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SUMMARY

As the convergence of multiple functions in a single electronic device drives

current electronic trends, the need for increasing integration density is becoming

more emphasized than in the past. To keep up with the industrial need and realize

the new system integration law, three-dimensional (3-D) integration called System-

on-Package (SoP) is becoming necessary. However, the commercialization of 3-D

integration should overcome several technical barriers, one of which is the difficulty

for the electrical design of interconnections. The 3-D interconnection design is dif-

ficult because of the modeling challenge of electrical coupling from the complicated

structures of a large number of interconnections. In addition, mixed-signal design

requires broadband modeling, which covers a large frequency spectrum for integrated

microsystems. By using currently available methods, the electrical modeling of 3-D

interconnections can be a very challenging task.

This dissertation proposes a new method for constructing a broadband model

of a large number of 3-D interconnections. The basic idea to address the many

interconnections is using modal basis functions that capture electrical effects in in-

terconnections. Since the use of global modal basis functions alleviates the need

for discretization process of the interconnection structure, the computational cost is

reduced considerably. The resultant interconnection model is a RLGC model that de-

scribes the broadband electrical behavior including losses and couplings. The smaller

number of basis functions makes the interconnection model simpler, and therefore

allows the generation of network parameters at reduced computational cost. Focus-

ing on the modeling of bonding wires in stacked ICs and through-silicon via (TSV)

interconnections, this research validates the interconnection modeling approach using

several examples from 3-D full-wave EM simulation results.

xv



CHAPTER 1

INTRODUCTION

During the current and the next decade, a leading trend of electronics is to increase

the integration density by using package-based three-dimensional (3-D) integration.

Currently, 3-D integration is realized by stacking integrated circuit (IC) dies, which

communicate with other submodules through vertical 3-D interconnections. Thus,

3-D interconnection is a key factor that enables 3-D integration for achieving the

desired performance.

However, 3-D interconnection design requires engineering solutions to issues that

were not observed earlier in planar interconnection design. Compared to 2-D de-

sign, 3-D interconnections have more degrees of freedom for wiring, so the resultant

geometric complexity makes the estimation of electrical performance more difficult.

Furthermore, the increased wiring density of 3-D integration needs the characteriza-

tion of a large number of interconnections. For such 3-D designs, current commercial

modeling tools have limitations in their application to real designs.

To minimize the design cycle time of 3-D integration, significant progress in

computer-aided design (CAD) tools is mandatory. The desired 3-D CAD tools should

be supported by accurate electrical modeling of 3-D vertical interconnections to fa-

cilitate complicated schematic design, routing, and physical layout along with main-

taining improved electrical characteristics. In order to respond to the industry need

for new 3-D CAD tools, this research focuses on the development of efficient and

accurate electrical modeling methods for 3-D interconnections.

As an introductory discussion, this chapter presents the basic background of the

research in this dissertation. Section 1.1 overviews the current technology trend and

emphasizes the need for 3-D integration technology. Section 1.2 focuses on the inter-

connections used in 3-D integration, followed by Section 1.3 that discusses modeling
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issues in the design of 3-D interconnections. To check the availability of the existing

methods for 3-D modeling, Section 1.4 surveys and discusses previous approaches

for interconnection modeling and simulation. After clarifying the limitations of the

current methods, the last two sections introduce the proposed research in this disser-

tation.

1.1 Need for 3-D Technology in System Integration

Improving computational speed and data bandwidth is the main purpose of modern

electronics, which realizes the progress by increasing the level of transistor integration

density in semiconductor technology [10, 11]. The growth of the integration technol-

ogy has been driven by silicon-based technology, covering from the development of

integrated circuits (IC) to system-on-chip (SoC). Currently, a typical SoC is targeting

the capability for miniaturization of a computing unit, including a microprocessor,

memory blocks, timing circuits, and various interfaces [12].

Although silicon technology supports subsystem integration, the extension of the

functionality with SoC is limited, especially when the application is in multimedia

mobile devices. In addition to digital computing units, integrated systems should

contain various subsystems including analog, radio frequency (RF), optic, and sensor

submodules. Furthermore, SoC has difficulty in system design flexibility that satisfies

the rapidly increasing variety of multimedia mobile applications.

The challenges of multi-functional integration in today’s mobile applications can

be overcome by using package-based system integration. Since advanced packaging

technology enables combining submodules with various substrate materials in a single

package platform, the realization of the multi-functional system can be much easier

than silicon-based technology. With the progress in processing technology, package-

based system component density will increase, as estimated in Figure 1 [1].

For the realization of the new system integration law, a key issue is the design
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Figure 1. An estimate of system integration density driven by package-based technology
[1].

of an efficient packaging architecture that minimizes packaging space and maintains

required functions. A common idea underlying many of the new packaging solutions

is utilizing 3-D space, instead of mounting chips on the planar substrate layout as in

the traditional multi-chip modules (MCM). Currently, the 3-D packaging concept is

realized through System-in-Package (SiP), which stacks bare or packaged ICs verti-

cally. A more extensive architecture of 3-D integration is System-on-Package (SoP),

which covers SiP as well as embedded passive and active components in a package.

For microminiaturization, 3-D technology is the fundamental method being pursed

for today’s package-based system integration [2].
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1.2 Interconnection Elements in 3-D Integration

In 3-D integration or SiP, the communication among the stacked ICs and embedded

components requires vertical interconnections. Since processing the vertical intercon-

nections is challenging compared to the planar ones, the electrical and mechanical

characteristics of the vertical interconnections can be a bottleneck for achieving the

required system performance. Thus, various types of vertical interconnections are

still being proposed.

Several interconnection elements are already popular in industry. Figure 2 shows

typical SiP structures with three types of interconnections, including bonding wires,

via interconnections, and metal bumps. Among them, bonding wire interconnections

have been used most widely because their processing is mature and cost effective. To

improve electrical performance, via interconnections are becoming a major choice to

replace the bonding wires. In 3-D integration, the trend of using via interconnections

is realized as through-silicon via (TSV) interconnections by employing silicon as a

new packaging substrate, which increase the integration density considerably. This

section briefly discusses the main features of vertical interconnections, focusing on

bonding wires and TSV interconnections.

b
ar

e 
IC

s

TSV

bonding wires bare ICs

bare ICs package

Figure 2. Examples of SiP structures with interconnection elements [2].

1.2.1 Bonding Wire Interconnections

Since the original beam lead technology of AT&T, bonding wires have been the prefer-

able technology for chip-to-package interconnections because of their high flexibility,

high reliability, and low defect rates [13]. The application of bonding wires to 3-D
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integration was proposed in late 1990’s [14], and the bonding wire technology is still

evolving with increasing levels of integration, as shown in Figure 3. A method for

increasing density is to reduce the wire pitch, which is currently about 60 µm [15].

Figure 3. An example of 3-D bonding wire bond integration. (Photo courtesy of Amkor
Technology, Inc.)

In spite of the popularity in industry, its long interconnection length limits the

use of bonding wires in high-speed applications. Using bonding wires for chip-to-chip

interconnections is difficult when chips are stacked, and improving the integration

density is also limited because bonding wires are located only on the periphery of

chips. In addition, the electrical coupling among wires is difficult to predict because

their geometric configurations are very complicated, especially when using bonding

wires in 3-D stacked ICs. The uncertainty of the horizontal and vertical coupling

levels obstructs reliable design since it impacts signal and power integrity. To make

matters worse, the complicated crossing of bonding wires can result in unexpected

electrical short circuits with nearby interconnections [16].
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1.2.2 Through-Silicon Via (TSV) Interconnections

Originally, via-type interconnections have been fabricated to connect planar intercon-

nections in a multilayered printed circuit board (PCB). The vertical interconnections

for the PCB design are called though-hole via (THV) interconnections. Since via

interconnections can reduce the interconnection length for inter-chip communication,

they can be an alternative to the bonding wire technology. Therefore, new applica-

tions of via interconnections to stacked IC packaging designs have been proposed [17]

since the 1990s.

In addition to the reduced interconnection length, integration density can be en-

hanced by fabricating via interconnections in silicon substrate [18]. Thus, via inter-

connections in SiP and SoP are usually fabricated in silicon substrate, and they are

called though-silicon via (TSV) interconnections. Currently, the main issue regarding

TSV interconnections is the fabrication process [19, 20, 21], but TSVs are beginning

to be used in stacked memory chip applications [22]. An example of TSV array is

shown in Figure 4.

Figure 4. An example of fabricated TSV array [3].

Along with fabrication challenges, the electrical design of TSV interconnections

is another major challenge due to their complicated electrical behavior. The main

electrical bottleneck is coupling from lossy silicon substrates, especially when using
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highly-doped silicon. Substrate coupling and leakage current may generate consid-

erable insertion loss that degrades signal integrity. To avoid high insertion loss and

coupling, electrical designers should control several parameters such as silicon resis-

tivity, oxide thickness, and the pitch between interconnections [5]. In addition, an

external bias voltage can modify the depletion region in the silicon substrate, resulting

in the variance of effective capacitance between TSVs [23].

1.3 Electrical Modeling Issues in 3-D Interconnection Design

As discussed in the previous section, bonding wire and TSV interconnections are

popular choices for 3-D integration design, but their undesirable electrical properties

motivates more careful design considerations. The estimation of the electrical behav-

iors of 3-D interconnections is challenging since the electrical model of 3-D intercon-

nections is very difficult to extract. Consequently, the increased design uncertainty

retards the design and production cycles.

