to be 1254 

ensured for both the voltage drop and thermal analysis. For two subdomains with a 1255 

common interface (Figure 35b), by assuming )2,1(/)()(  inTk i
ii  , we have the 1256 

relationship of    )2()1( [81], where  is a function from the Lagrange multiplier 1257 

space. Then the weak continuity for heat or current flows across the interface can be 1258 

established, and the following equations for domains and interface can be derived as 1259 
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where ,1N 2N , and  represent the basis functions for domain1, domain2, and 1261 

Lagrange multiplier space, respectively [82]. The temperature 
1T and 

2T can be 1262 

expressed as a linear combination of basis functions in domain 1 and domain 2, 1263 

respectively. Similarly, with the Lagrange multiplier   being expressed as 






n

i

iib
1

, 1264 

the system equation for the problem with two subdomains (Figure 35b) can be written as 1265 
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where the matrix entries for k-th domain can be expressed as 1267 
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In Equation (26-27), ,1A 2A , ,1f and 2f  represent the stiffness matrices and 1269 

excitations for domain 1 and domain 2, respectively; 1B and 2B represent the coupling 1270 

matrices for the two domains. To obtain the stiffness matrix for each domain, the 1271 

associated boundary conditions need to be used for the corresponding subdomains. In 1272 

addition, the homogeneous Neumann boundary condition needs to be assigned at the 1273 

common interface in the process of forming matrices 1A  and 2A . For a 3D problem, the 1274 
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interface becomes a surface. As the interfacial surface can have several thousands of 1275 

nodes, the 4-point Gaussian quadrature for rectangular elements is used to effectively 1276 

calculate B matrix.  1277 

For an integrated system that is divided into N subdomains, the generalized system 1278 

equation can be written as 1279 
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where A is a block diagonal matrix described by 1281 
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4.3.2 Interface Basis Functions 1283 

For the Lagrange multiplier of the interface, the basis functions can be constructed 1284 

based on the interfacial grids from either side. To reduce the number of unknowns for 1285 

the interface, the basis functions can be constructed based on the domain with coarse 1286 

meshing grids. However, to satisfy the inf-sup condition [41, 81] so that the coupling 1287 

matrix B for the interface has a full rank, the basis functions for the interface cannot be 1288 

randomly selected. For a 2D problem with 4-node (bilinear) elements (Figure 35b), the 1289 

interface becomes a line. The interface basis functions can be constructed based on 1290 

linear shape functions and expressed as 1291 
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where i is a linear shape function associated with node i. As an example, the basis 1293 

functions for the interface in Figure 35b are shown in Figure 36. Therefore, for a one- 1294 

dimensional interface with n nodes, the total number of basis functions is n-2.  1295 

For a 3D problem, the interface becomes a surface connecting two subdomains, as 1296 

shown in Figure 37a. As adjacent domains are usually meshed independently, the 1297 

meshing grids do not overlap at the common interface. For a 2D interface with xN  1298 

yN  nodes, the interface basis functions can be obtained based on 2D bilinear shape 1299 

functions. For a simplified representation, the basis function can be described using 1D 1300 

basis functions in two directions (Figure 37b) as 1301 

)Njy,Nix( yxjyixij 2121                        (31) 1302 

 1303 

 1304 

Figure 36. Basis functions for a 1D interface. 1305 
 1306 

 1307 

 1308 

             1309 

(a)                                                   (b) 1310 

Figure 37. (a) A 2D interface for a 3D problem, (b) interface basis functions in two 1311 

directions.  1312 

 1313 
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For a problem with a total number of terinn  interfaces, assuming each interface has 1314 

iM   basis functions, the dimension of B matrix is BN  AN . BN  can be expressed as  1315 





terinn

i

iB MN
1

                                                           (32) 1316 

Using the non-conformal gridding, the required meshing cells for subdomains can be 1317 

greatly reduced. However, because of introducing the Lagrange multiplier for interfaces, 1318 

extra interface unknowns erintx  are added to the system (Equation 28). The additional 1319 

computational cost because of the introduced interface unknowns is explained in Section 1320 

4.4.2. It should be noted that for the voltage drop analysis, since a similar formulation 1321 

using the finite-element non-conformal domain decomposition can be derived as for the 1322 

thermal analysis, the derivation is omitted here.  1323 

4.3.3 Test Cases 1324 

To verify the correctness and accuracy of the DC voltage drop and thermal simulation 1325 

using the non-conformal domain decomposition approach, two verification examples 1326 

have been simulated first.  1327 

A. A Multi-layer PCB Example  1328 

A three-layer PCB with a size of 9 cm   9 cm is shown in Figure 38a. The thicknesses of 1329 

the copper plane and dielectric layer are 30 microns and 350 microns, respectively. As 1330 

shown in Figure 38a, the three-layer copper planes are shunted together using a 40   40 1331 

via array. The dimension of via is 0.3 mm   0.3 mm. Using the domain decomposition 1332 

approach, this PCB is divided into nine subdomains, as shown in Figure 38b. The fifth 1333 

subdomain contains the via array. As the coupling between domains is captured using 1334 
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Lagrange multipliers, each domain can be meshed independently; thus, the fine mesh 1335 

grids do not project from the fifth domain to other adjacent domains. 1336 

This example is simulated using domain decomposition. The voltage distribution on 1337 

the first layer of the PCB is shown in Figure 39a. This example is also simulated using 1338 

the FEM without domain decomposition. For comparison purposes, the maximum mesh 1339 

size is set to be the same for the two methods. Using the FEM, the voltage distribution on 1340 

the first layer is shown in Figure 39b. The voltage at the current source location is 1341 

2.4811V. Using the domain decomposition approach, the voltage at the current source 1342 

location is 2.4816 V. The 0.5 mV discrepancy comes from the different meshing grids 1343 

adopted for the two methods. Because of the mesh projection from the via array, 60 K 1344 

unknowns are required for the FEM. However, only 49.2 K domain unknowns and 1.7 K 1345 

interface unknowns are needed for the DDM.  1346 

 1347 

           1348 
 1349 

(a)                                                  (b) 1350 

Figure 38. (a) A three-layer PCB, (b) domain decomposition of the PCB. 1351 

 1352 
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         1353 

(a)                                                      (b) 1354 

Figure 39. Voltage distribution of the PCB using (a) the domain decomposition 1355 

method and (b) FEM (Unit: V).  1356 

B. A Package Example  1357 

To verify the accuracy of the thermal modeling using the domain decomposition 1358 

approach, a package example, as shown in Figure 40a, is simulated. The package 1359 

includes five metal layers, a TIM (thermal interface material), 1600 package vias, and a 1360 

20   20 micro-bump array. The package size is 30 mm   30 mm, and the chip size is 10 1361 

mm   10 mm. The total power consumption of the chip is 50 W, and the nonuniform 1362 

power map of chip is illustrated in Figure 40b. The thermal conductivity of the TIM is 2 1363 

)/(mKW . The heat sink is modeled as an ideal heat sink with a constant room 1364 

temperature of 25 C . This example has been simulated with a convection coefficient of 1365 

5 )/( 2 KmW on both sides of the package. The material thicknesses and thermal 1366 

conductivities are shown in Table 5. 1367 

To effectively simulate this package, this example is divided into two subdomains: 1368 

the chip domain and package domain. The chip domain has a meshing grid of 70706, 1369 

and the package domain has a meshing grid of 80  80  10. The total number of 1370 

unknowns is 99.6 K. The total number of interface unknowns is 4.9 K. Compared to the 1371 

y(mm) 

x(mm) 

y(mm) 

x(mm) 
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thermal simulation using the FEM, which requires 183.2 K unknowns, the number of 1372 

unknowns is greatly reduced because of the non-conformal domain decomposition 1373 

approach used. The generated system equations for the FEM and DDM are all solved 1374 

using the direct sparse solver in Matlab. The total solving time for the DDM is 22.3 1375 

seconds, about 34% reduction compared to the FEM, which takes 33.6 seconds. The 1376 

simulated temperature distribution of the chip and package is shown in Figure 41.   1377 

 1378 

                1379 

(a)                                                   (b) 1380 

Figure 40. (a) A package example, (b) nonuniform chip power map (unit: W). 1381 
 1382 

Table 5. Material thicknesses and thermal conductivities.  1383 
 1384 

 Material Thickness 

(mm) 

Thermal Conductivity 

(W/mK) 

Package dielectric 0.35 0.8 

Copper Plane 0.03 400 

Chip 0.3 110 

Underfill 0.2 0.4 

C4  0.2 174 

Package via 0.35 400 

TIM  0.2 2.0 

 1385 

 1386 

The temperature distribution at the location of y = 12.75 mm of the chip with and 1387 

without domain decomposition is shown in Figure 42. The maximum temperature 1388 

difference is about 0.4 degree, which is due to the different meshing grids used for the 1389 
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two methods. The good agreement between the results from the two methods validates 1390 

the accuracy of the thermal simulation using the domain decomposition.  1391 

 1392 

 1393 

             1394 
(a)                                     (b) 1395 

Figure 41. Temperature distributions of (a) chip and (b) package. 1396 
 1397 

 1398 

Figure 42. Comparison of on-chip temperature distributions (at y =12.75 mm). 1399 
 1400 

4.4 Co-simulation using Cascadic Multigrid (CMG) Approach 1401 

     Using the finite-element non-conformal DDM, the system unknowns can be greatly 1402 

reduced as discussed in the last section. However, for a complex multiscale system, with 1403 

the size of the sparse stiffness matrix approaching millions, the matrix condition number 1404 

y(mm) 

y(mm) 

x(mm) x(mm) 

Temp. 

 (C) 
Temp.  

(C) 
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can increase dramatically. Therefore, fast iterative methods with a good preconditioner 1405 

are required. For simulating multiscale systems, in addition to the aforementioned 1406 

domain decomposition technique, the simulation can be accelerated by making use of 1407 

hierarchical meshing grids.   1408 

         For the thermal and voltage drop modeling using the non-conformal DDM, the 1409 

system matrix K becomes symmetric indefinite. Therefore, standard multigrid methods 1410 

cannot be directly applied. Instead of using the standard multigrid method as in [14, 91], 1411 

the CMG method [83] can be used to solve the linear system equation (28). It is 1412 

important to note that for the CMG to be successfully applied to the voltage drop-thermal 1413 

co-simulation iteration (Figure 6), because of the coupling between voltage drop and 1414 

thermal characteristics, special considerations and treatment of the Joule heating and 1415 

temperature are required considering the multilevel grids, which will be addressed in the 1416 

next subsection.  1417 

4.4.1 Co-simulation using CMG 1418 

The cascadic multigrid solving flow with hierarchical non-conformal mesh grids is 1419 

shown in Figure 43. As shown in Figure 43, the problem on the coarsest mesh grids with 1420 

fewer unknowns is solved exactly. Then, the solution is interpolated to next level of finer 1421 

mesh grids. For each mesh level except the initial mesh level, the iterative subspace 1422 

confined conjugate gradient (CG) method [83] is used as a smoother to accelerate the 1423 

convergence of the solution before the solution is interpolated to finer grids. Since the 1424 

initial approximation is interpolated from the previous level, the starting residual is small; 1425 

thus, the convergence can be efficiently reached. As the non-conformal domain 1426 

decomposition approach is used, the mesh refinement in one domain does not affect the 1427 
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gridding of other domains. This feature provides the flexibility to do mesh refinement for 1428 

only one or two critical domains in the simulation.  1429 

 1430 

Figure 43. Cascadic multigrid solving flow. 1431 
 1432 

Since the stiffness matrix K is symmetric indefinite, a constraint preconditioner M 1433 

needs to be used to accelerate the convergence of the CG method [84, 85]. M is given by 1434 









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0B

BD
M

T

                                                        (33) 1435 

where D is a positive definite matrix that satisfies the inequality of ),(),( vAvvDv  .  1436 

The pseudo-algorithm of the cascadic multigrid solving method with multiple 1437 

domains is shown in Figure 44. Since the subspace confined PCG method is used for 1438 

each mesh level, a stop criterion   needs to be used to check the convergence. Instead of 1439 

using the energy norm-based error stop criteria as in [83], the L2 residual norm-based 1440 
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criterion is used as for the standard PCG method. The iteration stop criterion is described 1441 

by 1442 

0uut rr                                                            (34) 1443 

where 0ur and utr  represent the L2 norm of the residual for the initial and t-th PCG 1444 

iterations, respectively. Since the residual is already calculated in each PCG iteration, no 1445 

extra matrix-vector multiplication is needed. Therefore, the computational cost is reduced.  1446 

As matrix M is used as the preconditioner in the PCG iteration, the following 1447 

equation needs to be solved 1448 
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Instead of directly solving it, the following algorithm is used:  1450 

                  1) 
TBBDC 1  1451 

     2) )( 11
1

12
1

12 rBDrCs                                                                              (36) 1452 

                  3) )( 1211
1

11 sBrDs T   1453 

 1454 

where C is the Schur complement associated with the Lagrange multiplier variables for 1455 

interfaces. Since the inverse of D needs to be used to calculate the Schur complement, a 1456 

D matrix that has a much simpler structure than matrix A is preferred. In the simulation, a 1457 

diagonal matrix )(Adiag is used for D matrix, where  is a positive number. As a result, 1458 

the inverse of D becomes trivial, and C is also a sparse matrix. For the voltage drop 1459 

simulation and thermal simulation, it is found out that choosing  between 1 and 2 can 1460 

benefit the convergence.  1461 

Because of the interaction between voltage drop and thermal characteristics, Joule 1462 

heating and temperature become additional variables, which need to be updated in each 1463 

iteration. For the CMG to be successfully applied to the voltage drop-thermal iteration 1464 
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with multilevel mesh grids, special considerations and treatment are required. The 1465 

voltage drop and thermal iteration flow using CMG is shown in Figure 45a.  1466 
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1467 