A major difficulty in modeling 3-D interconnections comes from the need to ob-

tain the entire coupling model of a large number of 3-D interconnections. In a typical

SiP composed of several stacked ICs, the number of bonding wires or TSV inter-

connections are close to a thousand [24], causing coupling between interconnections

due to criss-crossing of the wires. Since achieving higher integration density reduces

the pitch size among interconnections, the number of interconnections will increase

further, along with stronger electrical coupling that can lead to noise interference.

Furthermore, for accurate electrical design of SiP including radio frequency (RF),

analog, and digital submodules, the 3-D interconnection model should cover a suf-

ficiently wide frequency range. The broadband model needs to capture frequency-

dependent losses, coupling, and mismatch, which are contributed by the parasitic

elements such as series inductances, resistances, shunt capacitances, and conduc-

tances. Extracting the frequency-dependent conductor loss and inductive coupling is
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especially difficult because they are calculated from the current density distribution

that is affected by skin and proximity effects.

In case of modeling TSV interconnections, the silicon substrate should be consid-

ered as another source of loss. Significant silicon substrate loss not only influences the

signal attenuation, but also complicates interconnection characteristics. Interconnec-

tions around silicon substrate show diverse behaviors (operation modes) depending on

conductor/oxide dimensions, frequency, and silicon resistivity [25]. Thus, an accurate

TSV model should provide the right operation mode by addressing all the effects of

the design parameters. Clearly, this modeling requirement is extremely challenging

when a large number of TSV interconnections are involved.

In summary, a desired 3-D interconnection modeling tool should be able to de-

scribe the broadband electrical behavior of interconnections accurately by extracting

parasitic elements from a large number of 3-D interconnections, as illustrated in Fig-

ure 5. In addition, the modeling tool needs to be computationally efficient and should

have the capability to interface with existing 3-D CAD tools, as part of a design flow.

To discuss the required features in more detail, the following section surveys existing

modeling methods and their limitations in modeling 3-D integration.

1.4 Previous Research on Modeling 3-D Interconnections

This section outlines the background and the previous research related to the model-

ing of interconnections in 3-D integration. After a brief definition of interconnection

modeling, the following subsection discusses analytical and measurement-based ap-

proaches for modeling the bonding wire and TSV interconnections. Commenting on

the limitations of the analytical methods, the last subsection presents several numer-

ical electromagnetic (EM) approaches for obtaining the generalized model.

The purpose of modeling interconnections is to extract equivalent circuits that

describe the electrical characteristics of given interconnection structures. A typical
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Figure 5. 3-D interconnection modeling tool that captures the electrical behavior of
bonding wires and TSV interconnections.

lumped model of a single interconnection is shown in Figure 6, which is composed

of a series inductor, a series resistor, and a parallel capacitor. The values of circuit

elements are determined by the shape of the interconnection itself as well as the cou-

pling from nearby interconnections and other passive structures such as power/ground

planes.

Figure 6. A typical lumped model of a single interconnection (π model).

As a signal-guiding structure, interconnections represent a more general structure
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than transmission lines. In other words, interconnections like bonding wires and via

interconnections are basically 3-D structures that may not have a uniform cross sec-

tion throughout the direction of signal propagation. Thus, applying transmission line

theory for 3-D interconnection modeling is not appropriate [26]. Because of this fun-

damental difficulty with 3-D interconnection modeling, most previous research relied

on indirect ways for characterization based on measurements, analytical methods,

and numerical methods.

1.4.1 Measurement-based and Analytic Modeling Methods

Measurement data can be used for extracting models of 3-D interconnections. The

characterization based on measurements of various interconnections including bond-

ing wires has been discussed extensively in [27], using the following approximate

formula to extract the interconnection inductance:

L ' (2πf)−1Im
1 + Γ

1− Γ
, (1)

where Γ is the reflection coefficient. The above simple formula is valid up to the

lumped model limit fB, which satisfies 6 Γ(fB) = 0.6π. Measurement can also be

used to validate various modeling and simulation methods [4, 28]. However, design

procedures that are purely based on measurements requires an increased number of

design iterations. In particular, the measurement of high-density 3-D interconnections

requires a large number of probings along with a complicated setup, resulting in

additional cost for design.

By providing an initial guess, analytical approaches reduce the design cost of the

purely measurement-based modeling methods. One type of analytical method uses

partial inductances [29, 30]. Since the concept of partial inductance was proposed in

the early 1900’s [31], many analytical expressions of partial inductances for various

geometries have been reported. For example, per-unit-length self and mutual partial

inductances of two parallel cylindrical conductor segments can be derived as follows
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[32]:

Ldc =
µ

2π

[
ln

2l

ρ
− 3

4

]
,

Lac =
µ

2π

[
ln

2l

ρ
− 1

]
, (2)

M =
µ

2π

[
ln

l

d
+

√
1 +

l2

d2
−

√
1 +

d2

l2
+

d

l

]
,

where ρ, l, and d are the radius, length, and pitch of straight conductors. Since the

closed-form models are efficient and do not require numerical computations, they can

be used for the modeling of large 3-D interconnections. However, analytic mutual

inductance formulas may be inaccurate, especially when two conductors are close to

each other [33]. In addition, the simple expression does not include high-frequency

effects such as skin and proximity effects.

Another analytic approach models interconnections as the combinations of trans-

mission lines [34, 35], with the characteristics obtained from quasi-static methods as

shown in Figure 7. For a single wire and a double-wire pair models, the quasi-static

method has been validated with full-wave numerical results [4]. However, the exten-

sion of the two-dimension based method to general 3-D problems is not as simple as

the single or double-wire case. Similar to the analytical partial component methods,

the quasi-static method does not consider conductor losses.

For the TSV interconnection modeling, an equivalent model can be constructed

from physical intuition [5, 6]. As shown in Figure 8, the model contains series

impedances of copper conductors, shunt oxide capacitances, and shunt silicon ad-

mittances. The value of each component is found by tuning the circuit elements to

fit its frequency response with measurement data. Although the generated model

exhibits good correlation with the measurement data, the measurement-based equiv-

alent model is difficult to extend to general multi-TSV structures due to the increased

number of model parameters that need to be tuned to fit multi-port measurement

data.
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Figure 7. Transmission line segment model of a single interconnection [4].
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Figure 8. Equivalent circuit model of three TSV interconnections [5, 6].

In summary, measurement-based and analytical modeling methods provide sim-

plified equivalent circuit models for the design of single-chip package and RF circuits.
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However, the broadband modeling of complicated 3-D interconnections requires ac-

curate models that contain full electrical coupling among interconnections with high-

frequency loss effect. The generality in interconnection modeling can be obtained by

using various computational electromagnetic (CEM) techniques. The details of sev-

eral EM simulation methods are discussed in the following subsection in the context

of 3-D modeling.

1.4.2 EM Simulation Methods for 3-D Electrical Interconnections

As discussed in the previous section, numerical simulation is becoming an essential

element in the design of 3-D interconnections. As the density of integration and op-

erating frequency increase, the accuracy and efficiency of electromagnetic simulation

become important. In addition, the application of EM simulation to 3-D intercon-

nection problems generates new issues that were not important in conventional EM

modeling methods. Focusing on the simulation of 3-D interconnections, this subsec-

tion reviews the existing nemerical methods.

1.4.2.1 Generic Approaches: Finite Element Method (FEM), Method of Moments
(MoM), and Finite Difference Time Domain Method (FDTD)

According to the solution domain and the type of governing equation, CEM methods

are categorized into time-/frequency-domain methods and differential/integral equa-

tion based methods, as shown in Table 1.1 This subsection presents three popular

methods from each of the three categories: the finite element method (FEM), the

method of moments (MoM), and the finite difference time domain (FDTD) method.

Their applicabilities to the 3-D interconnection problems are also discussed.

In FEM, the entire problem space is divided into localized cells that represent

unknown electric or magnetic fields. The system matrix equation is formulated from

the variational principle, where the unknown approximate fields minimize an energy

functional related to the differential form of the Maxwell’s equation. Since each field

1Based on the lecture note of “Topics in Computational Electromagnetics,” Georgia Tech.
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Table 1. Category of CEM methods.

MoM

PEEC

BEM

PEEC
Integral

equation based

FEM
FDTD

TLM

Differential

equation based

Frequency domainTime domain

quantity interacts only with neighboring elements, the system matrix is sparse. How-

ever, generating meshes for the entire problem space may result in a large matrix,

especially in the case where finite conductivity in interconnections should be con-

sidered. Some of the popular general-purpose EM solvers are developed with FEM,

which is applied to the simulation of various microwave problems including transmis-

sion line, waveguide, scattering, and antenna. In the area of interconnection char-

acterization, many authors are utilizing commercial FEM solvers [36, 37] to obtain

scattering parameters that fit with an equivalent circuit model.

MoM is based on various forms of integral equations that relate excitation fields

to the responding current distributions [38]. The current distribution is defined only

on the conductor surface, but each cell on the surface is coupled with the Green’s

function. Therefore, the system matrix from MoM has small but dense property.

MoM is efficient especially for the scattering problem of electric conductors. In ad-

dition, some of the 2.5-D MoM simulators are popular for the design of planar RF

and microwave circuits. A proposed application of MoM to the bonding wire simu-

lation [39, 40] follows MoM formulation of thin perfect conducting wires, and inserts

distributed internal impedance in the system matrix.