Figure 44. Pseudocode for the cascadic multigrid method with multiple domains. 1468 
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 1469 

(a)   1470 

 1471 

 1472 

 1473 
 1474 

(b)                   1475 

Figure 45. (a) Voltage drop-thermal iteration flow using CMG, (b) temperature 1476 

averaging and Joule heat lumping from level-n to level-(n-1).  1477 
 1478 

It is assumed that the thermal simulation is first carried out without considering Joule 1479 

heating. In each thermal simulation, only the temperature distribution at the finest mesh 1480 
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level is obtained using the CMG solver. However, because of the multilevel meshing 1481 

grids used, the temperature profiles at other coarser levels also need to be calculated. The 1482 

temperature profiles on multilevel grids are used to update the temperature-dependent 1483 

stiffness matrices for the voltage drop analysis at different meshing levels. On the other 1484 

side, the Joule heat at the finest mesh level is obtained from the voltage drop simulation. 1485 

Similarly, Joule heat at other coarser mesh levels also needs to be formed. Thus, the heat 1486 

excitation vectors at different mesh levels can be accordingly updated for the CMG to be 1487 

applied to thermal simulation. The calculation of temperature and Joule heat profiles 1488 

from mesh level-n to level-(n-1) is shown in Figure 45b. The calculation of temperature 1489 

and Joule heat profiles at coarse level-(n-1) is obtained using cell-based temperature 1490 

averaging and Joule heat lumping.  1491 

In the voltage drop-thermal co-simulation, the stiffness matrices A and B do not 1492 

change with iterations for thermal simulation. However, for the voltage drop simulation, 1493 

because of the temperature-dependent resistivity, the stiffness matrix A varies with 1494 

iterations while B stays the same. To reduce the simulation cost, the stiffness matrices A 1495 

and B for thermal simulation and B matrix for the voltage drop simulation are only 1496 

calculated once and stored. The Joule heat for thermal simulation and stiffness matrix A 1497 

for voltage drop simulation are updated with iterations.  1498 

4.4.2 Computational Cost for Interface Unknowns 1499 

Using the non-conformal meshing, unknowns for subdomains can be effectively reduced, 1500 

compared to the conventional FEM. Because of the introduced interface basis functions 1501 

used to ensure the continuity of heat/current flows across domains, extra nonzero entries 1502 

of the B matrix and unknowns for interfaces are added to the system. The effect of the 1503 
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extra unknowns on computational cost needs to be investigated for the CMG method. For 1504 

modeling a 3D system, assuming the total number of unknowns for domain and interface 1505 

are AN  and BN , the simulation can be categorized into two cases based on the size of 1506 

BN .  1507 

Case A:  when BN  is much smaller than AN , direct solving methods can be used to 1508 

solve )( 11
1

12
1

12 rBDrCs   . The total computational cost for each subspace confined 1509 

PCG iteration is of ))(( p
BBA NNNO   . Since matrix B is for 2D interfaces, the 1510 

estimated order p is between 1.5 and 2.   and   are scaling factors for matrix-vector 1511 

multiplications depending on the matrix nonzero entries. Since BN  is much smaller than 1512 

AN , a small fraction of the computational cost is added because of the introduced 1513 

interface unknowns.   1514 

Case B:  when BN  is larger and comparable to AN , direct solving methods cannot 1515 

be used because of finite computer memory. To solve )( 11
1

12
1

12 rBDrCs   , iterative 1516 

solving approaches such as the PCG method are required. For each subspace confined 1517 

PCG iteration, the estimated computational cost is of ))log(( BBBA NNNNO   . As 1518 

BN is comparable to AN , a large amount of computational overhead is added for each 1519 

iteration. As a result, the system cannot be efficiently solved.  1520 

For a 3D system consisting of dies, a package, and a PCB, the system is vertically 1521 

divided into domains based on feature scale difference. In general, as each domain is 1522 

meshed using 3D mesh grids and the interface is meshed using 2D grids, the number of 1523 

interface unknowns is much smaller than that for the subdomains. Thus, the CMG can 1524 

provide an effective solution in terms of memory and computational complexity. The 1525 
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efficiency of the non-conformal domain decomposition with the cascadic multigrid 1526 

solving approach is demonstrated through numerical test cases.  1527 

4.4.3 Test Cases 1528 

A. A 3D Integration Example 1529 

To demonstrate the capability of handling multiscale problems, a 3D integration 1530 

example, as shown in Figure 46, is simulated. This example includes stacked dies, an 8- 1531 

layer package, and a 10-layer PCB. The die size is 12 mm   12 mm, and the package size 1532 

is 30 mm   30 mm. The PCB board size is 10 cm   10 cm. The dies are stacked together 1533 

using 400 TSVs (a 20   20 array). To reduce the IR drop, two PCB metal layers are 1534 

shunted together using 100 PCB vias. In this example, the minimum and maximum scales 1535 

in the lateral direction are 200 microns and 10 cm, respectively. The material layer 1536 

thicknesses and thermal conductivities are listed in Table 6. Air convection with a 1537 

convection coefficient of 15 )/( 2 KmW is applied to both sides of the PCB. In this 1538 

example, on-chip power grids are not included. The power supply voltage is 1.8 V. The 1539 

power consumption of stacked dies is 80 W and a uniform power map is used. Note that 1540 

in a practical design, the power maps of dies need to be extracted using chip CAD tools 1541 

based on a chip layout design. Because of the scale difference between the die, package 1542 

and PCB, this example is vertically divided into three domains: the chip domain, package 1543 

domain, and PCB domain. Therefore, two interfaces are needed to capture the coupling 1544 

between the chip-package and the package-PCB. In this example, the basis functions for 1545 

the Lagrange multiplier for the chip-package interface are selected from the package side 1546 

while the basis functions for the package-PCB interface are selected from the PCB side.   1547 
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The sub-domains of die, package, and PCB are meshed independently. For the initial 1548 

(level-0) mesh for thermal simulation, the meshing grid arrays for die, package and PCB 1549 

domains are 42428, 444419 and 2424 21, respectively. The total number of 1550 

domain unknowns is 63.0 K and the number of interface unknowns is 0.4 K, which can 1551 

be exactly solved using a direct sparse solver in 15.4 s. Without domain decomposition, 1552 

the meshed cell numbers in the x, y and z directions are 106, 106 and 46, respectively, 1553 

resulting in about 402 K unknowns using the FEM, which cannot be solved directly. The 1554 

FEM requires 398.9 s iterative solving time using the conjugate gradient method with a 1555 

diagonal pre-conditioner.  1556 

 1557 
 1558 

Figure 46. A 3D integration example. 1559 
 1560 

For the level-2 mesh refinement, 968 K unknowns are required for the thermal 1561 

simulation. However, using the FEM with a similar mesh size, the total number of 1562 

unknowns is about 6.3 million, which requires a long simulation time using the 1563 

preconditioned conjugate gradient method. Based on the hierarchical meshing grids using 1564 

domain decomposition, the cascadic multigrid solving algorithm can be applied. Since 1565 

the initial solution is interpolated from the previous level, the norm of the initial residual 1566 

is very small and the stop criterion  is set to be 1E-2 for both DC voltage and thermal 1567 
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simulations. For both the problems with level-1 and level-2 meshes, iterative solving is 1568 

used for the domain decomposition approach. For the level-1 and level-2 meshes, each IR 1569 

drop simulation requires 2911 and 5343 iterations while each thermal simulation requires 1570 

2217 and 4526 iterations, respectively. 1571 

Table 6. Material thicknesses and thermal conductivities. 1572 
 1573 

 Thickness 

(mm) 

Thermal Conductivity 

(W/mK) 

PCB dielectric 0.35 0.8 

PCB copper plane 0.03 400 

Package dielectric 0.35 5 

Package copper plane 0.02 400 

Die 0.15 110 

Underfill 0.2 0.4 

C4  0.2 174 

Solder bump 0.3 174 

via 0.35 400 

TIM  0.2 1.6 

TSV 0.15 400 

 1574 

For comparison purposes, this example has also been simulated using the FEM with 1575 

the conjugate gradient method and a diagonal pre-conditioner. The number of unknowns 1576 

and solution times using the DDM and FEM with different mesh levels for both DC IR 1577 

drop and thermal simulations are listed in Table 7. Note that the unknowns for DDM 1578 

listed in Table 7 denote the number of unknowns for domain and interface. As seen from 1579 

Table 7, the total number of unknowns using the DDM is reduced by 72-84% for DC IR 1580 

drop and thermal simulation compared to the FEM. The total simulation time using the 1581 

DDM is reduced by 64-88% for both DC IR drop and thermal simulations compared to 1582 

the FEM. For the finite-element thermal simulation with 6.3 million unknowns, it cannot 1583 

be solved because of finite memory in our simulation.   1584 
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The simulated voltage and temperature with iterations are shown in Figure 47a and 1585 

Figure 47b, respectively. The thermal simulation is carried out first in the co-simulation. 1586 

It shows that the voltage and temperature both converge in four iterations. The total 1587 

simulation time is 9785 s for four iterations. Note that the calculated chip IR drop is 30.6 1588 

mV at room temperature. As shown in Figure 47a, the final IR drop becomes 36.6 mV. 1589 

Therefore, the thermal effect increases the voltage drop by 19.6%. Since the thermal 1590 

simulation is carried out first, the temperature increase and extra voltage drop due to the 1591 

Joule heating effect can be studied. The Joule heating effect on the voltage drop is about 1592 

2% in this example because of shunted power planes. As seen from Figure 47b, the Joule 1593 

heating increases the PCB hotspot temperature about 8 degrees. Since on-chip power 1594 

grids are not considered, the Joule heating only increases the chip temperature by 0.8 1595 

degree. To illustrate the independent meshing grids and scale difference for chip, package 1596 

and board regions, the top overview of the final temperature distribution of this example 1597 

is shown in Figure 48.  1598 

 1599 

   1600 
(a)                                            (b) 1601 

Figure 47. Simulated (a) die voltage, (b) die and PCB temperatures with iterations. 1602 
 1603 

 1604 
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Table 7. Number of unknowns and solving times using the DDM and FEM.  1605 

  Level-0 Level-1 Level-2 

IR drop (DDM) unknowns (K) 24.6 (0.4)  80.5 (1.4) 292.1 (5.2) 

time (s) 0.65 166.2 748.6 

IR drop (FEM) unknowns (K) 89.2  336.9 1313.0 

time (s) 5.76 466.5 2122.7 

Thermal (DDM) unknowns (K) 63.0 (0.4) 245.3 (1.4) 968.1 (5.2) 

time (s) 15.4  416.9  1495.5 

Thermal (FEM) unknowns (K) 402.3 1592.1 6334.6 

time (s) 398.9 1599.6       / 

 1606 

 1607 
(a) 1608 

 1609 
(b) 1610 

Figure 48. Top overview of final temperature distributions of (a) chip, package and 1611 

board, (b) enlarged chip and package domains. 1612 
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B. A 2D Integration Example 1613 

A 2D integrated system with two chips has been simulated. The system is shown in 1614 

Figure 49a. The PCB size is 10 cm   5 cm. As shown in Figure 49b, one metal layer of 1615 

the PCB is used as the power plane with a 1.8 V voltage supply. In this example, 1616 

equivalent thermal conductivities are used for the C4 layer and chip. The size of Chip 1 is 1617 

12 mm   12 mm, and the size of Chip 2 is 10 mm   10 mm. The PCB via size is 0.5 mm 1618 

  0.5 mm. In this example, the minimum and maximum scales in the lateral direction are 1619 

500 microns and 10 cm, respectively. The geometrical and material parameters are 1620 

summarized in Table 8. The power consumptions of Chip 1 and Chip 2 are 64 W and 40 1621 

W, respectively. Uniform power maps are used for both chips. This example has been 1622 

simulated with a convection coefficient of 100 )/( 2 KmW on both sides of the PCB.  1623 

     1624 

 1625 

(a)                                                         (b)  1626 

Figure 49. (a) An integrated system and (b) domain decomposition of the system.  1627 

 1628 

This example is divided into four domains:  two separate chip domains and two PCB 1629 

domains, as illustrated in Figure 49b. Since equivalent thermal conductivities are used for 1630 

the C4 layer and chip, to reduce the number of unknowns for the chip-package interface, 1631 

the basis functions for the chip-package interface are chosen from the chip side. Because 1632 
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of the independent meshing grids used for each domain, the total required meshed cells 1633 

and unknowns are dramatically reduced, compared to the conventional FEM. For the 1634 

initial mesh without domain decomposition, the FEM requires 121 K unknowns and 1635 

22.53 s solving time using a direct solver for each thermal simulation. However, using 1636 

the domain decomposition approach, only 48 K unknowns are required for domains and 1637 

0.6 K unknowns for interfaces. As a result, the matrix equation can be solved using the 1638 

same direct sparse solver in 3.77 seconds. For both the problems with level-1 and level-2 1639 

meshes, iterative solving is used for the domain decomposition approach. For the level-1 1640 

and level-2 meshes, each IR drop simulation requires 1644 and 2521 iterations while each 1641 

thermal simulation requires 869 and 1314 iterations, respectively. 1642 

 1643 

Table 8. Material thicknesses and thermal conductivities. 1644 
 1645 

 Material Thickness 
(mm) 

Thermal Conductivity     
(W/mK) 

PCB dielectric 0.35 0.8 
Copper 0.036 400 
Chip 0.3 110 
C4 layer 0.1 10 
PCB via 0.35 400 
TIM  0.2 1.0 

 1646 

The number of unknowns and solution times using the DDM and FEM with different 1647 

mesh levels for both the voltage drop and thermal simulations are listed in Table 9. Note 1648 

that the unknowns for the DDM listed in Table 9 denote the number of unknowns for 1649 

domains and interfaces. As seen from Table 9, the total number of unknowns using the 1650 

non-conformal DDM is reduced by 57% for the voltage drop simulation and 60% for the 1651 

thermal simulation, compared to the FEM. The total simulation time using the DDM is 1652 

reduced by 60%-75% for the voltage drop simulation and 42%-83% for the thermal 1653 
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simulation, compared to the FEM, which uses the PCG method to solve the system 1654 

equation.  1655 

Table 9. Number of unknowns and solving times using the DDM and FEM. 1656 
 1657 

 Level-0 Level-1 Level-2 

IR Drop 

(DDM) 

unknowns (K) 22.1 (0.4) 84.4 (1.3) 328.42 (4.6) 

time (s) 0.66 98.9 281.1 

IR drop 

(FEM) 

unknowns (K) 52.90 206.01 811.92 

time (s) 1.67 367.5 1162.7 

Therm. 

(DDM) 

unknowns (K) 48.5 (0.6) 190.29 (1.7) 754.03 (5.3) 

time (s) 3.77 127.6 284.9 

Therm. 

(FEM) 

unknowns (K) 121.05 478.31 1901.55 

time (s) 22.53 223.1 744.2 

 1658 

The simulated voltages and temperatures with iterations are shown in Figure 50a and 1659 

Figure 50b, respectively. The thermal simulation is first carried out in the co-simulation 1660 

flow. It shows that the voltage and temperature both converge in four iterations. In the 1661 

co-simulation, the stop criterion ε is set to be 1E-2 for both the voltage drop and thermal 1662 

simulations. The total simulation time is 2749 s. For Chip 1 and Chip 2, compared to the 1663 

initial IR drops of 78.8 mV and 86.4 mV at room temperature, the final IR drops become 1664 

95.8 mV and 104.1 mV (Figure 50a), respectively. Therefore, the thermal effect increases 1665 

the IR drop by 21.6% and 20.4%, respectively. Since the thermal simulation is carried out 1666 

first, the variations of voltage drop and temperature beyond the first iteration are caused 1667 

by the Joule heating. As seen from Figure 50a, the Joule heating effect causes about 10 1668 

mV voltage drop. Therefore, the Joule heat effect on voltage drop is about 11% in this 1669 

example. As seen from Figure 50b, the Joule heating only increases the temperatures of 1670 

Chip1 and Chip2 by 1.6 and 0.5 degrees, respectively. However, the Joule heating 1671 

increases the temperature of hotspot in PCB about 25 degrees (Figure 50b). This is 1672 
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caused by the current crowding in the irregular power plane (Figure 51). To reduce the 1673 

effect of Joule heating, more layers of power planes need to be used to reduce the current 1674 

crowding effect. The final temperature and voltage distributions of the power plane layer 1675 

are shown in Figure 51.  1676 

 1677 

 1678 

(a)                                                        (b) 1679 

Figure 50. Simulated (a) DC voltage and (b) temperature with iterations. 1680 
 1681 

 1682 

 1683 

 1684 

   1685 

(a)                                                      (b) 1686 

Figure 51. (a) Voltage distribution and (b) temperature distribution of the power 1687 

plane. 1688 
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4.5 Summary 1689 

In this chapter, multiscale modeling using the finite-element non-conformal domain 1690 

decomposition is presented for the steady-state thermal and voltage drop analysis. The 1691 

preliminaries for the finite-element thermal modeling are introduced. The formulation for 1692 

the thermal modeling using the non-conformal domain decomposition is discussed in 1693 

detail. In addition, the cascadic multigrid solving approach using hierarchical meshing 1694 

grids is introduced for the voltage drop-thermal co-simulation with the computational 1695 

cost discussed. The simulation efficiency of the voltage drop-thermal co-simulation using 1696 

the non-conformal domain decomposition and CMG solving approach is demonstrated 1697 

via numerical test cases. The simulation results show that using the finite-element non- 1698 

conformal domain decomposition, the unknowns and mesh cells can reduce by 57%-84% 1699 

for the voltage drop and thermal analysis, compared to the FEM. In addition, the 1700 

simulation results demonstrate that using the domain decomposition and cascadic 1701 

multigrid method with hierarchical meshing grids, the simulation efficiency can improve 1702 

by 42%-88% for the voltage drop and thermal simulations, compared to that using the 1703 

FEM and PCG solving method.  1704 

 1705 

 1706 

 1707 

 1708 
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CHAPTER 5 1709 

TRANSIENT THERMAL MODELING WITH MICROFLUIDIC 1710 

COOLING 1711 

 1712 

5.1 Introduction 1713 

The estimation of dynamic temperatures for an electronic system requires efficient 1714 

transient thermal modeling approaches. Transient numerical thermal modeling techniques 1715 

can be classified into two categories:  explicit methods and implicit methods. Explicit 1716 

thermal modeling techniques recursively update temperatures at grid points at each time 1717 

step based on the temperature obtained at the previous time step. As explicit techniques 1718 

do not require solving system matrix equations, the memory requirement is not critical. 1719 

However, the size of time step is restricted by the grid sizes in x, y, and z directions 1720 

considering numerical stability [16]. Thus, performing transient thermal analysis over a 1721 

large time period can require a large number of time steps, which is time consuming. To 1722 

circumvent this problem, implicit thermal modeling methods such as the Crank–Nicolson 1723 

method and the backward Euler method [16], which can simulate with large time steps, 1724 

have been developed. As implicit thermal modeling methods require solving a large 1725 

sparse matrix equation at each time step, the CPU time and memory consumption 1726 

increase dramatically with the number of mesh cells/unknowns. For a 3D system with 1727 

microfluidic cooling, the large number of micro-channels can lead to a greatly increased 1728 

number of mesh cells, which poses a problem for transient thermal modeling.   1729 

      In this chapter, an implicit transient thermal modeling approach is presented for 1730 

thermal modeling with microfluidic cooling. The proposed transient modeling approach 1731 
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can achieve fast temperature estimations using two techniques. First, to reduce the 1732 

number of meshing cells for a 3D system, we extend the non-conformal domain 1733 

decomposition technique to transient thermal modeling. Second, to accelerate the 1734 

modeling of microfluidic cooling, a compact finite-volume thermal model has been 1735 

developed for micro-channels. The proposed compact model can represent a 1736 

microchannel using much fewer mesh cells/unknowns than that using the CFD approach. 1737 

The transient thermal modeling using the non-conformal domain decomposition 1738 

technique and the compact model for microfluidic cooling are discussed in the next two 1739 

sections.    1740 

5.2 Transient Thermal Modeling using Domain Decomposition 1741 

For the transient thermal modeling of a 3D problem consisting of solid media, the 1742 

governing transient heat equation is expressed as 1743 

),()],(),([
),(
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trT
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(37) 1744 

where ),( trT and ),( trP represent the temperature distribution and heat excitation, 1745 

respectively; ),( Trk is the thermal conductivity;   and pc  denote the mass density and 1746 

heat capacity of the solid medium, respectively. Following the finite-element thermal 1747 

modeling process, by multiplying a testing function N on both sides of Equation (37) and 1748 

integrating over the volume, after using the divergence theorem, the new form of the heat 1749 

equation can be obtained as  1750 

 










NPdVdS

n

T
kNdVTNkdV

t

T
Ncp

                  
(38) 1751 

The non-conformal domain decomposition approach can also be applied to transient 1752 
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thermal modeling. As shown in Figure 52a, in transient thermal modeling, similar to that 1753 

of steady-state analysis, a 3D system can be divided into separate domains:  the domain 1754 

of chip, package, and PCB. For simplicity, the transient thermal analysis using the 1755 

domain decomposition technique is explained using 2D rectangular grids shown in Figure 1756 

52a.  1757 

 1758 

           1759 

                 1760 

(a)                                                        (b) 1761 

Figure 52. (a) Non-conformal gridding of a 3D system into domains, (b) heat flow 1762 

continuity illustration. (Vectors c and b represent the coefficient of temperature 1763 

basis functions.) 1764 
 1765 

 1766 

In transient thermal modeling, at each time step, the heat transferring out of one 1767 

domain equals the heat flowing into another domain through the common interface. Two 1768 

domains with a common interface are shown in Figure 52b. At the interface, the 1769 

continuity of heat transfer needs to be ensured to capture the coupling between separated 1770 

domains as in steady-state analysis. For two adjacent subdomains with a common 1771 

interface (Figure 52b), by assuming )2,1(/)()(  inTk i
ii , we can also obtain the 1772 

relationship of    )2()1( [41] as for steady-state analysis. Then the weak continuity 1773 

of heat flow across the interface can be established at each time step. By introducing  , 1774 
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the Lagrange multiplier, for each interface, the coupling between domains can be 1775 

captured using  coupling matrices 
1B  and 

2B , as shown in Figure 52b. For simplicity, we 1776 

can assume the system has only two separated domains.  1777 

Based on the introduced Lagrange multiplier and following the Mortar finite-element 1778 

formulation, the following equations for domains and the interface can be derived from 1779 

Equation (38) and expressed as 1780 
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where ,1N 2N , and  represent the basis functions for domain1, domain2, and the 1782 

Lagrange multiplier, respectively [82, 83]. With temperature T being expressed as a 1783 

linear combination of basis functions and 






n

i

iib
1

, the system equation for the 1784 

problem with two subdomains can be written as   1785 
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 1786 

where the matrix entries for the k-th domain can be expressed as 1787 
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In the above equations, kK , kB , and kC  represent the impedance, coupling, and 1789 

capacitance matrices for the k-th domain, respectively; kp  represents the excitation 1790 

vector for the k-th domain. By using the backward time-difference approximation    1791 

t

TT
T

nn






 )()1(
                                               (42) 1792 

Equation (40) can be converted as a linear equation as 1793 
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where  1795 
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Here, the superscripts (n+1) and n represent time steps. The matrix iA represents the 1797 

stiffness matrix for the i-th domain. )1( n
iT represents the temperature vector of the i-th 1798 

domain at time step (n+1). )(n
if denotes the heat excitation in the i-th domain calculated 1799 

from time step n. Note that the numerical scheme based on the CN (Crank–Nicolson) 1800 

method [16], which has second-order accuracy in time, can also be obtained by using 1801 

2/)(
)()1( nn

TT 


to approximate the term T in Equation (40). However, the CN scheme 1802 

has a time step limitation that can result in temperature oscillations when using large 1803 

time steps [17]. Therefore, the scheme of Equation (43), which is based on the backward 1804 

Euler method, is employed in our transient simulation. Similarly, for a system with N 1805 

subdomains, the generalized system equation can be derived and obtained using the 1806 

superposition rule. 1807 
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For the efficient simulation of 3D stacked ICs using the DDM, it is important to 1808 

note that the connection between chip domains is through the transitional subdomain of 1809 

a bump layer, as shown in Figure 52a. Since the domain of a bump layer can be meshed 1810 

using much coarser grids than the chip, the required interface basis functions can be 1811 

greatly reduced. Thus, B matrix has a small dimension. It should be noted that for 1812 

efficient transient thermal simulation with fluidic cooling, in addition to the non- 1813 

conformal domain decomposition modeling technique, the compact thermal model for 1814 

microfluidic cooling needs to be developed, which is discussed in the next section.   1815 

5.3 Compact Thermal Modeling for Microfluidic Cooling 1816 

Because of the large number of microchannels used for the cooling of 3D ICs, the 1817 

fast temperature estimation at early-design stage requires compact thermal modeling of 1818 

microchannels to overcome the simulation inefficiency using CFD approaches. For a 1819 

coolant flow in the microchannel of IC chips, the Reynolds number is usually less than 1820 

2300; thus, the flow is laminar [77]. Since the longitudinal dimension of microchannels is 1821 

much larger than the lateral dimension, the microfluidic flow can be treated as a fully 1822 

developed laminar flow, as discussed in Chapter 3. This property allows the development 1823 

of compact models for microfluidic cooling. The governing heat equation for the 1824 

transient thermal analysis of microfluidic cooling is expressed as   1825 
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where ),( trT and ),( trPf represent the temperature distribution and heat excitation, 1827 

respectively; fk and v


 are the thermal conductivity and velocity of the fluid;  and pc  1828 

denote the mass density and heat capacity of the fluid, respectively. To simply the 1829 
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problem, the thermal conductivities of fluid and solid media are both considered without 1830 

temperature variations in thermal modeling. Compared to the heat equation (37) for solid 1831 

media, Equation (44) has an extra term related to the coolant flow velocity v


. For heat 1832 

transfer using a coolant flow, the process consists of heat conduction because of the finite 1833 

thermal conductivity and heat transportation because of the flow velocity. In Equation 1834 

(44), except for the second term on the left-hand side related to flow velocity, other terms 1835 

can be modeled as a solid medium.  1836 

The discretization of a microchannel and a unit cell is shown in Figure 53. For 1837 

microfluidic cooling as shown in Figure 53, since the microchannel cross-sectional 1838 

dimension is much smaller than its length, the flow velocity along the longitudinal 1839 

direction is much larger than that in the lateral direction. Thus, it can be assumed that the 1840 

coolant only flows in the longitudinal direction. Therefore, the flow velocity is constant. 1841 

The average flow velocity ‘ v ’ along y direction, as shown in Figure 53, has been used for 1842 

simulating the fluid flow as for steady-state analysis. As a result, Equation (44) can be 1843 

transformed as        1844 
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      (45)  1845 

By integrating Equation (45) over the dashed finite volume cell (Figure 53) and 1846 

applying the divergence theorem, Equation (45) can get rid of the second-order derivative 1847 

and becomes 1848 
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    (46)                                        1849 

where S is the surface of the finite volume cell. Note that in steady-state analysis, the 44 1850 

meshing grids, which contain 9 nodes for one fluidic cell, are used for the cross-section 1851 
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of the microchannel. For efficient transient thermal simulation, instead of using 9 nodes 1852 

to represent one microchannel cell, the proposed model only uses one node to represent 1853 

one microchannel cell to reduce the computational cost, as shown in Figure 53.  1854 