FDTD solves the differential form of the Maxwell’s equation explicitly in time

domain [41]. In the leapfrog algorithm, which couples electric and magnetic fields, the
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costly process of matrix inversion is not required. On one hand, with its simplicity and

memory-saving property, FDTD algorithm is preferred for solving large EM problems.

On the other hand, practical implementation of FDTD has several issues such as

absorbing boundary condition, excitation, conditional stability, and proper geometric

modeling. The time-domain nature of FDTD is also applied popularly to the lumped

element simulation of circuits. FDTD simulation of bonding wires and their modeling

has been proposed [4, 42], but the incorporation of frequency-dependent losses in the

FDTD application is not addressed.

All the generic full-wave methods discussed above provide accurate solutions for

bonding wire and via interconnections. However, discretization of the entire structure

results in large computational time and memory, especially when modeling 3-D inter-

connections. Furthermore, the solution type of the generic EM methods is usually a

set of numerical data in time or frequency domain, which requires additional steps for

extracting the equivalent network. For the simple modeling of a few interconnections,

an initial model can be constructed by intuition or through a simple optimization pro-

cess to find component values that fit the simulated scattering parameters. However,

for generalized modeling, macromodeling such as vector fitting [43] with broadband

passivity enforcement [44, 45] may be necessary. This extraction procedure can be a

computational burden when we try to address large 3-D interconnections arising in

SiP.

1.4.2.2 Partial Element Equivalent Circuit (PEEC) Methods

A prominent feature of the PEEC method from the common CEM approaches de-

scribed in the previous subsection is that it automatically generates equivalent circuits

directly from Maxwell’s equation. Thus, the PEEC method is especially popular in

the research of electromagnetic compatibility (EMC) and interconnection modeling,

where equivalent circuit models should represent electromagnetic behavior accurately.

This subsection introduces a brief history and formulation of the PEEC method.
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The theory and formulation of PEEC, proposed first by Ruehli [46], was originally

aimed for the calculation of 3-D equivalent inductances and capacitances under the

quasi-static assumption. Over thirty years after the seminal work, the PEEC method

was generalized to a full-wave method by including retardation [47], and extended to

problems involving inhomogeneous dielectrics [48].

The PEEC method is constructed from the following volume integral equation

in a point of a conductor, which is obtained by substituting integral expressions of

scalar and vector potential in Maxwell’s equation. In this formulation, homogeneous

dielectric is assumed, and excitation of electric field in a conductor is neglected.

~J(~r, t)

σ
+

µ

4π

∫

V ′
G(~r, ~r′)

∂ ~J(~r′, t′)
∂t

dV ′ = −∇Φ(~r, t), (3)

1

4πε0

∫

V ′
G(~r, ~r′)q(~r′, t′)dV ′ = Φ(~r, t), (4)

where t′ = t− |~r − ~r′|/vp is the retarded time and G(~r, ~r′) = 1/|~r − ~r′| is the Green’s

function.

The basic scheme of discretization in the classical PEEC method is to divide a

conductor into a number of filaments and panels as shown in Figure 9. The current

density and the electric charge density are approximated to be constant over the con-

ductor elements. The staircase approximation of the current and charge is equivalent

to using the following piecewise constant basis functions.

~J(~r, t′) '
∑
n=1

~wn(~r)In(tn), (5)

q(~r, t′) '
∑
j=1

vj(~r)Qj(tj), (6)

where

~wn(~r) =





~ln
|Vn| ~r ∈ Vn

0 elsewhere
,

vj(~r) =





1 ~r ∈ Sj

0 elsewhere
,
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Figure 9. Discretization model for PEEC method.

n is the element index, and tn ≡ t− |~r − ~rn|/vp is the approximation of t′.

Inserting the approximate current and charge functions and applying the inner

product based on the Galerkin’s method results in the following equivalent circuit

equation.

RPmmIm(tm) +
M∑

m=1

N∑
n=1

LPmn
∂Im(tn)

∂t
= −

∫

Vm

∇Φ(~r, t)dVm, (7)

I∑
i=1

J∑
j=1

PPijQj(tj) =

∫

Si

Φ(~r, t)dSi, (8)

where

RPmm =
1

σ

l2m
V 2

m

∫

Vm

dVm,

LPmn =
µ

4π

~lm · ~ln
|Vm||Vn|

∫

Vm

∫

Vn

G(~r, ~r′)dVndVm,

PPij =
1

4πε0

∫

Si

∫

Sj

G(~r, ~r′)dSjdSi.

The approximate circuit equation is composed of resistance, partial inductance, and

the coefficient of potential (inverse of the capacitance). Each partial element can be

obtained by computing an analytical or numerical integral. Clearly, the circuit equa-

tion can be expressed by the PEEC model [7] as shown in Figure 10. For generating
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Figure 10. Equivalent circuit model of a conductor filament and two panels for the
PEEC method [7].

the equivalent network, the PEEC method is flexible and can be combined with the

time-domain SPICE approach for simulating with non-linear components [7].

In spite of its benefits in 3-D interconnection simulation and modeling, the con-

ventional PEEC method has difficulties in modeling large 3-D interconnection struc-

tures. Bonding wire simulation examples using the PEEC method [42, 28] show a

computational cost issue due to the large full matrix generated from the interaction

among conductors. Although acceleration methods using the fast multi-pole method

(FMM) [49] or asymptotic waveform evaluation (AWE) enabled the PEEC method

to solve larger conductor problems, further improvements are required for solving 3-D

interconnections with hundreds and thousands of bonding wires.

Another issue of using the PEEC method for 3-D interconnection modeling is

addressing the cross-sectional geometry which has a cylindrical shape. Usually, many

of 3-D interconnection such as bonding wires and via interconnections have circular

cross section, so the rectangular staircase discretization shown in Figure 9 is not
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efficient to capture the geometry.

1.4.2.3 EFIE with Conduction Mode Basis Functions (CMBF)

A solution to reduce the large matrix from the classical PEEC method is to introduce

global basis functions. The method for using the global bases originates from modal

network theory [50], and its application to the modification of the PEEC method was

first proposed by Daniel et al. [51]. The global basis function is the solution of the

diffusion equation of the current density in the conductor cross section, which leads

to the following series representation [52]:

Jz(x, y) =
∑

ν

Cνe
−pνxe−qνy, (9)

where p2
ν +q2

ν = (1+j
δ

)
2
, δ = 1/

√
πfµσ is the skin depth, f is frequency, µ = 4π×10−7

is the free-space permeability, and σ is the conductivity. The combination of a small

number of basis functions can describe current crowding without filament discretiza-

tion, as shown in Figure 11. Since a few global conduction mode basis functions

(CMBF) capture skin and proximity effects, the CMBF-based method reduces the

size of the partial impedance matrix considerably compared to the classical PEEC

method.

By using the Galerkin’s method similar to the PEEC method, the CMBF-based

approach generates modal equivalent circuits. For example, the equivalent network

formed in Figure 12 is constructed with three basis functions [53]. The voltage sources

represent resistive and inductive couplings. Since the number of modal basis functions

is much less than the number of staircase basis functions in the PEEC method, the

complexity of the entire network is considerably reduced.

Although the CMBF-based method has the benefits of memory reduction and

simplified equivalent circuit model, some issues should be addressed for the simulation

and modeling of 3-D bonding wires or via interconnections. Like the rectangular

piecewise constant basis functions in the conventional PEEC method, the proposed
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Figure 11. Skin effect described by CMBFs on a rectangular conductor cross section.
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Figure 12. An example of the equivalent circuit of a conductor segment from the CMBF-
based method.

CMBF can be used for modeling rectangular geometries, which are applicable for

planar interconnections on a printed circuit board (PCB). Thus, the CMBF-based

method is not suitable for modeling circular wire bond and via interconnections.

Another issue to be considered when using the rectangular CMBF is about con-

structing a suitable set of basis functions for each conductor. Identifying the required
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modes and allocating them are important for the accurate capturing of current crowd-

ing caused by the proximity effect. In the case of brick-type conductors on a planar

substrate, “corner mode” and “edge mode” basis functions can be manually allocated

according to the physical configuration of conductors. In addition, proximity tem-

plates can be used to describe current crowding in arbitrary cross sectional shapes

[54]. Nevertheless, capturing current crowding in the 3-D interconnection structure

requires a more deliberate allocation of basis functions. The complicated 3-D ge-

ometry makes the intuitive definition of required modes very difficult, and the pro-

cess becomes almost impossible when the number of interconnections becomes large.

Therefore, for the practical use of the CMBF for generalized modeling, more efficient

ways of allocating basis functions are necessary.

1.5 Completed Research

The discussion in the previous section shows that the existing methods are not op-

timized in their accuracy and applicability for modeling interconnection structures

in 3-D integration. Therefore, for 3-D integration to be a dominant technology that

leads the system integration law, this dissertation research sets the objective as the

construction of an efficient method to model large number of 3-D interconnections

accurately. The basic methodology used in this research is to construct an integral-

equation-based model, which is associated with new types of global basis functions.

The proposed basis functions will be shown to be efficient both in the practical use

for 3-D modeling and in its computational performance. The proposed method has

been applied for modeling bonding wires in stacked ICs and TSV interconnections,

but can be generally used for other cylindrical interconnections as well.

The following work has been completed in this dissertation.

• Inductance and resistance extractions of cylindrical conductors: Since
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series inductance and resistance are the most significant interconnection para-

sitic elements, the accurate extraction of them is the fundamental goal of this

dissertation. To calculate frequency-dependent resistances and inductances, a

new cylindrical conduction mode basis function (CMBF) is developed. The

cylindrical CMBFs automatically capture arbitrary current density distribution

in the cross section of conductors, so skin and proximity effects can be easily

included. The modal partial resistance and inductances are calculated, and two

efficiency enhancement schemes are used for accelerating the inductance matrix

generation. Several validation examples show that the calculated inductances

and resistances are well matched with the existing simulation tools, and the

computational time of the proposed method is considerably reduced.

• Capacitance extraction of cylindrical conductors: Accurate modeling of

the capacitive coupling is important for high-frequency characterization of 3-D

interconnections. Thus, a new cylindrical accumulation mode basis function

(AMBF) is developed to capture the charge density distribution on a cylindri-

cal conductor, and modal partial coefficients of potential are calculated from

the scalar potential integral equation. For modeling molded interconnections,

the formulation is generalized to the case that interconnections are in lossless

dielectric background media. The broadband parasitic model is generated by

combining the series R-L model and the capacitive coupling model. Two ca-

pacitance calculation examples are shown to validate the proposed method with

the existing analytic and simulation data.

• Bonding wire modeling with the inclusion of planar coupling: The con-

structed RLC modeling method can be applied to extract parasitic elements of

coupled bonding wires, but more accurate bonding wire modeling requires the

consideration of the coupling from other planar structures such as bonding pads,
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finite ground planes/rings, and planar interconnections. To capture the effect of

planar structures, the integral equations are re-formulated to couple the cylin-

drical CMBF/AMBF with piecewise constant basis functions. In addition, the

image method is used for approximating large and solid ground plane. Mod-

eling examples of bonding wires in packaged IC stacks validates the proposed

method with the full-wave EM simulation results.

• TSV interconnection modeling with modal excess capacitance ex-

traction: TSV interconnections can be modeled by using the proposed modal

RLGC model, but the effect of oxide coating around the via conductor should

be considered additionally. Thus, a new cylindrical polarization mode basis

function (PMBF) is developed to capture polarization currents in the oxide

region. The resultant modeling with the cylindrical PMBF produces excess ca-

pacitances in a similar way of the conventional PEEC method [48]. Although

some low-frequency errors are observed, the proposed preliminary method can

characterize a large number of TSV interconnections efficiently.

1.6 Dissertation Outline

The rest of this dissertation consists of the following chapters. Chapter 2 proposes

inductance and resistance calculation method based on the electric field integral equa-

tion combined with cylindrical CMBFs. Details of EFIE formulation, partial element

calculations, and modal voltage differences are presented. Chapter 3 discusses the

capacitance and conductance calculation method based on the scalar potential inte-

gral equation with cylindrical AMBF. A modal voltage equation is constructed in a

similar way as in Chapter 2.

After presenting the theoretical framework in Chapter 2 and 3, the following

chapters presents the application to model 3-D interconnections. Chapter 4 models

typical bonding wire structures that are combined with ground plane and other planar
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structures. Chapter 5 discusses TSV modeling. To consider the current leakage to

the substrate, thin insulators are modeled with the cylindrical PMBF. The lossy

dielectric effect is also included. Chapter 6 concludes this dissertation and proposes

future work.
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CHAPTER 2

INDUCTANCE AND RESISTANCE EXTRACTIONS OF
CYLINDRICAL INTERCONNECTIONS

As discussed in the introduction, 3-D integration enables the miniaturization of sys-

tems. However, a major difficulty in the realization of such systems is the parasitics

of the 3-D interconnections. Hence, the modeling of such interconnection parasitic

elements is significant. Among the 3-D interconnection modeling tasks, the extrac-

tions of the conductor resistance and the inductance are especially important since

they are dominant elements that determine the electrical characteristics of the inter-

connections from DC to high frequencies.

The main difficulty of inductance and resistance extractions arises when captur-

ing their frequency-dependent behaviors. These behaviors originate from the induc-

tive reactance in the internal region of the interconnection. As frequency increases,

current flows on the surface of the interconnection, so the effective cross sectional

area for the current is reduced. The resultant increase in the high-frequency inter-

connection resistance is called the skin effect [55]. The current density distribution

is more complicated when several interconnections are inductively coupled to each

other. Depending on the conductor orientation and the relative current directions,

the high-frequency currents can crowd in a localized region. This behavior is called

the proximity effect, which can further increase the high-frequency resistance. With

the existing methods, modeling the skin and the proximity effects in 3-D intercon-

nections can be challenging.

To address the high-frequency issues in modeling a large number of 3-D intercon-

nections, this chapter proposes an efficient modeling method that extracts an equiv-

alent network from the approximation of the volume electric field integral equation

(EFIE). The proposed method is based on the same framework as the partial element
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equivalent circuit (PEEC) method [46], but it is different in that it uses the global

conduction mode basis functions (CMBF). The original work [56] used the CMBF to

improve efficiency for modeling planar interconnections. However, this approach was

not suitable for cylindrical geometries, which is necessary for modeling conductors

with a cylindrical cross section arising in 3-D integration. Therefore, this chapter

utilizes another type of basis function called the cylindrical CMBF.

This chapter is organized as follows. Section 2.1 introduces the CMBF with its

classification and discusses the formulation of the EFIE combined with the basis func-

tions. The formulation procedure also includes the computation of partial resistances

and inductances and the construction of equivalent circuits. Section 2.2 discusses the

implementation of the proposed method with two schemes to achieve the capability

required for modeling a large number of 3-D interconnections. Section 2.3 shows sev-

eral application examples that validate the accuracy and efficiency of the proposed

method, followed by the summary in Section 2.4.

2.1 Formulation of EFIE with Cylindrical CMBFs

This section introduces the cylindrical CMBF with its classification and applies the

basis functions to the construction of equivalent circuit equations. Several techniques

for computing partial resistances and inductances are discussed as well.

2.1.1 Cylindrical CMBF

The main feature of the CMBF is that it globally describes the current density dis-

tribution in the cross section of a conductor. Using this global nature of the CMBF

reduces the required number of basis functions, which can be large when using lo-

calized constant basis functions [46]. Clearly, the smaller number of bases has merit

for reducing the size of the partial impedance matrix, as discussed in the use of the

CMBF for rectangular geometries [56].
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The cylindrical CMBFs are constructed from the following current density diffu-

sion equation [50].

∇×∇× ~J + α2 ~J = 0, (10)

where ~J is the current density (A/m2), α2 = −jωµσ = −
(

1+j
δ

)2

, ω = 2πf is angular

frequency (rad/sec), µ = 4π × 10−7 is the free-space permeability (H/m), σ is the

conductivity (S/m), and δ = 1/
√

πfµσ is the skin depth (m). One assumption

for deriving (10) from Maxwell’s equations is that the medium is a good conductor

(σ À ωε). The other assumption about the current density is that it flows in the

axial direction without any longitudinal variation. These assumptions are valid for

thin conductors used in practice. By inserting ~J = Jz(ρ, ϕ)ẑ, (10) is simplified to the

following equation in cylindrical coordinates:

1

ρ

∂

∂ρ
[ρ

∂Jz

∂ρ
] +

1

ρ2

∂2Jz

∂ϕ2
+ α2Jz = 0. (11)

By using the separation of variables, i.e., Jz(ρ, ϕ) = R(ρ)Φ(ϕ), (11) is separated into

the following two ordinary differential equations.

ρ2R′′(ρ) + ρR′(ρ) + (α2ρ2 − ν2)R(ρ) = 0. (12)

Φ′′(ϕ) + ν2Φ(ϕ) = 0. (13)

Since the current density distribution should be continuous over the conductor cross

section, the solutions of (13) are periodic (harmonic) functions, and ν should be an

integer n. Substituting ν2 with n2 converts (12) to the Bessel differential equation

of order n. Therefore, the basis functions, which are the solutions of the diffusion

equation, have the following form [57].

cos(n(ϕ− ϕ0))Jn(αρ) n = 0, 1, 2, · · · , (14)

where Jn(αρ) is the nth order Bessel function or Kelvin function [58], the asymptotic

behavior of which is the exponential function of ρ. For the use of (14) as basis

functions, a proper classification of the order n and the orientation ϕ0 is necessary.
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The physical behavior of the bases with different orders classifies the cylindrical

CMBFs into skin-effect (SE) and proximity-effect (PE) modes. The SE-mode basis

is the fundamental-order (n = 0) function, which shows the same behavior as that

of the skin-effect current distribution in a circular cross section. The PE modes are

the remaining higher-order (n > 0) basis functions, which have sinusoidal behav-

iors in their angular variations. The collection of the harmonic angular functions in

PE modes enables the description of current crowding caused by proximity effects.