 1855 

 1856 

Figure 53. Discretization of a microchannel into cells. (Only bottom half part of the 1857 

microchannel is shown on the left figure.)          1858 
 1859 

To maintain the numerical stability, the same backward-difference approximation is 1860 

used to approximate the second term on the left-hand side of Equation (46) as for the 1861 

steady-state analysis. By applying the finite-difference approximation to Equation (46) 1862 

and incorporating the convection boundary condition (assuming a convection coefficient 1863 

of sh at four sides of the channel), the finite-volume scheme for fluid flow can be derived 1864 

as 1865 
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  (47) 1866 

where WHLVc  is the cell volume and vWHm  is the volumetric flow rate.  1867 
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Based on the scheme of Equation (47), an equivalent circuit representation of the 1868 

fluidic cell is shown in Figure 54a. Since the solid medium is modeled using the FEM 1869 

and the fluidic cooling is modeled using the FVM, the integration of these two models is 1870 

required. As shown in Figure 54b, the connection between the finite-element model for 1871 

solid and finite-volume model for fluid is formed using the forced convection boundary 1872 

condition. The forced convection is indicated using arrows in Figure 54b. Since the 1873 

convection boundary effectively captures the heat transfer from the chip to microchannel, 1874 

the integration of these two models becomes feasible by following the energy 1875 

conservation rule. The convection strength, the average convection coefficient sh , at the 1876 

four sides of the microchannel can be obtained analytically using Equation (16) as in 1877 

Chapter 3. The Nusselt number can be obtained using Equation (15).  1878 

 1879 

 1880 

                1881 
   1882 

(a)                                                           (b) 1883 

Figure 54. (a) An equivalent circuit model for one fluidic cell, (b) forced convection 1884 

boundaries between solid and fluid media. 1885 

 1886 
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5.4 Test Cases 1887 

5.4.1 A Model-Verification Example 1888 

To evaluate the accuracy of the proposed method, an experimental example, the test set 1, 1889 

with both the conventional heat sink and fluidic cooling is simulated. The test set 1 is 1890 

shown in Figure 55. The test vehicles in Figure 55a and Figure 55b use heat-sink cooling 1891 

and fluidic cooling, respectively. The chip size is 1 cm  1 cm, and the uniform power 1892 

consumption is 45 W. In the test vehicle shown in Figure 55b, 51 microchannels are 1893 

uniformly distributed on the chip as described in [4]. The cross-sectional dimension of 1894 

each micro-channel is 0.1 mm  0.2 mm. The temperature of input water at the inlets of 1895 

microchannels is set to be 22 C as in the measurement. Because of the scale difference 1896 

between the chip and package, the examples in Figure 55a and Figure 55b are both 1897 

divided into two domains:  the chip domain and package domain. The detailed material 1898 

properties and geometrical information are listed in Table 10. Since the measurement [4] 1899 

was carried out at the condition of natural convection, a convection coefficient of 5 1900 

)/( 2 KmW  is applied to both the top and bottom surfaces of the package in the simulation. 1901 

The initial system temperature is 25 Celsius.  1902 

 1903 
 1904 

 1905 
 1906 

(a)                                             (b) 1907 

Figure 55. Test set 1 with (a) heat-sink cooling and (b) microfluidic cooling. 1908 
 1909 
 1910 
 1911 
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      1912 
(a)                                 (b) 1913 

Figure 56. Comparison of temperature waveforms using the proposed method and 1914 

conventional FEM with (a) heat-sink cooling, (b) fluidic cooling.   1915 
 1916 

This test vehicle with heat-sink cooling and fluidic cooling has been simulated using 1917 

the proposed method and a conventional FEM solver. The non-conformal and conformal 1918 

rectangular meshing grids have been used for the proposed method and the FEM solver, 1919 

respectively. Note that the compact model for microchannels is incorporated into the 1920 

FEM solver. With heat-sink cooling, the comparison of simulated chip temperatures is 1921 

shown in Figure 56a. With fluidic cooling, the comparisons of simulated chip 1922 

temperatures and channel outlet temperatures are shown in Figure 56b. As seen from 1923 

Figure 56, the results from the proposed model using domain decomposition agree very 1924 

well with results from the conventional FEM solver. The maximum temperature 1925 

difference is less than 0.2 and 0.5 degree for the cooling using a heat sink and using 1926 

microchannels, respectively. For microfluidic cooling, the measured steady-state chip 1927 

temperature and outlet temperature are 40.8 and 32.2 Celsius in [4]. The difference 1928 

between the simulated converged chip temperature and measurements [4] is 1.7 Celsius 1929 
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while the difference between the simulated channel outlet temperature and measurements 1930 

is 0.4 Celsius. The relative errors are about 4.2% and 1.2% with respect to the 1931 

measurements, respectively. The unknowns (including the unknowns for interfaces) and 1932 

simulation times using the proposed method and FEM are shown in Table 11. It shows 1933 

that the proposed method can reduce unknowns about 2-4 times. Because of the reduced 1934 

unknowns, the simulation time speed up can reach 35x for the simulation with fluidic 1935 

cooling. 1936 

 1937 

Table 10. Material properties and geometrical information. 1938 
 1939 

Test set 1 

Number of layers 4 (die: 10 mm x 10 mm) 

4 (package: 4 cm x 4 cm) 

Channel width * height * length 0.1 mm x 0.2 mm x 10 mm 

Channel pitch  196 micron 

Bottom and top silicon height  100 micron, 0 micron 

Fluid flow rate 65 mL/ min 

Pyrex glass heat capacity, thermal 

conductivity 

820 J/Kg-K, 1.1 W/m-K 

TIM heat capacity, thermal conductivity 610 J/Kg-K, 1.6 W/m-K 

Heat sink boundary temperature 25 Celsius 

Test set 2 

Number of layers 4 (die: 10 mm x 10 mm), 

4 (package: 3 cm x 3 cm ) 

10 (board: 10 cm x 10 cm) 

Channel width * height * length 0.2 mm x0.1 mm x 10 mm 

Channel pitch  500 micron 

Top and bottom silicon height  50, 50 micron 

Fluid flow rate (per chip) 26 mL/min 

Common Parameters 

Thermal conductivity of fluid, silicon, 

BEOL 

0.6, 110, 2 (W/m-K) 

Heat capacity of fluid, silicon, BEOL layer 4187, 700, 520 (J/Kg-K) 

Ambient temperature 25 Celsius 
 1940 

 1941 
 1942 

 1943 

 1944 
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Table 11. Comparisons of problem sizes and simulation times. 1945 
 1946 

 DDM Solver FEM Solver Time 

 Speed-up Size (K) Time (s) Size (K) Time (s) 

Test  

Set1 

Fluidic cooling 50.4  5.59 157.02 201.2 x35 

Heat sink  36.9 6.84 189.1 30.2 x4 

Test  

Set2 

3D system 35.1 3.41 206.61 315.1 x91 

3D ICs only  32.2     2.68 107.84 196.2        x72 
 1947 
 1948 

         1949 
 1950 
 1951 

                 (a)                                  (b)                              (c) 1952 

Figure 57. (a) A 3D system with microfluidic cooling, (b) layer cross-section of 1953 

stacked chips, (c) the power map of chip 2. 1954 
 1955 
 1956 
 1957 

5.4.2 A 3D Stacking Example  1958 

A 3D stacking example (Test set 2) with inter-tier microfluidic cooling is also simulated 1959 

using the proposed method. The 3D system consists of three stacked chips, a four-layer 1960 

package, and a 10-layer PCB, as shown in Figure 57a. Each chip has 20 microchannels. 1961 

The layer stack-up for the stacked chip and microchannels is shown in Figure 57b. The 1962 

geometrical and material parameters are summarized in Table 10. Air convection with a 1963 

heat transfer coefficient of 10 )/( KmW ２
 is applied to the top surface of the package and 1964 

both sides of the PCB. Three chips are supplied with the same water flow rate. Non- 1965 
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uniform heat dissipation is used for chip 2, as shown in Figure 57c. A uniform power 1966 

consumption of 40 W/cm
2
 is used for both chip 1 and chip 3.  1967 

This test set is divided into seven domains:  three chip domains, two domains for 1968 

micro-bump layers, one package domain, and one PCB domain. The three chips are 1969 

independently meshed using different mesh sizes. This example is simulated for 2.2 s. In 1970 

the first second, the three chips operate with a uniform power density of 40 W/cm
2
. From 1971 

1.0 s-2.0 s, the 3 mm-wide middle region of chip 2 (Figure 57c) is switched between 70 1972 

W/cm
2
 and 40 W/cm

2
 periodically. The simulated temperatures using the proposed 1973 

method and conventional FEM are shown in Figure 58. It shows the simulated results 1974 

using the proposed method agree very well with that using the FEM. The maximum 1975 

temperature difference is less than 0.5 degree, and the temperature error is about 1%. 1976 

From Figure 58, it is also observed that because of the convection on the package and 1977 

PCB, the bottom chip temperature is about 3 Celsius lower than the top chip. To show the 1978 

capability of simulating only 3D ICs, the example in Figure 57a is also simulated without 1979 

the IC package and PCB. The comparisons of required unknowns and simulation times 1980 

are shown in Table 11. As seen from Table 11, the proposed method can reduce 1981 

unknowns about 2.3-4.9 times for simulating the 3D ICs and 3D system. Because of the 1982 

reduced unknowns, a simulation speed up to 91x can be achieved, indicating the 1983 

efficiency of the proposed method. The side view (in yz plane) of the temperature 1984 

distribution of stacked chips at t = 1.9 s is shown in Figure 59 with the non-conformal 1985 

gridding and hotspot illustrated. The snapshots of temperature distribution (in yz plane) 1986 

with the evolution of time are shown in Figure 60. 1987 

 1988 
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 1989 
 1990 

Figure 58. Comparison of temperature waveforms using the proposed method and 1991 

FEM.  1992 
 1993 

 1994 

 1995 
 1996 

Figure 59. Side view (in yz plane) of temperature distribution at t = 1.9 s. 1997 
 1998 

 1999 

 2000 

5.5 Summary 2001 

In this chapter, the transient thermal modeling using the compact thermal model for 2002 

microchannels and the non-conformal domain decomposition is proposed. The non- 2003 
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conformal domain decomposition technique is extended to transient thermal modeling. 2004 

The derivation of the compact thermal model for microchannels using the finite-volume 2005 

formulation is discussed in detail with an equivalent circuit model presented. In addition, 2006 

the formulation also shows that by following the energy conservation rule, the finite- 2007 

element model for a solid chip and the finite-volume model for microchannels can be 2008 

integrated together. The efficiency of the proposed transient thermal modeling approach 2009 

has been validated using several simulation examples.  2010 
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    2042 
t = 0.05 s                                             t = 0.1 s 2043 

    2044 
t = 0.15 s                                              t = 0.2 s 2045 

    2046 
t = 0.3 s                                               t = 0.6 s 2047 

     2048 
t = 0.9 s                                             t = 1.2 s 2049 

     2050 
t = 1.5 s                                             t = 2.0 s 2051 

 2052 

Figure 60. Snapshots of temperature with the evolution of time (unit: Celsius). 2053 
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CHAPTER 6 2054 

SYSTEM-LEVEL THERMAL MODELING USING DOMAIN 2055 

DECOMPOSITION AND MODEL ORDER REDUCTION 2056 

 2057 

6.1 Introduction 2058 

Krylov space-based model order reduction techniques such as the block Arnoldi 2059 

algorithm [58] and PRIMA [52] can create a low-dimensional reduced-order model to 2060 

represent a large-dimensional model by constructing the congruence transformation 2061 

matrix. The general reduced-order modeling process using Krylov space-based model 2062 

order reduction is shown in Figure 61. These Krylov space-based MOR techniques have 2063 

been promising for the steady-state and transient thermal modeling of devices and IC 2064 

chips [59, 60, 61]. As the computation of the congruence transformation matrix requires 2065 

solving a sparse matrix equation many times to match moments (Figure 61), the 2066 

computational cost increases dramatically with the number of unknowns and MOR ports. 2067 

Therefore, MOR techniques are favorable for thermal problems with a small-sized matrix 2068 

and few MOR ports.  2069 

A typical 3D system can consist of several dies, an interposer (or a package), and a 2070 

PCB, as shown in Figure 1. The total number of unknowns of a 3D problem can vary 2071 

from 50 K to several million. Because each die can have tens of MOR ports, the whole 2072 

system can have 100-1000 MOR ports. In addition, an integrated system can have tunable 2073 

design parameters such as the thermal conductivity of a certain layer (e.g., the layer of 2074 

TIM or interposer) and the varying air convection coefficients on different sides of 2075 

package. Therefore, 2-5 degrees of freedom can be added to the system. With a limited 2076 
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memory (e.g., 2-3 GB), performing MOR for a 3D system with hundreds of ports and 2077 

0.1-1.0 million unknowns becomes challenging. Several MOR examples reported in the 2078 

literature have less than one hundred MOR ports [62, 63]. As the computational 2079 

complexity of MOR increases dramatically with the number of ports, directly creating a 2080 

ROM for the entire system using existing MOR techniques such as PRIMA becomes 2081 

challenging when the size of the system matrix is large and many ports are present. 2082 

Although Krylov space-based matrix-solving techniques [37, 78, 86] can be used to 2083 

compute projection matrices during the process of MOR, the time consumption increases 2084 

dramatically because of iterative solving procedures.   2085 

 2086 

 2087 
 2088 

Figure 61. A general reduced-order modeling process using Krylov space-based 2089 

model order reduction.  2090 
 2091 
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In this chapter, the system-level thermal modeling method using the non-conformal 2092 

domain decomposition and model order reduction is presented. The presented modeling 2093 

approach can efficiently support both steady-state and transient system-level modeling of 2094 

3D systems. To model a 3D system, the system is divided into domains with non- 2095 

matching grids at interfaces, which helps reduce the system matrix size. Meanwhile, the 2096 

MOR ports are also divided into groups belonging to different domains (e.g., dies or 2097 

layers). Therefore, both the matrix size and port number associated with an individual 2098 

domain are reduced. Thus, reduced-order models for separated domains can be efficiently 2099 

created using MOR techniques with less computational cost than directly performing 2100 

MOR for the entire system. The relationship between domains is captured using 2101 

interfacial coupling matrices via Lagrange multipliers and Schur complements; therefore, 2102 

interfacial MOR ports are not required. In addition, since individual domains are treated 2103 

independently, the proposed method can efficiently handle varying parameters such as 2104 

the thermal conductivities of TIMs and interposers and air convection coefficients when 2105 

simulating 3D stacked ICs or systems.  2106 

6.2 Preliminaries  2107 

This section provides a brief summary of the thermal modeling using domain 2108 

decomposition, which is presented in Chapter 5, with a generalized formulation for n sub- 2109 

domains for completeness. For transient thermal modeling using the non-conformal 2110 

DDM, by constructing the finite-element basis functions for each domain and interface, 2111 

the following matrix equation can be derived for a system divided into n domains:  2112 

fGxxC                                                        (48) 2113 

where 2114 
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(49) 2116 

In the above equation, dC and dG  represent the block-diagonal thermal capacitance 2117 

and conductance matrices for domains, respectively; iC and iG represent the capacitance 2118 

and conductance matrices for the i-th domain with homogenous Neumann boundary 2119 

conditions at interfaces, respectively; dx and terinx are the temperature of domains and 2120 

unknowns of interfaces, respectively; ix denotes the temperature of the i-th domain while 2121 

matrix iE represents the coupling matrix between the i-th and other domains; if is the 2122 

thermal excitation for the i-th domain. Note that the finite element method [79] is used to 2123 

construct the aforementioned capacitance/conductance matrices and excitation vectors, as 2124 

discussed in Chapter 5. 