Considering that Fourier series expansion can express any periodic function of ϕ, we

classify two orthogonal basis functions for each order of the PE modes. In summary,

the cylindrical CMBFs are classified into the following groups for the ith conductor

in global coordinates:

Skin-effect (SE) mode (n = 0):

~wi0 =





ẑi

Ai0
J0(α(~r − ~ri) · ρ̂i) ~r ∈ Vi

0 elsewhere
, (15)

Proximity-effect, direct (PE-d) mode (n > 0):

~wind =





ẑi

Ain
Jn(α(~r − ~ri) · ρ̂i) cos(nϕi) ~r ∈ Vi

0 elsewhere
, (16)

Proximity-effect, quadrature (PE-q) mode (n > 0):

~winq =





ẑi

Ain
Jn(α(~r − ~ri) · ρ̂i) sin(nϕi) ~r ∈ Vi

0 elsewhere
, (17)

where ~r = xx̂ + yŷ + zẑ is a point in the ith conductor, ~ri = xi0x̂ + yi0ŷ + zi0ẑ is the

center point of the ith conductor, and Ain is the effective area. Ain is the constant

that normalizes the basis function so that the integration of the function over the

cross section equals unity. If n = 0, the effective area can be found as follows.

Ai0 =
2πρi

α
J1(αρi). (18)
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However, the integration of the higher-order basis functions (n ≥ 1) should be zero

because of the harmonic component in the ϕ direction. Thus, the normalization is

redefined as follows. ∫

Sin

~win · d~S =
1

2n
, (19)

where Sin is a part of the cross section occupied by a half period of the harmonic

function, which is 1
2n

of the entire cross sectional area. By inserting (16) or (17) into

(19):

Ain =
22−nαnρ2+n

i

(2 + n)n!
1F2

(
1 +

n

2
; {2 +

n

2
, 1 + n};−1

4
α2ρ2

i

)
, (20)

where 1F2 is one of the forms of the generalized hypergeometric function.

A main advantage of using the cylindrical CMBF is that the orthogonal PE-mode

bases automatically capture current crowding in any orientation. This feature makes

the proposed method free from pre-constructing the shapes of the basis functions

based on conductor geometry or the generation of proximity templates [54]. Thus, we

can apply the cylindrical CMBF for more general 3-D interconnection problems, where

many conductor segments are located in a complicated fashion. For example, Figure

13 demonstrates how the linear combination of SE- and PE-mode basis functions

describes a specified current density distribution induced by the proximity of nearby

conductors.

2.1.2 EFIE Formulation

The previously defined cylindrical CMBFs are inserted into the volume EFIE to form

equivalent voltage equations, which are composed of the modal partial impedances

of each conductor. This subsection outlines the formulation procedure, including the

calculation of the impedances and the construction of the equivalent network.
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Figure 13. Examples of cylindrical CMBFs at 108 Hz and their combination to generate
a current density distribution.

2.1.2.1 Voltage Equation

As in the classical PEEC method [46] and the original CMBF-based method [56], the

proposed method approximates the following volume EFIE.

~J(~r, ω)

σ
+ j

ωµ

4π

∫

V ′
G(~r, ~r′) ~J(~r′, ω)dV ′ = −∇Φ(~r, ω), (21)

where Φ(~r, ω) is electric potential (V) and G(~r, ~r′) = e−jk0|~r−~rj |/|~r − ~rj| is the Green’s

function. An assumption used in this chapter is that the maximum size of the problem

space is much smaller than the wavelength of the maximum modeling frequency, so

the retardation term (e−jk0|~r−~rj |) is negligible as in the (Lp, R) PEEC method [26].

Figure 14 defines a general N -conductor system to be discussed in this section. As

discussed in the previous subsection, a major difference of the CMBF-based method

from the classical PEEC method is that the integral equation is not discretized to

volume filaments but to globally-defined conduction modes. However, each cylindrical

CMBF is localized to each conductor, as shown in (15) to (17). Therefore, for the
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Figure 14. General configuration of N-cylindrical conductor system.

approximation of current density on a conductor segment j, basis functions that

belong to the conductor are combined as follows:

~Jj(~r, ω) ∼=
∑
n,q

Ijnq ~wjnq(~r, ω). (22)

By inserting the approximation (22) into the current density term in (21) and

applying the following inner product based on Galerkin’s method,

〈~wimd(~r, ω), ~x〉 =

∫

V

~w∗
imd(~r, ω) · ~xdV, (23)

we obtain the voltage equation containing the following partial resistance, partial

inductance, and modal voltage difference.

∑
n,q

IjnqRimd,jnq + jω
∑
n,q

IjnqLimd,jnq = ∆V j
imd, (24)

where

Rimd,jnq =
1

σ

∫

Vi

~w∗
imd(~ri, ω) · ~wjnq(~rj, ω)dVi,

Limd,jnq =
µ

4π

∫

Vi

∫

Vj

~w∗
imd(~ri, ω) · ~wjnq(~rj, ω)

1

|~ri − ~rj|dVjdVi,
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and

∆V j
imd = −

∫

Si

Φj(~ri)~w∗
imd(~ri, ω) · d~Si.

After applying the same inner products with other basis functions in the ith con-

ductor, we can combine all voltage equations into the following submatrix equation,

which represents the interactions between all modes in two conductors i and j.

(Rij + jωLij)Ij = Vj
i, (25)

where

Rij =




Ri0,j0 Ri0,j1d . . . Ri0,jNq

Ri1d,j0 Ri1d,j1d . . . Ri1d,jNq

. . .

RiMq,j0 RiMq,j1d . . . RiMq,jNq




,

Lij =




Li0,j0 Li0,j1d . . . Li0,jNq

Li1d,j0 Li1d,j1d . . . Li1d,jNq

. . .

LiMq,j0 LiMq,j1d . . . LiMq,jNq




,

Ij =

(
Ij0 Ij1d · · · IjNq

)T

,

and

Vj
i =

(
∆V j

i0 ∆V j
i1d · · · ∆V j

iMq

)T

.

Finally, all the submatrix equations between conductor segments congregate to

form the global impedance matrix equation, whicn contains loss and inductive cou-

pling in the entire conductor system. The size of the global impedance matrix is

approximately (NcNm) × (NcNm), where Nc and Nm are the number of conductor

segments and the required number of modes for a conductor, respectively. Nm is one

when only the SE mode is used and is more than one when additional PE modes are

used. From a practical standpoint, the number of PE-mode basis pairs is two or three
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for accurately describing current crowding, so the required memory of the proposed

method is considerably reduced compared to that of the classical PEEC method. An

exemplary convergence study is shown in Section 2.3.1. Controlling the number of

PE bases, to be discussed in Section 2.2, further reduces the computational cost.

2.1.2.2 Partial Impedances

The calculation of partial resistances and inductances in (24), which involve the com-

putation of sixfold integrals with frequency-dependent integrands, can be computa-

tionally expensive. This section discusses analytical and numerical integration tech-

niques that can reduce computation time.

For partial resistances, indefinite integrals can be easily found, and the mutual

resistances vanish because of the local and orthogonal properties of the cylindrical

CMBFs. Therefore, the global matrix of partial resistances becomes diagonal in the

form:

Rimd,jnq =





πδ2ρili
σ|Ai0|2=(αJ∗0 (αρi)J1(αρi)) i = j,m = n = 0

πδ2ρili
2σ|Aim|2=(α∗J∗m−1(αρi)Jm(αρi)) i = j,m = n 6= 0, d = q

0 otherwise

. (26)

The partial resistance from the SE mode is actually identical to the analytic internal

resistance formula of a cylinder [59]. The derivation of (26) is shown in Appendix A.

In contrast to the partial resistances, closed-form expressions of the partial in-

ductances cannot be found; therefore numerical methods need to be used. However,

analytical integrations over three variables can reduce the original sixfold integral to

the following triple integral:

Limd,inq =
µ

8π

∫ ρi

0

∫ ρi

0

∫ 2π

0

ρρ′
J∗m(αρ)Jn(αρ′)

A∗
imAin

IϕΣ
Izdϕ∆dρ′dρ, (27)
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where

IϕΣ
(ϕ∆) =





8π − 4ϕ∆ m = n = 0

2(2π − ϕ∆) cos (nϕ∆)− 2
n

sin (nϕ∆) cos (2ϕd) m = n 6= 0, d = q

4(−1)m+n+1

m2−n2 [m sin (mϕ∆)− n sin (nϕ∆)] m 6= n, d = q(PE-d)

4(−1)m+n+1

m2−n2 [n sin (mϕ∆)−m sin (nϕ∆)] m 6= n, d = q(PE-q)

0 otherwise

,

Iz(D, li) = 2(
√

D2 −
√

l2i + D2) + li log

[
l2i +

√
l2i + D2

−l2i +
√

l2i + D2

]
,

and

D2(ρ, ρ′, ϕ∆) = ρ2 + ρ′2 − 2ρρ′ cos ϕ∆.

D2(ρ, ρ′, ϕ∆) is the distance between two points on the cross sectional plane. ϕ∆ is a

new angular variable that is obtained from the following coordinate transformation

of ϕ and ϕ′, which is useful for both reducing computational cost and avoiding the

Green’s function singularity during numerical integrations [60].




ϕ∆

ϕΣ


 =




1 −1

1 1







ϕ

ϕ′


 . (28)

Since the Green’s function is not a function of ϕΣ, the indefinite integral over ϕΣ

reduces one of the six numerical integrals. The detailed derivation of IϕΣ
(ϕ∆) is shown

in Appendix B. In the remaining numerical integrals, singular points of the integrands

are concentrated on a line where both ϕ∆ = 0 and ρ = ρ′ hold. In numerical

integration based on adaptive Lobatto quadrature [61], the singular points are simply

avoided by adjusting the starting points as a small value such that ϕ∆ = 0.01π.

For the calculation of the partial mutual inductances, we rewrite the inductance

formula in (24) with the following frequency-dependent and frequency-independent

parts:

Limd,jnq =
µ

4π

∫

ρj ,ρi

ρiρj
Jm

∗(αρi)Jn(αρj)

A∗
imdAjnq

Iz,ϕ(ρi, ρj)dρidρj, (29)
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Figure 15. Definition of the orientation parameters between the two separate cylinder
segments.

where

Iz,ϕ(ρi, ρj) =

∫

ϕj ,ϕi

cos (ϕi − ϕi,d) cos (ϕj − ϕj,q)×
∫

zj ,zi

(ẑi · ẑj)

|~ri − ~rj|dzidzjdϕidϕj.

The frequency-independent Iz,ϕ(ρi, ρj) is composed of analytical integration over

(zi, zj) and numerical integration over (ϕi, ϕj).

For the calculation of the analytical integral over (zi, zj), the distance between

two points in two different conductor segments should be formulated with predefined

orientations. In Figure 15, translation and rotation (based on Euler angles) can be

determined from the defined global coordinates. Then, each point in a conductor is

specified with the local cylindrical coordinates, which are related to the cylindrical

CMBFs. With the calculated distance, we can obtain indefinite integrals for axial

variables (zi, zj), as discussed in Appendix C. This analytical expression is more

generalized than that of the two thin conductor filaments [30] since it contains local
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coordinate variables that represent the inside of the two conductor segments.

To reduce total frequency sweep time, the frequency-independent integrals (Iz,ϕs)

over (ϕi, ϕj) can be computed before the sweep simulation. The precomputed frequency-

independent Iz,ϕ is multiplied by the frequency-dependent integrands during the nu-

merical integration over (ρi, ρj). One issue of this approach is that storing the values

of Iz,ϕs for every point of (ρi, ρj) requires a large amount of memory. Fortunately,

we can reduce the memory requirement by using the property that Iz,ϕ(ρi, ρj) is a

“smooth” bivariate function. That is, the variations in the frequency-independent

part of the integrand are smaller than those in the frequency-dependent Kelvin func-

tions. Therefore, after computing integration values for only a small number of data

points, the following simple interpolation formula can be used:

Iz,ϕ(ρi, ρj) ' (1− s)(1− t)Ip,q + s(1− t)Ip,q+1 + (1− s)tIp+1,q + stIp+1,q+1, (30)

where 0 ≤ s, t ≤ 1 are interpolation parameters, and Ip,qs are sampled points near

(ρi, ρj). Each Ip,q is obtained by double numerical integration over (ϕi, ϕj) based

on adaptive Simpson quadrature rule. The total number of the sampled points is

determined adaptively according to the relative variation of the Green’s function.

For integrals over the remaining two variables (ρi, ρj), the double integral using

adaptive Lobatto quadrature [61] was used since the algorithm provides improved

accuracy and reliability compared to adaptive Simpson quadrature and other higher-

order quadratures [62].

2.1.2.3 Equivalent Circuit

In addition to the calculated partial resistances and inductances, the modal voltage

difference should be considered to generate the global impedance matrix equation

and the corresponding equivalent circuit. Since ∆V j
imd = 0 when i 6= j, the combined

modal voltage difference is reduced as follows:

∆Vimd =
∑

j

∆V j
imd = ∆V i

imd, (31)
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where V j
imd’s are modal voltages induced by the jth current density in (24). Since the

integral over the lateral surface of a cylinder is zero, we can simplify ∆Vimd to the

integral over the inlet and the outlet planes (S−i and S+
i , respectively) as follows:

∆Vimd = −
∫

S+
i

Φ( ~r+)~w∗
imd(~ri, ω) · d ~S+

i −
∫

S−i

Φ( ~r−)~w∗
imd(~ri, ω) · d ~S−i , (32)

where the potentials Φ( ~r+) and Φ( ~r−) are assumed to be constant over the cross

section.

When the SE-mode basis is involved, the integrals of ~w∗
imd in (32) are unity since

the basis functions are normalized, as discussed in Section 2.1. Thus, the modal

potential difference becomes the actual voltage difference between the two nodes.

In the case where the PE-mode bases are involved, the modal potential difference

becomes zero since the integral of the harmonic functions in the higher-order bases

vanish. In summary, the global impedance matrix equation can be expressed as

follows: 


Zss Zsp

Zps Zpp







Is

Ip


 =




∆Vi

0


 , (33)

where Zss, Zsp, Zps, and Zpp are partial impedances grouped by SE and PE modes,

Is and Ip are skin- and proximity-effect currents, and ∆Vi is the voltage difference

across a conductor segment.

From the viewpoint of circuit topology, the equivalent circuit generated from the

PE-mode basis function forms a closed loop like a shielded conductor, which is induc-

tively coupled with the other circuits. In an example of the equivalent circuit of two

conductor segments (Figure 16), two branches are generated from the SE-mode par-

tial components, and eight loops come from four orthogonal pairs of two PE modes.

The number of PE-mode loops varies according to the strength of the proximity effect.

Extending the two-conductor model, Figure 17 illustrates a general equivalent

network of coupled 3-D bonding wires. The wires are approximated using connections

of several straight conductors, and the physically connected nodes are identical to the
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Figure 16. Equivalent circuit example of two coupled cylinders. Two PE-mode basis
functions are included for each conductor.

circuit nodes of the SE branches. During the approximation of the bonding wires

with the conductor segment model, the number of segments is controlled so that

the approximate model captures the original curvature of bonding wires accurately.

Since the proposed method assumes that current flows in the axial direction only,

the current distribution may be inaccurate, especially at any sharp edge connecting

adjoining conductor segments.

2.2 Efficiency Enhancements and Implementation

The proposed method discussed throughout the previous section has the benefit of

using the equivalent network’s system matrix (33), which is much smaller than the

matrix using the classical PEEC method. However, the calculation of the partial

impedances (24) for each frequency step is more complicated than the classical PEEC
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Figure 17. Equivalent circuit of two bonding wires.

method. Therefore, for the modeling of 3-D interconnections in SiP, further reduction

of computational cost is necessary.

2.2.1 Controlling the Number of PE-Mode Basis Functions

One of the ideas for reducing computational cost is to use the number of higher-order

(PE-mode) bases differently for each neighboring conductor [63]. We can assign a

reduced number of higher-order bases to each conductor because calculations related

to the higher-order basis functions are not necessary when the distance between two

conductors is sufficiently large or when the coupling coefficient is small enough. This

can be explained more clearly with an example (see Figure 18). Here we select an

arbitrary conductor (e.g., conductor i) and group its neighboring conductors according

to their different coupling levels to the conductor i. For the group of conductors
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that is within the close proximity to the conductor i, such as conductor j in Figure

18, the computation of PE-mode interactions is required up to the second order.

However, for those that are more distant from conductor i, such as conductor k,

only the computation of the first order PE-mode interaction is required. Then, when

generating the matrices involving PE-mode bases, only partial mutual inductances

between the required PE modes are computed and filled, and other elements are set to

zero, as shown in Figure 19. Therefore, besides reducing the time to compute modal

Frequency dependent

CMBF-involved integral

Frequency

independent

approximate integral

Frequency

independent

approximate integral
Up to the 1st order PE mode

Up to the 2nd order PE mode

Up to the 3rd order PE mode

SE mode only

i

j

k

l

Figure 18. Conceptual diagram of two efficiency enhancement schemes.

mutual inductances, we can save memory for storing non-zero elements because such

grouping enables the higher-order submatrices (Zsp, Zps, and Zpp) of the partial

impedance matrix to become sparse.

In the actual calculation of the required number of PE-mode basis functions in

each group, we need to consider two key parameters. One is the initial coupling
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d, q:
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PE-mode order index
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i

Figure 19. Matrix (Zpp) filling example involving the conductor i in (a). ’X’s and ’0’s
represent computed non-zero elements and zeros, respectively.

coefficient obtained with SE-mode bases only, and the other is the aspect ratio of

the diameter to length of a cylinder. These parameters have the following important

characteristics. The higher the initial coupling coefficient and the larger the aspect

ratio, the more higher-order PE-mode basis functions are required. We can show these

characteristics by drawing the boundaries of the required number of basis functions

under a defined error bound (10−3 for example) in Figure 20, which are obtained

by computing relative errors in the resultant coupling coefficients for various aspect

ratios and initial coupling coefficients.

However, the numerical experiments of Figure 20 are based on a simplified case

where the two conductors are parallel and have identical shape (thus aspect ratio).

Therefore, one might expect that more rigorous evaluation covering other possible

cases where the two conductors have different orientation and shapes from each other

is necessary. However, the proximity effect arising from parallel conductors is the

maximum compared to other cases of arbitrarily oriented conductors; hence the re-

quired PE modes are maximized as well. As for the issue of different shapes of

cylinders, we can select the largest aspect ratio among cylinders when determining
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Figure 20. Relative error boundaries that define the required cylindrical CMBFs at 10
GHz (from copper two-parallel-conductor experiments.

the required number of PE modes.

2.2.2 Multi-Function Method (MFM)

In addition to the PE-mode order reduction, we can use simplified approximate inte-

grals to reduce the computational cost of generating Zss. Since the approximations

are frequency-independent, the number of Zss elements to be calculated is reduced

during a frequency sweep. Therefore, the computational effort of generating the dense

matrix becomes that of generating a banded matrix.