 

2125 

The dimension of the E matrix is m N, where N and m are the total numbers of 2126 

unknowns for domains and interfaces, respectively. Assuming the number of basis 2127 

functions used for the interface of i-th domain is im , m can be expressed as 



terinn

i

imm
1

. 2128 

For transient thermal modeling, assuming the backward Euler scheme is used to 2129 

approximate the time derivative at time step (q+1) as  2130 

                  txxx qq   /)( )()1(                                                   (50)
 
 2131 

the following equation can be obtained: 2132 
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       )()1( qq pKx                                                          (51) 2133 
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To obtain transient temperature responses, Eqn. (51) needs to be solved using a 2136 

direct solver or an iterative solver at each time step. Note that for the steady-state thermal 2137 

modeling, the capacitance matrix can be neglected and fp q )( . Simulating a problem 2138 

with tunable design parameters (e.g., heat excitations, thermal conductivities, and air 2139 

convection coefficients) requires repetitively solving Eqn. (51). Consequently, the 2140 

computational cost is high particularly when the matrix K  is large.  2141 

6.3 System-Level Thermal Modeling using DDM and MOR  2142 

To accelerate thermal simulation, MOR techniques can be utilized. However, since a 3D 2143 

integrated system contains multiple dies in which many ports are required, the entire 3D 2144 

system can contain hundreds of MOR ports. Therefore, directly applying MOR 2145 

techniques to a 3D system can be computationally expensive. To improve the simulation 2146 

efficiency, a new modeling method using combined domain decomposition and MOR is 2147 

developed for both the steady-state and transient thermal analysis. The flow of the 2148 

proposed system-level thermal modeling using domain decomposition and model order 2149 

reduction without parameter variability is shown in Figure 62. 2150 

6.3.1 Problem Formulation 2151 

As shown in Figure 62, using the domain decomposition method presented in the last 2152 
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section, a 3D system can be divided into domains, and the thermal capacitance and 2153 

conductance matrices can be obtained. With defined MOR ports for each die, the 2154 

following equation can be formed: 2155 

xLyBuGxxC T ,                                             (52)

            

 2156 

where u  represents the heat excitation including temperature and heat flow at MOR ports; 2157 

B and L are matrices associated with the temperature and heat flow of MOR ports. In the 2158 

proposed method that combines domain decomposition and MOR, three main steps are 2159 

used after forming the system matrix:  2160 

 2161 

 2162 
 2163 

Figure 62. System-level thermal modeling flow using domain decomposition and 2164 

model order reduction (without parameter variability). 2165 
 2166 

 2167 

Step 1: As the capacitance and conductance matrices are generated and MOR ports are 2168 

defined for individual domains, by defining dd xVx ~ , the reduced-order model for each 2169 