When the two conductors are sufficiently separated (Figure 18), the variation of

current density in conductors is negligible. Thus, the following thin-filament approx-

imation can be used instead:

Li,j =
µ

4π

∫

zi

∫

zj

G(~ri, ~rj)dzjdzi. (34)

The integrand in the above double integral does not contain frequency-dependent
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CMBFs and can be calculated analytically for any orientation of two straight con-

ductor segments [30]. The accuracy of the thin-filament approximation is ensured

when the distance between conductors is sufficiently large. The numerical experi-

ments of two parallel cylinders with various dimensions show that the relative error

of the thin-filament approximation from the exact integral depends on the aspect ra-

tio of diameter to length of a cylinder, as in the case of the PE-mode order reduction.

Figure 21 shows the boundary where the thin-filament approximation maintains the

relative error less than 10−3. The threshold pitch of using the frequency-independent

approximations is usually higher than that of the controlling higher-order bases.
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Figure 21. Error thresholds of using the thin-filament approximation as a function of
diameter per length at 10 GHz.

For a conductor system occupying a very large dimension, the following center-

to-center approximation [64] is also available:

Li,j =
µ

4π

lilj
Rij

, (35)

where li, lj, and Rij are the length of the ith and the jth conductor, and the distance
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between the centers of the two conductors, respectively. From a similar numerical ex-

periment, the relative pitch (w.r.t. length) where the center-to-center approximation

is available is about 9.12, regardless of the cylinder lengths.

2.2.3 Implementation of Modeling Tool

Based on the discussed impedance calculation and efficiency enhancement schemes,

we developed an inductance extraction tool called IPEX3D (Interconnection Parasitic

Extractor for 3-D integration). The flowchart in Figure 22 shows how the procedures

of controlling PE-mode bases and MFM are combined with the basic impedance

computation routine.

Start

Define error bound 

and thresholds.

Initial distance

Dmin,i,j

Dmin,i,j > D
*

min

Compute

(freq-independent part)

Compute Zss( f )

Determine number of 
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jizI ,,

Figure 22. Flowchart of the 3-D inductance extraction tool.

In the beginning of the flowchart, the availability of using MFM is tested for

every pair of conductors. If the distance between the conductors is larger than a

defined threshold distance, the thin-filament approximate integral can be computed

for frequency-independent mutual inductance. If the distance is not large enough

for the approximation, sampled values of the frequency-independent integral Iz,ϕ are

computed before the frequency sweep simulation.
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During the frequency sweep, impedances from SE modes (Zss) are computed first.

Initial coupling coefficients found from Zss determine the required number of PE-mode

basis functions by using the diagram in Figure 20. The total number of PE-mode

bases determines the size of Zpp and Zsp, whose values are computed at the latter

part of the frequency sweep. Finally, conductor and wire impedances Zc and Zw are

found from the matrix equation (33).

In the later chapters, the IPEX3D will be extended to extract capacitive couplings

from cylindrical interconnections and coupling from planar structures.

2.3 Validation

In this section, the accuracy of the proposed method is validated by a comparison

with existing simulation tools. Additionally, the efficiency of the proposed method is

demonstrated with its application to large interconnection structures. All simulations

were performed using an Intel(R) Xeon 3 GHz CPU with 3.25 GB RAM.

2.3.1 Convergence Study with Two Parallel Cylindrical Conductors

As discussed in Section 2.1.2.1, the required number of basis function orders can be

about two or three in usual interconnection problems. In this subsection, a simple

example of two parallel cylinders shows a convergence characteristic with a small

number of basis functions. Figure 23 illustrates the two parallel cylindrical conduc-

tors, where D = 40µm, d = 30µm, and L = 100µm. The ends of a conductor are

grounded, and the impedances between the terminals of the other conductor were

observed.

Figure 24 shows the resistance and inductance values of the structure in Figure

23 with an increasing number of basis function orders. As we increase the number

of higher-order basis functions, the resistance and inductance values converge to the

results that were computed in FastHenry. By using the method proposed in this

chapter, the first and the second order PE-mode basis functions are sufficient to
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Figure 23. Geometry of two parallel cylindrical copper conductors with grounding and
loop definitions.
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Figure 24. Loop resistances and inductances of cylindrical conductor with different uses
of basis functions.

capture the accurate electrical parameters.

2.3.2 Accuracy Validation with Three Cylindrical Conductors

This subsection demonstrates simple three-conductor problems for evaluating the ac-

curacy of the proposed approach. The test structure is shown in Figure 25, where two

conductors (1 and 2) are connected at the far end with the other conductor grounded.

Since the accuracy of the proposed method should be examined for arbitrary orienta-

tions of conductor segments, we applied variations in rolling angle (θR), yawing angle

(θY ), and parallel shift (Ls) of the conductor 1.
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Figure 25. Geometry of three parallel cylindrical copper conductors. (Three parallel
aligned cylinders.)

Loop resistances and inductances from these situations were compared with the

results from FastHenry [49], which is an inductance extracting tool based on the

PEEC method combined with the Fast Multipole Method (FMM). Since FastHenry

uses brick-type filaments for modeling interconnection geometry, we constructed ap-

proximate cylinder model with the brick elements, as shown in Figure 26. For all

the simulation cases, a logarithmic frequency sweep from 104 to 1010 Hz was used,

and the total number of frequency points was 31. Figure 27 shows that the loop

resistances and inductances obtained from the proposed method and FastHenry are

well matched for all geometric variations. In Table 2 showing the relative accuracy of

IPEX3D data (compared to FastHenry), the high-frequency error for loop resistances

in the case of the shifted conductor is significant. It is because the conductor model

used in IPEX3D does not capture accurately the proximity effect, which is concen-

trated in the overlapping regions of adjacent conductors. This error can be removed

by increasing the number of segments along the axial direction (local Z directions in

Figure 15).

As shown in Table 2, IPEX3D requires much less simulation time than FastHenry

mainly because the number of basis functions is considerably small. The huge simula-

tion times of FastHenry is due to the approximate discretization of the circular cross

section, which may not be suitable for the optimal matrix computation, especially at

high frequencies. The number of the required bases in IPEX3D varies with coupling
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Figure 26. Discretized approximate model of cylindrical conductors in FastHenry. The
number of bricks per cross section is 378.

Table 2. Comparison of IPEX3D and FastHenry for three cylinder problem

Total Maximum
simulation relative
time (sec.)1 error (%)2

FastHenry IPEX3D loop R loop L
0 29065.0 860.9 3.01 0.92
5 30213.5 1009.14 6.38 1.7

θR (deg.) 10 22023.1 944.79 5.64 1.46
15 17633.1 710.57 4.81 1.17
20 15571.6 601.47 4.14 0.94
5 9240.05 725.88 5.68 0.28

θY (deg.) 10 5225.37 608.65 4.83 0.15
15 10444.6 604.6 5.0 0.15
20 9488.7 609.0 5.15 0.22
0.1 35840.1 878.22 5.23 2.19

LS (mm) 0.3 27670.5 510.22 7.59 2.87
0.5 25928.3 616.84 11.37 2.88
0.7 9134.4 509.40 1.76 0.19

levels for different conductor orientations. In this example, up to seven basis functions

(one SE mode and six PE modes) were required. The simulation time also depends on

the geometric configuration, but the effect is small because the integrations involving

conductor orientations are not related to frequency.
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Figure 27. Loop resistances and inductances of cylindrical conductors with geometric
variations of conductor 1. (circles: FastHenry, lines: IPEX3D)
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2.3.3 Scalability Analysis with THV Array

This subsection shows required speed and memory for the modeling of the THV array

in Figure 28 with increasing number of interconnections for two different pitches (30

and 50 µm). The THV array is a good configuration to perform the scalability analysis

of the proposed method since it suffers from strong inductive couplings caused by the

small pitch sizes. In addition, the electrical parameters of the THV array are useful for

predicting the characteristics of emerging interconnection structures such as through

silicon via (TSV) and ball grid array (BGA) interconnections.

X

Y

m100

m25
30

N = 3, 5 - 25

m50or
pitch:

N = 3, 5 - 25

diameter:

length:

Figure 28. Copper THV array configuration.

Before performing the scalability analysis, resistances and inductances of a simple

3-by-3 THV array with pitch of 30 µm was validated with FastHenry. Figure 29 shows

all the inductance and resistance values, and Table 3 compares the performance of

the two simulators. As in the case of the previous subsection, the number of basis

functions in IPEX3D is much smaller than that in FastHenry, so the simulation time

of IPEX3D is considerably smaller. The possible sources of error (based on matrix

norm) of the IPEX3D results relative to FastHenry, which are less than 6.5% as shown
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Figure 29. Resistances and inductances of conductors in 3-by-3 THV array. (circles:
FastHenry, lines: IPEX3D)

in Table 4, comes from the discretization of circular cross section in FastHenry. Table

5 shows required time for numerical integrations. The integration of self inductances

needs more effort than that of mutual inductances, but the total time for computing

all the mutual elements takes more time. For both self and mutual inductances,

integration time increases with frequency.