domain can be generated using MOR and expressed as 2170 

uBxGxC dddd
~~~~~~



                                                 

(53) 2171 
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In the above equation, iV , the congruence transformation matrix for the i-th domain, 2175 

can be obtained using PRIMA [52]. iC
~

 and iG
~

represent the reduced-order capacitance 2176 

and conductance matrices for the i-th domain, respectively. As can be seen, the system 2177 

reduced-order capacitance and conductance matrices dC
~

 and dG
~

are block-diagonal 2178 

matrices. It should be noted that if performing MOR for the entire system without domain 2179 

decomposition, the reduced-order matrices dC
~

 and dG
~

will be full dense matrices. 2180 

 2181 

Step 2: The connectivity between reduced-order models is maintained via the unknowns 2182 

at interfaces. As the reduced-order capacitance and conductance matrices do not contain 2183 

the coupling information for domain interfaces, the unknowns for interfaces need to be 2184 

calculated using  2185 

)(1 q

ddterin pEKxS                                              (54) 2186 

where 
)()( / q

dd

q

d xtCfp  and 
T

d EEKS 1  is the Schur complement [37]. Since dK  2187 

is a block-diagonal matrix, T

d EK 1 and )(1 q

dd pK  can be efficiently obtained as 2188 
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where iii GtCK  / and iii GtCK
~

/
~~

 .  2191 

By constructing the interfacial basis functions based on the domain with coarse mesh 2192 

grids, the dimension m of E matrix is small. As a result, the Schur complement matrix S 2193 

can be computed efficiently using Eqn. (55). As the reduced-order thermal model for 2194 

each domain is obtained in Step 1, ),2,1()(1 nipK q

ii   can be computed efficiently 2195 

using the ROMs, as shown in Eqn. (56). As a result, the interface unknowns at time step 2196 

(q+1) in Eqn. (54) can be solved efficiently as  2197 

                    


 
n

k

q

ii

q

dder pKESpEKSx
1

)(11)(11

int
~~

                             (57)  2198 

Step 3: Based on the obtained interfacial unknowns in Step 2, the temperature for 2199 

domains can be obtained as 2200 

terin

T

d

q

ddd xEKpKx
1)(1 

                                        (58) 2201 

Since 
T

d EK
1

and 
)(1 q

dd pK 
are already calculated using Eqn. (55) and (56) in Step 2, the 2202 

temperature for domains dx  can be calculated in a quick manner using vector subtraction.  2203 

6.3.2 Simulation with Parameter Variability 2204 

The creation of ROMs provides the capability of simulating a 3D system with varying 2205 
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excitations (e.g., temperature and heat flow) at the defined MOR ports. However, 2206 

simulating with varying parameters (e.g., material conductivities and heat transfer 2207 

coefficients on boundaries) that are not associated with MOR ports, special consideration 2208 

and treatment is required.  2209 

A. Simulation with Varying Conductivities  2210 

As various materials are remedies to optimize the thermal integrity of a 3D system, 2211 

efficient thermal modeling with varying conductivities is required. To simulate with 2212 

varying conductivities of TIMs and interposers, the TIM and interposer regions must be 2213 

treated as separate domains using the domain decomposition method. For other domains 2214 

with fixed thermal conductivities, since the stiffness matrices stay the same, no re- 2215 

computation is required.  2216 

In steady-state analysis, the capacitance matrix can be ignored ( 0iC ), and 2217 

dd fp  . As a result, ii GK  and ii GK
~~

 . For the domain of TIM or interposer with a 2218 

varying conductivity ck , we assume that the initial conductivity is 0k  and the initial 2219 

system conductance matrix is 0iK . First,
T

ii EK 1

0


and 

)(1

0

q

ii pK 
can be calculated once and 2220 

stored. Since the domain conductance matrix icK  scales proportionally with the varying 2221 

conductivity ck , the new matrix
T

iic EK 1
and vector

)(1 q

iic pK 
can be efficiently calculated as  2222 

)(1

0
0)(11

0
01 , q

ii

c

q

iic

T

ii

c

T

iic pK
k

k
pKEK

k

k
EK                            (59) 2223 

As shown in Eqn. (59), the new matrix 
T

iic EK 1
 and vector 

)(1 q

iic pK 
can be calculated by 2224 

multiplying the original matrix and vector with a scaling factor. Therefore, minimum 2225 
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extra computational cost is added when simulating with a varying conductivity for 2226 

steady-state analysis.  2227 

In transient analysis, the capacitance matrix iC  needs to be used. Initially, matrices 2228 

0iC  and 0iG  have been computed once and stored for the i-th domain with an initial 2229 

conductivity 0k . With a varied conductivity ck , icK and icK
~

can be computed easily 2230 

using matrix additions: 2231 

0

00

0

00 ~
~

~
, i

c

i
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i
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k

k

t

C
KG

k

k

t

C
K 





                                (60) 2232 

Then, 
T

iic EK 1
can be computed for the i-th domain. As the excitation term 

)(q

ip on the 2233 

right-hand side of Eqn. (56) varies with time step q in transient analysis, 
)(1 q

iic pK 
must be 2234 

calculated at each time step, which is same for the transient analysis without varying 2235 

conductivities.  2236 

B. Simulation with Varying Convection Coefficients  2237 

Real designs require thermal analysis with varying heat transfer coefficients on 2238 

boundaries. To model an air convection boundary (Equation (9)) with varying convection 2239 

coefficients, a boundary domain for air convection can be used. A package with a 2240 

convection boundary at the bottom surface is shown in Figure 63.  Using the 2241 

aforementioned domain decomposition approach, this package can be divided into two 2242 

separate domains:  the domain of the package and the boundary domain with air 2243 

convection (Figure 63). As shown in Figure 63, as the boundary domain contains a thin 2244 

layer with the air convection boundary, the boundary domain can be meshed using only 2245 

2-layer mesh grids. As a result, the matrix iK for the boundary domain is a small sparse 2246 



 116 

matrix with a narrow bandwidth. Therefore, T

ii EK 1 and )(1 q

ii pK  can be computed 2247 

efficiently using a direct solver. The only overhead is the computation of T

ii EK 1 for the 2248 

neighboring domain because of the introduced interface coupling matrix T

iE . Since T

iE 2249 

does not vary with the convection coefficient ch , T

ii EK 1  needs to be computed only once.   2250 

 2251 

 2252 

Figure 63. A boundary domain for air convection. 2253 
 2254 

6.3.3 Simulation Flow 2255 

The pseudo-algorithm of the proposed system-level thermal modeling method using 2256 

domain decomposition and MOR is shown in Figure 64. It is important to note that the 2257 

proposed method can also be applied to steady-state thermal modeling with varying 2258 

design parameters, as shown in Figure 64. For steady-state thermal modeling, the 2259 

capacitance matrix is ignored and dd fp  .  2260 

6.3.4 Computational Cost and Complexity 2261 

The proposed method allows performing system-level thermal modeling for 3D 2262 

systems using the divide-and-conquer approach, domain decomposition, and model order 2263 

reduction. One promising property of the proposed approach is that it allows building 2264 

ROMs for individual domains and then reconnecting them via the Schur complement. 2265 

Assuming the system has a total number of n domains and each domain contains iN 2266 
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nodes and iM ports, the total number of unknowns and ports are 



n

i

iNN
1

and 2267 





n

i

iMM
1

, respectively. 2268 

 2269 
 2270 
Algorithm:  2271 

1. Divide a 3D system into n separate domains, and obtain C, G, K, E, B matrices and 2272 

excitation vectors f and u. Define MOR ports.  2273 

2. For each domain, compute the congruence transformation matrix Vi using PRIMA 2274 

and obtain the reduced-order models iC
~

, iG
~

, and iB
~

:  2275 

                 

),,2,1(~,
~

,
~

,
~

nixVxBVBVGVGVCVC iii

T

ii

T

ii

T

i iiiiii
  2276 

3. Compute T

d EKR 1  based on Eqn. (55) and the Schur complement 2277 

REEEKS T

d  1
  2278 

4. If the i-th domain contains varying conductivities, with an initial conductivity k0, 2279 

calculate 
T

ii EK 1

0


and ii fK 1

0


for steady-state modeling using Eqn. (55) and (56), and 2280 

compute 0iK and 0

~
iK for transient analysis. 2281 

5. If (steady-state simulation), then 2282 

(a) Compute dd fKe 1  using the ROMs in Step 2 2283 

(b) Compute interface unknowns using eESpEKSx ddterin   111
 2284 

(c) Compute domain temperature using  terind Rxex   2285 

6. Else if (transient simulation), perform transient simulation for tn  steps with initial 2286 

system temperature and time step t . 2287 

First, compute icK  and icK
~

using Eqn. (60) and 
T

iic EK 1
with conductivity of kc. 2288 

Then, for q = 2 to tn  2289 

(a) Map domain temperature dx to dx~ using  matrix V 2290 

(b) Compute )(1 q

dd pKe   using the ROMs in Step 2 2291 

(c) Compute the interface unknowns using eESpEKSx q

ddterin   1)(11
 2292 

(d) Compute domain temperature using  terind Rxex   2293 

End  2294 

Figure 64. Pseudo-algorithm for system-level steady-state and transient thermal 2295 

modeling using domain decomposition and MOR. 2296 
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If directly applying MOR to the entire system represented by Eqn. (52), because the 2297 

system matrix has a large dimension and M ports, the total computational cost is much 2298 

higher than the computational cost of performing MOR for n sub-domains particularly 2299 

when N and M are large. Assuming the system matrix is a large N x N matrix, directly 2300 

performing MOR with M ports and matching up to q moments requires an estimated 2301 

computational cost of ))log(( NqMNO using an iterative solver [37]. However, by 2302 

building ROMs for n individual domains, the total computational cost is of 2303 

))log((
1




n

i

iii NNqMO using an iterative solver. In addition, since the number of unknown 2304 

iN  for an individual domain is reduced and is much smaller than N, direct solving 2305 

methods can be applied. Therefore, the computational cost can be reduced dramatically, 2306 

compared to the cost of direct MOR on the entire structure.   2307 

Compared to the computational cost of performing MOR for n sub-domains, the 2308 

computing of the Schur complement is not the dominant cost. Although the computing of 2309 

the Schur complement T

d EEKS 1 requires additional cost using Eqn. (55), since the 2310 

matrix E is usually constructed based on a coarser-side interface grids, the dimension of 2311 

E is small; thus, S can be computed efficiently.  2312 

Another promising property of the proposed approach is that it allows modeling a 3D 2313 

system with varying design parameters such as thermal conductivities and convection 2314 

coefficients without using parameterized MOR techniques. In the simulation algorithm 2315 

(Figure 64), as the matrix operation for each domain is treated independently, the new 2316 

system matrix with a varying conductivity in one domain can be obtained efficiently by 2317 

multiplying a scaling factor using Eqn. (59) for steady-state analysis. For transient 2318 
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analysis, with a varying conductivity kc, 
T

iic EK 1
needs to be computed for the i-th domain. 2319 

The variation of air convection can be captured using the introduced boundary domain 2320 

without performing parameterized MOR. Therefore, minimum extra computational cost 2321 

is added when modeling with varying parameters.  2322 

6.3.5 Implementation  2323 

For modeling a 3D problem using the proposed method, to reduce the total number of 2324 

mesh cell/unknowns, each domain is meshed independently using non-uniform 2325 

rectangular meshing grids. The capacitance matrix C, conductance matrix G, and 2326 

coupling matrix E are extracted using the finite element method. The inhomogeneous 2327 

material stack-up can also be handled using the cell-based finite element formulation, as 2328 

discussed in Chapter 4.   2329 

The reduced-order model for each domain and T

d EKR 1 are only computed once 2330 

and stored. For domains that do not contain MOR ports, the original stiffness matrix is 2331 

used to compute )(1 q

ii pK  in Eqn. (56).  It is important to note that the proposed method 2332 

has high parallelizability because of independent operations for each domain. For the 2333 

proposed algorithm shown in Figure 64, the operations in each step can be parallelized. 2334 

The proposed method has been implemented using Matlab and executed on a PC with a 2335 

3.2 GHz CPU and 3.0 GB memory. The simulation is executed without using 2336 

parallelization for the test cases shown in the next section.  2337 



 120 

6.4 Numerical Test Cases 2338 

6.4.1 A Model-Verification Example 2339 

To verify the correctness and accuracy of the proposed method, a model-verification 2340 

example is simulated first. The stack-up is shown in Figure 65. In this example, all the 2341 

layers have the same lateral dimensions. Equivalent thermal conductivities are used for 2342 

all the layers. A uniform power consumption of 50 W/cm
2
 is used for the die. An air 2343 

convection boundary is used on the bottom surface of this stack-up to represent the 2344 

downward heat transfer from the die to the package. This example contains one inner- 2345 

layer that has a varying thermal conductivity, as shown in Figure 65.  2346 

 2347 

       2348 
 2349 

(a)                                       (b) 2350 

Figure 65. A model-verification example:  (a) 3D view and (b) 2D layer stack-up. 2351 
 2352 

The material thicknesses and thermal conductivities are shown in Table 12. As this 2353 

example comprises layers with a regular shape, a uniform heat source, and a 2354 

homogeneous conductivity for each layer, an analytical solution can be obtained using 2355 

the method of equivalent thermal resistance. For comparison purposes, this example is 2356 

also simulated using the detailed thermal model and the proposed method. In the 2357 

simulation, various thermal conductivities of the inner-layer and air convection 2358 

coefficients on the bottom surface are used. Note that the inner-layer can represent a 2359 
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passive die, an interposer layer, or an under-fill layer in a real design.  This example is 2360 

divided into four domains. The first domain includes the TIM, Die, and underfill-1. The 2361 

second domain includes the inner-layer, which has a varied conductivity. The third 2362 

domain contains the layer of underfill-2 while the fourth domain contains the boundary 2363 

domain with air convection on the bottom surface. The top surface of the TIM is set to 25 2364 

Celsius to represent the heat sink. 2365 

 2366 

Table 12. Material thicknesses and thermal conductivities. 2367 
 2368 

Layer Thickness (mm) Thermal conductivity 

(W/(m-K)) 

TIM 0.15 1.0 

Die silicon substrate 0.2 110 

Die silicon oxide (total) 0.02 1.4 

Underfill-1 0.05 5 

Inter-layer 0.10 k 

Underfill-2 0.3 2 
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Figure 66. Temperatures of the active layer of die with various thermal 2371 

conductivities and air convection coefficients. 2372 
 2373 
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The simulated temperatures of the die with various thermal conductivities of the 2374 

inner layer and air convection coefficients are shown in Figure 66. As shown in Figure 66, 2375 

with the conductivity of the inner-layer varying in the wide range of 5e-4 to 5e+4 W/mK 2376 

and the air convection varying from 10 to 1e+5 W/(m
2
K), the results from the proposed 2377 

method agree well with results using the finite element-based DDM and analytical 2378 

method, which validates the accuracy of the proposed method. The temperature 2379 

difference between the results from the proposed method and the detailed thermal 2380 

modeling is also shown in Figure 66. The maximum temperature difference is about 0.09 2381 

degree. Figure 66 shows that with an extremely low thermal conductivity of the inner- 2382 

layer, all the heat transfers to the heat sink. Therefore, the die temperature is maintained 2383 

constant even with high convection at the bottom surface. With a thermal conductivity 2384 

beyond 0.1 W/mK, the chip temperature decreases with increasing air convection 2385 

coefficient at the bottom surface.  2386 

6.4.2 A 3D Stacked Chip Example 2387 

A 3D stacked chip including three dies is shown in Figure 67a. The power consumptions 2388 

of Die 1, Die 2, and Die 3 are 20, 15, and 12 W, respectively. This test case is divided 2389 

into four domains, as shown in Figure 67b. The top surface of TIM layer is set to 25 2390 

Celsius to represent the effect of heat sink. An air convection boundary with a heat 2391 

transfer coefficient of 300 W/m
2
K is applied at the bottom of Die 1 to represent the effect 2392 

of air convection on the package and PCB. The initial temperature of this example is set 2393 

to 25 Celsius. In this example, 81, 81, 81, and 1 MOR ports are used for Domain 1, 2394 

Domain 2, Domain 3, and Domain 4, respectively. Thus, the total number of MOR ports 2395 

is 244. In this example, the selected order of the ROMs for domains is 4, and the total 2396 
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number of unknowns for the 4 domains is 104 K. 9 x 9 meshing grids are used for each 2397 

domain interface. The layer dimensions and thermal conductivities are shown in Table 13. 2398 

We first perform MOR using the proposed method with domain decomposition. The 2399 

simulation times with various problem sizes are shown in Table 14. For comparison 2400 

purposes, the computational time of performing MOR for the entire system without 2401 

domain decomposition is also shown in Table 14. Note that a direct solver is used for 2402 

both cases. Table 14 shows that using the proposed method, the MOR time is greatly 2403 

reduced, compared to that of performing MOR for the entire system. For the problem 2404 

with 104 K unknowns, performing MOR for the entire system cannot be completed 2405 

because of limited memory while the proposed method takes 169.8 seconds. The 2406 

reduction in the computational time is because using the proposed method, the size of the 2407 

stiffness matrix and the number of MOR ports are both reduced for each domain, as 2408 

discussed in Section 6.3.4. 2409 

 2410 

 2411 

          2412 

(a)                                        (b) 2413 

Figure 67. (a) A 3D stacked chip, and (b) its domain decomposition. 2414 
 2415 

 2416 

 2417 

 2418 

 2419 

 2420 
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Table 13. Material dimensions and thermal conductivities for the examples of 3D 2421 

stacked chip and 3D integrated system. 2422 
 2423 

Example of 3D Stacked Chip 

Layer Size (length x width x 

thickness)  (mm) 

Thermal conductivity 

(W/(m-K)) 

Die 1, Die 2 and Die 3 10 x 10 x 0.2 110 

TIM layer 10 x 10 x 0.2 1.4 

Microbump layer  10 x 10 x 0.1 5 

Example of 3D Integrated System 

Die 1, Die2 10 x 10 x 0.2 110 

TIM layer  10 x 10 x 0.2 2.0 

Silicon interposer  30 x 30 x 0.3 110 

Package 60 x 60 x 1.3 5 

Microbump layer 10 x 10 x 0.1 5 

 2424 

Table 14. Comparison of simulation times using the proposed method and the 2425 

method of performing MOR for the entire system 2426 
 2427 

 Simulation Time (s) for Various 

Problem Sizes 

Problem size 26.2 K 52.1 K 104.0 K 

Proposed method 40.9 s 81.6 s 169.8 s 

MOR for entire system 184.7 s 371.7 s / 

 2428 

With 104 K unknowns, the generation of ROMs for four domains takes about 169.8 s, 2429 

and the computation of the Schur complement takes about 22 s. With a time step of 0.01 s, 2430 

the simulated transient temperatures of Die 1, Die 2, and Die 3 are shown in Figure 68. 2431 

Compared to the results obtained using the detailed thermal model with the DDM, the 2432 

maximum temperature difference is about 0.22 degree. Thus, the error is less than 0.3%. 2433 

The temperature error comes from the reduced-order models used in the proposed method. 2434 

For simulating 200 time steps, the comparison of simulation times using the proposed 2435 

method and the detailed thermal model using the DDM is shown in Table 15. As shown 2436 

in Table 15, compared to the simulation time using the DDM, a simulation time speed up 2437 

of 15.7x is obtained for the transient analysis using the proposed method. If considering 2438 
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the time for generating ROMs and the computation of the Schur complement, the speed- 2439 

up is about 3.4x for simulating 200 steps. With an increased number of time steps, the 2440 

speed-up can reach closely to 15x.   2441 
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 2442 
Figure 68. Transient temperatures of Die 1, Die 2, and Die 3 with TIM thermal 2443 

conductivity of 1.4 W/(m-K).  2444 
 2445 

As the layer of TIM is treated as a separate domain, the temperature of dies with 2446 

various TIM conductivities can be simulated efficiently. As an example, the steady-state 2447 

temperature of Die 1, Die 2, and Die 3 with a varying TIM thermal conductivity in the 2448 

range of 0.5 to 3 W/mK is shown in Figure 69. Compared to the results using the DDM, 2449 

the maximum temperature difference is 0.02 degree. The time for simulating 400 samples 2450 

is shown in Table 15. Table 15 shows the proposed method achieves a CPU time speed 2451 

up of 20.7x, compared to that using the domain decomposition approach. 2452 

 2453 
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 2454 
 2455 

Figure 69. Temperatures of Die 1, Die 2, and Die 3 with a varying TIM conductivity. 2456 

 2457 
 2458 

Table 15. Comparison of simulation times using the proposed method and the 2459 

method using detailed thermal model. 2460 
 2461 

 Total 

Mesh Cells 

Detailed 

Model using DDM 

(s) 

Proposed 

Method (s) 

Time 

Speed-up 

3D IC  

example 

Transient 104 K 806.6 50.7 x15.7 

Steady state 104 K 1600.4 77.4 x20.7 

3D  

system 

Transient 79 K 1365.2 110.8 x12.3 

Steady state 79 K 682.6 42.0 x16.2 

2.5D  

example 
Steady state 244.4K 2921.3 98.1 x29.8 

 2462 

 2463 

6.4.3 A 3D Integrated System Example  2464 

A 3D integrated system including two stacked dies, a silicon interposer, and a package is 2465 

shown in Figure 70a. The constant power consumption of Die 1 is 12 W. The transient 2466 

power consumption of Die 2 is shown in Figure 70b. This example is divided into six 2467 

domains including the domains for TIM, Die 1, Die 2, interposer, package, and boundary 2468 

domain for air convection, respectively. In this test case, the domains of Die1, Die2, and 2469 

TIM contain 81, 81, and 1 MOR ports, respectively. Thus, a total of 163 ports are used. 2470 
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The layer dimensions and thermal conductivities are shown in Table 13. Note that an 2471 

average thermal conductivity is used for underfill/microbump layers. The initial system 2472 

temperature is 25 Celsius. The total number of unknowns for domain 1, 2, 3, 4, 5, and 6 2473 

are 11 K, 31 K, 31 K, 2K, 5 K, and 0.2 K, respectively.  2474 

      2475 
 2476 

(a)                                             (b) 2477 

Figure 70. (a) A 3D integrated system with an interposer and a package, (b) 2478 

transient power of Die 2.  2479 
 2480 

Using the proposed method, the simulated transient temperature of dies with a time 2481 

step of 25 ms is shown in Figure 71. Compared to the simulation results from the detailed 2482 

thermal model using the DDM, the maximum temperature difference is less than 0.1 2483 

Celsius, which validates the accuracy of the proposed method. The comparison of 2484 

simulation times for 400 time steps using the proposed method and the method using the 2485 

DDM is shown in Table 15. Compared to the simulation time using the DDM, the 2486 

proposed method achieves a simulation time speed up of 12.3x for the transient analysis. 2487 

In this test case, the selected order of the ROMs for domains containing MOR ports is 5. 2488 

The generation of ROMs for domains takes about 161.9 s, and the computation of the 2489 
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Schur complement takes about 23.7 s. If considering the time for generating ROMs and 2490 

computing the Schur complement, the speed-up is about 4.6x.  2491 

To demonstrate the capability of simulating with varying air convection, the steady- 2492 

state simulation with a varying air convection coefficient in the range of 10 to 5000 2493 

W/(m
2
K) is also carried out. The simulated temperature of dies is shown in Figure 72. 2494 

Figure 72 shows that good agreement is obtained between the proposed method and the 2495 

detailed thermal model using the DDM. As shown in Figure 72, the temperatures of Die 1 2496 

and Die 2 decrease with increasing air convection on the package. The comparison of 2497 

CPU times for steady-state simulation of 200 points is also shown in Table 15. Table 15 2498 

shows that the time speed-up is about 16.2x, compared to the thermal modeling using the 2499 

DDM.  2500 

 2501 

 2502 

 2503 
 2504 

Figure 71. Transient temperature of dies with the TIM conductivity of 2 W/mK and 2505 

an air convection coefficient of 10 W/m
2
K on package.  2506 

 2507 

 2508 
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 2509 
Figure 72. Transient temperature of dies with a varying convection coefficient on 2510 

package. (The power consumption of Die 2 is set to 50 W.)  2511 
 2512 

6.4.4 A 2.5D Integration Example  2513 

A 2.5D integration example is shown in Figure 73. The size of all four dies is 13 x 13 2514 

mm
2
, and the size of the interposer is 31 x 31 mm

2
. The package size is 48 x 48 mm

2
. The 2515 

material thicknesses and thermal conductivities are summarized in Table 16. Note that an 2516 

average thermal conductivity is used for underfill/microbump layers. An air convection 2517 

coefficient of 1000 W/m
2
K is applied to the bottom surface of the package to represent 2518 

the convection effect on the PCB. In this example, equivalent thermal conductivities are 2519 

used for both microbump/underfill and bump/underfill layers. The top surface of the TIM 2520 

is set to 25 Celsius to represent the heat sink. The power consumptions of Die 1, Die 2, 2521 

Die 3, and Die 4 are 33.8 W, 50.7 W, 59.15 W, and 67.6 W, respectively. This example is 2522 

divided into seven domains:  four domains for dies, one domain for the interposer, one 2523 

domain for the underfill layer of the interposer, and one domain for the package. In this 2524 

example, each die contains 154 MOR ports. Therefore, a total of 616 ports are used. Each 2525 
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die is meshed using 48.9 K meshing cells. The interposer, underfill, and package use 3.4 2526 

K, 15.6 K, and 29 K meshing cells, respectively. In this example, the selected order of the 2527 

ROMs for domains with MOR ports is 4. The generation of ROMs for domains takes 2528 

about 814.1 s, and the computation of the Schur complement takes about 133.4 s. 2529 

 2530 

   2531 
 2532 

(a)                                                (b) 2533 

Figure 73. A 2.5D integration example: (a) whole system, (b) cross-sectional view.  2534 
 2535 

 2536 

Table 16. Material dimensions and thermal conductivities. 2537 
 2538 

 

Layer Size (length x width x 

thickness)  (mm) 

Thermal conductivity 

(W/(m-K)) 

Die 1, 2, 3 and 4 13 x 13 x 0.25 110 

TIM 13 x 13 x 0.15 0.8 

Underfill-1/microbump 13 x 13 x 0.05 5 

Interposer 31 x 31 x 0.10 110 

Underfill-2/microbump 31 x 31 x 0.15 5 

Package 48 x 48 x 1.47 5 

TIM layer 10 x 10 x 0.2 1.4 

Bump layer  48 x 48 x 0.3 5 

 2539 

 2540 

To investigate the effect of the thermal conductivity of interposer on die temperature, 2541 

this example is simulated with an interposer conductivity over a large range (k = 5e-4 to 2542 

5e+4 W/mK). The simulated temperatures of dies using the proposed method and the 2543 

detailed thermal modeling via the DDM are shown in Figure 74. For comparison 2544 

purposes, the temperature difference is also shown in Figure 74. With the conductivity 2545 
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varying from 5e-4 to 5e+4 W/mK, the maximum temperature difference is about 0.04 2546 

degrees, indicating the accuracy of the simulation. With an extremely low thermal 2547 

conductivity of interposer, all the power/heat dissipates through the heat sink. With a 2548 

gradually increased thermal conductivity of interposer from 5e-3 to 100 W/mK, the 2549 

temperatures of Die 1, Die 2, Die 3, and Die 4 decrease. However, when the conductivity 2550 

increases from 100 to 5e+4 W/mK, the temperature of Die 1 increases. The increasing 2551 

temperature of Die 1 is because the power consumption of Die 1 is much lower than that 2552 

of other dies. As a result, the thermal coupling between Die 1 and other dies increases the 2553 

temperature of Die 1.  The simulation times using the proposed method and the detailed 2554 

thermal modeling are shown in Table 15. Assuming simulating 200 samples of thermal 2555 

conductivities, the detailed thermal modeling using the DDM requires 2921.3 seconds 2556 

while the proposed method use only 98.1 seconds. Therefore, a speed-up of 29.8x is 2557 

achieved.  2558 
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Figure 74. Temperatures of dies and temperature differences with a varying 2560 

conductivity of interposer.   2561 
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6.5 Summary 2562 

In this chapter, the system-level thermal modeling method using non-conformal domain 2563 

decomposition and model order reduction is presented for both the steady-state and 2564 

transient analysis of 3D systems. This thermal modeling approach allows building 2565 

reduced-order models for separated domains and reconnecting them via the Schur 2566 

complement. As each domain is treated independently, the proposed method can 2567 

efficiently handle varying design parameters (e.g., TIM/interposer thermal conductivities 2568 

and air convection coefficients) without performing parameterized MOR. The modeling 2569 

process and computational complexity are discussed in detail. The accuracy and 2570 

simulation efficiency of the approach have been validated against the simulation using 2571 

the detailed thermal modeling and analytical method. Based on the simulation results, the 2572 

proposed method shows a maximum temperature error of 0.3%. Because of the combined 2573 

DDM and MOR approaches, the proposed method can achieve a simulation time speed 2574 

up of 29x, compared to the thermal modeling using domain decomposition.  2575 

 2576 

 2577 

 2578 

 2579 

 2580 

 2581 

 2582 

 2583 

 2584 
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CHAPTER 7 2585 

FUTURE WORK:  EXTENSION TO ELECTROMAGNETIC 2586 

MODELING USING FINITE-DIFFERENCE NON-CONFORMAL 2587 

DOMAIN DECOMPOSITION 2588 

 2589 

7.1 Introduction 2590 

As material properties such as electrical conductivity and dielectric loss are 2591 

temperature dependent, a non-uniform temperature distribution can affect the propagation 2592 

of electromagnetic fields. On the other hand, electromagnetic waves/pulses such as 2593 

electrostatic discharge pulses propagating on interconnects can result in temperature 2594 

increases, necessitating coupled thermal-electromagnetics simulation. Facilitating 2595 

thermal-electromagnetic simulation requires efficient electromagnetic modeling of 2596 

structures with multiple scales. The aforementioned non-conformal domain 2597 

decomposition method can also be extended to frequency-domain electromagnetic 2598 

modeling. Several finite element-based non-conformal domain decomposition techniques 2599 

have been proposed for eddy-current calculation in [38] and electromagnetic simulations 2600 

in [39, 40]. A finite-difference domain decomposition approach using characteristic basis 2601 

functions has been proposed for electrostatic problems [49]. However, the non-conformal 2602 

domain decomposition technique has not been established in the open literature based on 2603 

the finite-difference formulation for frequency-domain electromagnetic modeling to the 2604 

best of our knowledge.  2605 

This chapter focuses on two-dimensional electromagnetic modeling using the finite- 2606 

difference non-conformal domain decomposition, leaving 3D electromagnetic modeling 2607 

using finite-difference non-conformal domain decomposition as the future work. A finite- 2608 



 134 

difference non-conformal domain decomposition method is developed for solving 2D 2609 

electromagnetic problems. The proposed approach allows the formulation of individual 2610 

domains using the finite difference method with non-matching meshing grids at 2611 

interfaces. The continuity between domains is maintained by introducing Lagrange 2612 

multipliers and basis functions at interfaces for the finite-difference formulation.  The 2613 

correctness and accuracy of the proposed method has been validated using a numerical 2614 

example.   2615 

7.2 2D Electromagnetic Modeling using Finite-Difference DDM 2616 

7.2.1 Formulation 2617 

For a 2D transverse magnetic (TM) electromagnetic problem in a homogeneous medium, 2618 

the governing equation in frequency domain can be expressed as [45]  2619 
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where Ez, Hx, and Hy represent the electric (E) and magnetic (H) fields in the z, x, and y 2621 

directions, respectively;  and   represent permittivity and permeability, and   is the 2622 

angular frequency; Jz represents the excitation current source in the z direction. By 2623 

substituting the expression of Hx and Hy into the first equation in Equation (61), the 2624 

following equation can be derived: 2625 

       zzzt JjEkE  22                                                  (62) 2626 

where k is the wavenumber and  22 k . Eqn. (62) can be used to approximate the 2627 

wave propagation in a parallel plane structure (e.g., PCBs and packages).  The losses in 2628 
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conductors and dielectrics can also be modeled using the finite difference method [46, 2629 

47].   2630 

 2631 

 2632 

Figure 75. Domain decomposition of a 2D electromagnetic problem. 2633 

 2634 

Using the non-conformal domain decomposition and rectangular meshing grids, a 2D 2635 

EM problem can be divided into sub-domains. For simplicity, we assume that the 2636 

problem has a rectangular shape and is divided into two domains with different grid sizes 2637 

and non-matching grids at interfaces, as shown in Figure 75.  Because of the domain 2638 

decomposition, unknown current densities need to be assigned at interfaces. By 2639 

introducing the Lagrange multiplier 
kterinz

k Jj
_

)(

   (k = 1, 2), the following 2640 

equations can be derived for Domain 1 and Domain 2 based on the finite-difference 2641 

formulation:   2642 
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where )(

,

k

ji
x is the electric field at point (i, j) in domain k.  2645 
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As the pointwise E fields are used in Eqn. 63a and 63b, directly maintaining the 2646 

continuity of E fields at interfaces becomes challenging for the FDM. Here, we introduce 2647 

an extra integral equation to maintain the continuity of the E field at interfaces as in the 2648 

Mortar method [41, 83]:  2649 

0)
~~

( )2()1(  dlEE
terin

                                                 (64) 2650 

where )(~ kE is the assumed continuous E field in domain k and    is a basis function at 2651 

the interface. Because of the pointwise finite-difference formulation of Eqn. 63a and 63b, 2652 

continuous representations of   and the E field are required to compute the integral in 2653 

Eqn. (64). In this paper, we assume ))1((1 yiyyi
terini  is a piecewise constant 2654 

basis function, as shown in Figure 76a and  2655 


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1

n

i

iib                                                          (65) 2656 

The basis function i is usually constructed based on a domain with coarse meshing grids 2657 

to reduce the number of unknowns on interfaces.   2658 

 2659 

        2660 

(a)                                          (b) 2661 

Figure 76. (a) A piecewise constant basis function for the Lagrange multiplier, (b) 2662 

piecewise linear basis functions for E fields at interfaces.  2663 
 2664 

For the E field in Eqn. 64, we assume  2665 
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where
 






tspoinotherat

j,intpoiat
j,i 0

1
 is the basis function for the E field at point (i, j). As a result, 2667 

the E field at interfaces can be expressed as a linear combination of piecewise linear basis 2668 

functions, as shown in Figure 76b.  2669 

Based on the conservation of currents at the interface, we assume  = 2670 

terinterin   )2()1(  . By multiplying ji , on both sides of Eqn. 63a and 63b and 2671 

integrating over the volume, after some mathematical manipulations, the following 2672 

equations can be obtained: 2673 
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With basis functions at interfaces and the Lagrange multiplier, j and i , we can 2676 

derive the following equation from Eqn. 64, 67a, and 67b for the 2D problem with two 2677 

domains (Figure 75): 2678 
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where )/(1 111 yx   and )/(1 222 yx   are scaling factors because of the finite- 2680 

difference approximation; 1K and 2K are finite-difference stiffness matrices for Domain 1 2681 

and 2 derived based on the first three terms on the left-hand side of Eqn. 63a and 63b, 2682 

respectively [46]. In Eqn. 68, )1(e and )2(e are excitation vectors associated with port 2683 

excitations in Domain 1 and 2, respectively. The entries of the B matrix can be expressed 2684 

as 2685 
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Assuming a problem with n subdomains, the generalized matrix equation can be 2687 

obtained as 2688 
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Note that the above formulation is derived by assuming uniform meshing grids along 2690 

x and y directions in each domain. With non-uniform meshing grids in the x and y 2691 

directions, a similar formulation can be developed following the proposed formulation 2692 

steps. The only difference is that with non-uniform mesh grids, the matrix iK (i = 1, 2,  2693 

n) derived using the finite difference method needs to be multiplied by a diagonal matrix 2694 

in which the matrix diagonal entries depends on the meshing size at each grid point.  2695 

7.2.2 Examples and Discussion 2696 

To verify the correctness of the proposed method, a rectangular plane pair structure is 2697 

simulated. The parallel plane structure is shown in Figure 77. A rectangular structure is 2698 

selected because the resonant frequencies of the structure can be computed analytically 2699 

using the formula: 2700 
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nmf
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
                                        (71) 2701 

where a and b are the length and width of the structure. The thicknesses of the dielectric 2702 

layer and copper plane are 350 m and 30 m , respectively. The dielectric constant is 4, 2703 

and the copper conductivity is 5.8e+7 S/m. This structure is divided into two domains as 2704 
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shown in Figure 77. In the center of each domain, one port is assigned. The losses 2705 

because of the finite conductivity of the copper plane and skin effect are also included 2706 

using the method in [46].  2707 

 2708 

 2709 

Figure 77. A parallel plane structure. 2710 
 2711 

 2712 

This structure is simulated using the proposed method with non-matching meshing 2713 

grids at the interface. With various mesh sizes in each domain, the simulated 2-port S 2714 

parameters in the frequency ranges of 1.0-3.0 GHz are shown in Figure 78. For 2715 

comparison purposes, the simulated S parameters using the FDM in [46] without domain 2716 

decomposition with a 1600 800 mesh are also shown in Figure 78. Figure 78 shows that 2717 

with different grid size ratios, S parameters agree well with that using the FDM with a 2718 

conformal mesh. The grid ratio denotes the ratio of grid size in Domain 1 to that in 2719 

Domain 2. At 2 GHz, the simulated E field distribution with a grid ratio of 1:8 using the 2720 

proposed method is shown in Figure 79. This shows the continuity of electric field is 2721 

maintained at the interface. In addition, the comparison of simulated and computed 2722 

analytical resonance frequencies are shown in Table 17. As shown in Table 17, compared 2723 

to the computed resonance frequencies using Eqn. (71), the maximum error is 0.7%, 2724 

indicating the accuracy of the proposed method.  2725 



 140 

1.00E+009 1.50E+009 2.00E+009 2.50E+009 3.00E+009

-70

-60

-50

-40

-30

-20

-10

0

S
 (

d
B

)

Frequency (Hz)

 : FDM (conformal mesh)

 : DDM (ratio 1:2)

 : DDM (ratio 1:8)

S21

S11

 2726 
Figure 78. Two-port scattering paramters.  2727 

 2728 

 2729 

Figure 79. Electric field distribution across the structure with an excitation at port 2. 2730 
 2731 
 2732 
 2733 

Table 17. Comparison of resonance frequencies.  2734 
 2735 

Proposed Method 

(GHz) 

FDM (GHz) Analytical 

Method (GHz) 

Error 

(%) 

0.745 0.745 0.750 0.7 

1.490 1.495 1.499 0.6 

1.665 1.670 1.676 0.7 

2.240 2.245 2.249 0.4 

2.690 2.700 2.703 0.5 

2.980 2.982 2.999 0.6 
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 2736 

7.3 Summary 2737 

In this chapter, we presented the finite-difference non-conformal domain decomposition 2738 

method for solving 2D electromagnetic problems. The formulation of the non-conformal 2739 

domain decomposition is derived based on the finite difference method. We demonstrated 2740 

the following: (a) the finite-difference electromagnetic modeling can employ non- 2741 

matching grids at interfaces, (b) the continuity of pointwise electric fields can be 2742 

maintained by introducing the Lagrange multiplier, and (c) the entries of the coupling 2743 

matrices for domains depend on the sizes of grids in domains because of the finite- 2744 

difference approximation, which differs from the Mortar FEM. In addition, the 2745 

correctness of the proposed formulation has been verified using a simulation example.  2746 

 2747 

 2748 

 2749 

 2750 

 2751 

 2752 

 2753 

 2754 

 2755 

 2756 

 2757 
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CHAPTER 8 2758 

CONCLUSIONS 2759 

 2760 

The continuous miniaturization of electronic systems using the 3D integration technique 2761 

has brought in new challenges for the computer-aided design and modeling of ICs and 2762 

integrated systems. As discussed in Chapter 1 and 2, the challenges mainly stem from 2763 

three aspects: (1) the interaction between the electrical, thermal, and mechanical domains 2764 

in an integrated system, (2) the increasing modeling complexity arising from 3D systems 2765 

requires the development of multiscale modeling techniques for the modeling and 2766 

analysis of DC voltage drop, thermal gradients, and electromagnetic behaviors, and (3) 2767 

the demands of performing fast simulation with varying design parameters for thermal 2768 

modeling. To address these challenges, several numerical modeling and simulation 2769 

techniques are developed and presented in Chapters 3-7. The presented numerical 2770 

techniques can be classified into three categories: (1) electrical-thermal co-simulation 2771 

approaches:  the voltage drop-thermal co-simulation methodology in steady state and 2772 

thermal-electrical co-analysis for TSV arrays at high frequencies, (2) multiscale modeling 2773 

approaches:  the voltage drop/thermal modeling using the finite element-based non- 2774 

conformal domain decomposition approach and 2D electromagnetic modeling using the 2775 

finite difference-based non-conformal domain decomposition technique, and (3) fast 2776 

thermal simulation methods using compact models and model order reduction.  2777 

8.1 Contributions 2778 

The contributions of this thesis are summarized as follows: 2779 

 2780 

http://www.iciba.com/brought
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1) DC voltage drop-thermal co-simulation for power delivery networks 2781 

A voltage drop-thermal co-simulation method has been proposed and developed 2782 

for the steady-state analysis of PDNs. The proposed co-simulation method 2783 

ultimately takes into account the temperature effect on electrical resistivities and 2784 

Joule heating effect on temperatures using an iterative simulation procedure. The 2785 

proposed method allows performing the voltage drop analysis of a PDN 2786 

considering the non-uniform temperature distribution in a system. This method 2787 

can also capture the temperature increase because of Joule heating generated in a 2788 

PDN.  2789 

In addition, several finite-volume schemes based on non-uniform rectangular 2790 

grids have been developed for steady-state thermal and voltage drop modeling. 2791 

For the modeling of voltage drop, the location-dependent temperatures are 2792 

included in the formulation. In addition, the finite-volume scheme for 2793 

microfluidic cooling has also been developed. This scheme enables the thermal 2794 

modeling with both solid and fluid media in stacked ICs.  2795 

2) The thermal-electrical analysis of TSV arrays in silicon interposers 2796 

The thermal-electrical analysis has been carried out for TSV arrays in silicon 2797 

interposers. This co-analysis method extends the TSV modeling method using 2798 

CMBFs [69] to capture the thermal effect on TSV characteristics. By taking into 2799 

account the temperature effect on material properties in the modeling process, the 2800 

thermal effect on the insertion loss, crosstalk, RLGC parameters, and coupled 2801 

noise of TSV arrays has been investigated. This co-analysis method can facilitate 2802 

the design of TSV arrays considering system thermal profiles. 2803 
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3) The development of a multiscale modeling method for the steady-state 2804 

voltage drop and thermal analysis 2805 

A multiscale modeling method based on the finite-element non-conformal domain 2806 

decomposition technique has been proposed for the voltage drop and thermal 2807 

analysis of 3D systems. The proposed method allows the modeling of a 3D 2808 

multiscale system using independent mesh grids in sub-domains.  As a result, the 2809 

system unknowns can be greatly reduced. In addition, to improve the simulation 2810 

efficiency, the CMG solving approach has been adopted for the voltage drop- 2811 

thermal co-simulation with a large number of unknowns.  2812 

4) The development of a compact thermal model for microchannel-based fluidic 2813 

cooling    2814 

To overcome the computational cost using the CFD approach, a finite-volume 2815 

compact thermal model has been developed for the microchannel-based fluidic 2816 

cooling. The proposed thermal model uses only one unknown per cell to represent 2817 

the fluidic cooling behavior. As a result, this compact thermal model enables the 2818 

fast thermal simulation of 3D ICs with a large number of microchannels for early- 2819 

stage design. In addition, this compact model can be integrated with the finite- 2820 

element thermal model for solid media based the energy conservation rule.  2821 

5) The development of a fast transient thermal modeling approach   2822 

A fast transient thermal simulation approach based on the finite-element non- 2823 

conformal domain decomposition has been proposed. The combination of the 2824 

domain decomposition method and the compact thermal model for fluidic cooling 2825 

enables the fast transient simulation of stacked ICs with fluidic cooling. The 2826 
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accuracy of the proposed method has been validated by comparing the results 2827 

from the proposed method with results from the FEM. 2828 

6) The development of a system-level thermal modeling approach using domain 2829 

decomposition and model order reduction 2830 

A system-level thermal modeling method using domain decomposition and model 2831 

order reduction is developed for both the steady-state and transient thermal 2832 

analysis. The proposed approach can efficiently support thermal modeling with 2833 

varying design parameters (e.g., thermal conductivity of a certain layer and heat 2834 

transfer coefficients on boundaries) without using parameterized MOR techniques. 2835 

By dividing a system into subdomains, the reduced-order models for separated 2836 

domains can be efficiently created using MOR techniques with less computational 2837 

cost than directly performing MOR for the entire system. The relationship 2838 

between domains is captured using interfacial coupling matrices via the Lagrange 2839 

multipliers and Schur complement; therefore, interfacial MOR ports are not 2840 

required.  2841 

7) The development of a finite-difference non-conformal domain decomposition 2842 

method for solving 2D electromagnetic problems  2843 

A finite-difference non-conformal domain decomposition method is developed for 2844 

solving two-dimensional electromagnetic problems in the frequency domain. The 2845 

proposed method allows the modeling of 2D electromagnetic problems using the 2846 

finite difference method with non-matching meshing grids at interfaces. 2847 

Connectivities between domains are maintained by introducing Lagrange 2848 

multipliers and basis functions for the finite difference formulation.   2849 

 2850 
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8.2 Publications 2851 

During the dissertation research, the following journal articles and conference papers 2852 

have been accepted and published.  2853 

Journal papers 2854 

[1] D.-C. Yang, J. Xie, M. Swaminathan, X.-C. Wei, E.-P. Li, “A rigorous model for 2855 

through-silicon vias with Ohmic contact in silicon interposer,” IEEE Microwave 2856 

and Wireless Components Letters, vol. 23, no. 8, pp. 385–387, Aug. 2013.  2857 

[2] J. Xie, M. Swaminathan, “System-level thermal modeling using non-conformal 2858 

domain decomposition and model order reduction,” accepted by IEEE Trans. 2859 

Compon., Packag. Manuf. Technol., 2013.  2860 

[3] J. Xie, M. Swaminathan, “Electrical-thermal co-simulation with non-conformal 2861 

domain decomposition method for multiscale 3D integrated systems,” accepted by 2862 

IEEE Trans. Compon., Packag. Manuf. Technol., 2013.  2863 

[4]  J. Xie, M. Swaminathan, “Electrical-thermal modeling of through-silicon-via 2864 

(TSV) arrays in interposer,” International Journal of Numerical Modeling, Sept. 2865 

2012.  2866 

[5] J. Xie, M. Swaminathan, “Electrical-thermal co-simulation of 3D integrated 2867 

systems with micro-fluidic cooling and Joule heating effects,” IEEE Trans. 2868 

Compon., Packag. Manuf. Technol., vol. 1, no. 2, pp. 234–246, Feb. 2011. 2869 

[6] M. Swaminathan, D. Chung, S. Grivet-Talocia, K. Bharath, V. Laddha, J. Xie, 2870 

“Designing and modeling for power integrity,” IEEE Trans. on Electromagnetic 2871 

Compatibility, vol. 53, no. 2, pp. 288–310, 2010. (Invited paper) 2872 

Conference papers  2873 

[7] R. Bazaz, J. Xie, M. Swaminathan, “Electrical and thermal analysis for design 2874 

exchange formats in three dimensional integrated circuits,” International 2875 

Symposium on Quality Electronic Design (ISQED), pp. 308–315, 2013.  2876 

[8] R. Bazaz, J. Xie, M. Swaminathan, “Optimization of 3D stack for electrical and 2877 

thermal integrity,” Electronic Components and Technology Conference (ECTC), 2878 

pp. 22–28, 2013.  2879 

[9] J. Xie, M. Swaminathan, “3D transient thermal solver using non-conformal domain 2880 

decomposition approach,” IEEE/ACM International Conference on Computer- 2881 

Aided Design (ICCAD), pp. 333–340, 2012.   2882 
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[10] J. Xie, M. Swaminathan, “Fast electrical-thermal co-simulation using multigrid 2883 

method for 3D integration,” Electronic Components and Technology Conference 2884 

(ECTC), pp. 651–657, 2012.  2885 

[11] J. Xie, M. Swaminathan, “Computationally efficient thermal simulation with 2886 

micro-fluidic cooling for 3D integration,” IEEE Electrical Design of Advanced 2887 

Package & Systems Symposium (EDAPS), pp. 1–4, Dec. 2011.  2888 

[12] B. Xie, M. Swaminathan, K. J. Han, J. Xie, “Coupling analysis of through-silicon 2889 

via arrays in silicon interposers for 3D system,” IEEE International Symposium on 2890 

Electromagnetic Compatibility, pp. 16–21, 2011.  2891 

[13] J. Xie, M. Swaminathan, “DC IR drop solver for large scale 3D power delivery 2892 

networks,” 19th conference on Electrical Performance of Electronic Packaging and 2893 

Systems (EPEPS), pp. 217–220, Oct. 2010.  2894 

[14] J. Xie, M. Swaminathan, “Simulation of power delivery networks with Joule 2895 

heating effects for 3D integration,” Electronics System Integration Technology 2896 

Conferences (ESTC), pp. 1–6, Sept. 2010.  2897 

[15] J. Xie, D. Chung, M. Swaminathan, M. Mcallister, A. Deutsch, L. Jiang, B. J 2898 

Rubin, “Electrical-thermal co-analysis for power delivery networks in 3D system 2899 

integration,” IEEE International Conference on 3D System Integration (3DIC), pp. 2900 
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[16] J. Xie, D. Chung, M. Swaminathan, M. Mcallister, A. Deutsch, L. Jiang, B. J Rubin, 2902 
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