Since the dominant factor that determines the simulation speed of the proposed

method is the time for generating the system matrix, the scalability analysis is focused

on the measured values of the number of non-zero elements, as shown in Figure 30
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Table 3. Comparison of IPEX3D and FastHenry for 3-by-3 THV array problem

FastHenry IPEX3D
Number of frequency points 19 19
Number of basis functions3 378 5
Total simulation time (sec.) 7624.15 1199.27

Table 4. Relative matrix errors of IPEX3D to FastHenry (in %) for 3-by-3 THV array
problem

R L
Average 1.52829 0.38416
Maximum 6.5434 (10 GHz) 1.3448 (10 GHz)

(a) for two different pitches. Although the submatrix Zss should be dense, controlling

the number of PE-mode basis functions reduces the number of non-zeros in Zpp and

Zsp. The number of non-zero elements directly influences the time for generating

the system matrix in Figure 30 (b), which indicates that the computation time of

the proposed method is between O(N1.6) and O(N1.8), where N is the number of

conductors.

The overall computational cost is actually a function of the strength of inductive

coupling. Compared to the case of 30 µm pitch, the increased pitch (50 µm) requires

much less simulation time. Although today’s design trend is to reduce the pitch size

among interconnections, the pitch of 50 µm between conductors with the interconnect

diameter of 25 µm is sufficiently small in current technology.

Figure 31 shows current density distribution of 20-by-20 THV array with an ‘E’-

shaped differential excitation. As frequency increases from 107 to 109 Hz, skin and

proximity effects become dominant, resulting in current crowding along the boundary

Table 5. Numerical integration time of IPEX3D (in seconds/element) for 3-by-3 THV
array problem

Self inductance Mutual inductance
Pre-computation N/A 0.296
Frequency sweep (avg.) 0.806 0.131
Frequency sweep (max.) 1.422 (10 GHz) 0.406 (4.6 GHz)
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Figure 30. Scalability analysis of the proposed method with THV array model. The
number of frequency points is 30.

of the differentially excited conductors. Figure 32 shows resistances and inductances

of 19 diagonal conductors with an edge conductor grounded. Different proximity

effects and ground effects make the large variety of high-frequency resistances and
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(a) Excitation distribution. (b) 107 Hz.

(c) 108 Hz. (d) 109 Hz.

Figure 31. A current density distribution at different frequencies in 20-by-20 THV
array. Excitation voltages to the dark and the light parts of (a) are -1 and +1 volts,
respectively.

inductances.

2.4 Summary

This chapter presented an efficient method for extracting the frequency-dependent

resistance and inductance from a large number of interconnections that are used in

today’s 3-D packaging. Unlike currently available methods, the proposed method

improves the efficiency by using cylindrical CMBFs, whose global property reduces
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Figure 32. Resistances and inductances of diagonal conductors in 20-by-20 THV array.

the size of the system matrix. In addition, the orthogonal property of the cylindrical

CMBFs enables automatic capturing of current crowding caused by skin and proxim-

ity effects. This chapter discussed the application of such cylindrical CMBFs to the

EFIE and provided details for computing partial resistances and inductances. Fur-

thermore, we introduced two enhancement schemes for accelerating the computation

of mutual inductances, so that the speed to fill the system matrices is improved to

O(N1.8), where N is the number of conductors. Finally, our developed modeling tool
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based on the proposed method demonstrated good accuracy and capability for solv-

ing large 3-D interconnection structures. Therefore, the proposed method can be a

possible solution to the industrial need for broadband electrical modeling of practical

high-density interconnections arising in SiP or 3-D integration.
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CHAPTER 3

CAPACITANCE AND CONDUCTANCE EXTRACTION
OF CYLINDRICAL INTERCONNECTIONS FOR

BROADBAND MODELING

Inductance and resistance of 3-D interconnections, which were discussed in the previ-

ous chapter, are major parasitic elements affecting the electrical behavior of intercon-

nections. As frequency increases, however, the effect of capacitive coupling between

interconnections becomes significant, so the interconnections behave like electrically

long transmission lines. Moreover, when interconnections are surrounded by lossy

dielectric materials, the loss tangent of the material causes signal attenuation as well.

Thus, interconnection models should be constructed with accurate capacitive coupling

between interconnections for ensuring broadband model accuracy.

This chapter proposes a method to extract the capacitance of cylindrical struc-

tures. The surface charge density distribution on a cylinder is approximated by the

linear combination of global harmonic basis functions. In a manner similar to the R-L

calculations in Chapter 2, a scalar potential integral equation (SPIE) is converted to

an equivalent circuit equation, which relates charge and potential at each node of

the interconnection. Since the capacitances can be modified by surrounding media

such as a molding compound, the integral equations are re-considered to include the

influence of homogeneous dielectric media.

The calculated shunt capacitances in this chapter and the series R-L model in

the previous chapter together constitute a broadband interconnection model. The

interconnection model is similar to an approximate transmission model that consists

of a cascaded ladder network of series impedances and shunt capacitances. The

complexity, or the number of parasitic elements of the interconnection model, depends

on the maximum modeling frequency. The constructed model provides broadband

network parameters, the examples of which will be shown in Chapter 4 and 5.
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The following section introduces a group of global basis functions called the cylin-

drical accumulation mode basis functions (AMBFs) to capture the charge density

distribution on a cylindrical conductor, and Section 3.2 discusses the formulation of

SPIE with the cylindrical AMBFs in free space. Section 3.3 presents additional dis-

cussions regarding homogeneous dielectric media. Section 3.4 proposes the resultant

equivalent RLC network and the procedure to obtain frequency-domain network pa-

rameters. For validation, Section 3.5 shows two examples to calculate capacitances

and compares the capacitance values with analytic or numerical results.

3.1 Cylindrical AMBF

In a similar manner to the definition of cylindrical CMBFs for computing inductances

and losses, we can define another set of global basis functions that capture the charge

density distribution on the surface of a cylindrical conductor. The basic idea is that

any the charge density distribution can be found from the electric scalar potential

solution of Laplace’s equation [65]:

∇2φ = 0. (36)

In cylindrical coordinates, the general solution of Laplace’s equation is a function of all

the coordinate variables (ρ,ϕ, and z). For example, a single cylinder has higher charge

density distribution at the two edges of the cylinder [66, 67]. However, the charges

crowding at the edges cancel each other when cylinders are concatenated, as in the

case of bonding wires. In addition, since the variation over the axial coordinate (z)

can be described by axial discretization, we can assume the axial variation constant

and simplify Laplace’s equation to the following two-dimensional form:

1

ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂ϕ2
= 0. (37)
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The linear combination of all the solutions of (37) results in the following general

expression for potential:

φ(ρ, ϕ) = C1 ln ρ + C2

+
∞∑

n=1

{ρn(An sin nϕ + Bn cos nϕ) + ρ−n(A′
n sin nϕ + B′

n cos nϕ)},
(38)

where C1, C2, An, Bn, A′
n, and B′

n are all arbitrary constants. By applying (38) to

the boundary condition of normal electric fields, the following expression for charge

density distribution can be obtained:

σ = n̂ ·ε0
~E
∣∣
conductorsurface

= ρ̂ ·ε0

(−∇φ(ρ, ϕ)
)

= σ0 +
∞∑

n=1

{σq sin nϕ+σd cos nϕ}, (39)

where σ0, σd, and σq are undefined constants of surface charge density in C/m2. Equa-

tion (39) indicates that the surface charge density distribution on a cylinder is the

linear combination of harmonic functions, which is identical to a Fourier series expan-

sion. Thus, the capacitance extraction approach in this chapter becomes equivalent

to MoM-based methods with harmonic basis functions [68, 69].

After finding normalization factors following a similar process as used with the

cylindrical CMBFs, we can summarize the following surface modal basis functions:

Skin-effect (SE) mode (n = 0):

vl0 =





1
al0

~r ∈ Sl

0 elsewhere
, (40)

Proximity-effect, direct (PE-d) mode (n > 0):

vlnd =





1
aln

cos(nϕl) ~r ∈ Sl

0 elsewhere
, (41)

Proximity-effect, quadrature (PE-q) mode (n > 0):

vlnq =





1
aln

sin(nϕl) ~r ∈ Sl

0 elsewhere
, (42)
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where n is the order of the basis function and Sl is the lateral surface of the conductor

l. The parameter aln is the effective area used to normalize the surface integral of the

basis functions over the surface Sl:

aln =





2πρlll n = 0

4ρlll n > 0
, (43)

where ρl and ll are the radius and the length of the conductor l, respectively. As in

the classification of cylindrical CMBFs, direct and quadrature modes in the higher

order bases are orthogonal to each other, and the linear combination of them describes

arbitrary charge crowding caused by nearby conductors.

3.2 SPIE Formulation in Free Space

The AMBFs introduced in the previous section approximate the surface charge den-

sity distribution in SPIE, which means the contribution of charge density distribution

to the potential at a testing point ~r. SPIE can be written as follows:

1

4πε0

∫

V ′
G(~r, ~r′)q(~r′, ω)dV ′ = Φ(~r, ω), (44)

where q(~r′, ω) is volume charge density, Φ(~r, ω) is electric potential, and G(~r, ~r′) is

Green’s function. The retardation term in Green’s function is assumed to be negligi-

ble. By inserting the approximation of charge density distribution q =
∑

n=0{Qknqvknq}
to (44) and applying the following inner product:

〈vlmd(~r, ω), x〉 =

∫

S

vlmd(~r, ω)xdS, (45)

we can obtain the following equation that relates surface charges and conductor po-

tentials:
∑
n,q

QknqPlmd,knq = V k
lmd, (46)

where k and l are conductor indices,

Plmd,knq =
1

4πε0

∫

Sl

∫

Sk

vlmd(~rl)vknq(~rk)
1

|~rl − ~rk|dSkdSl
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is the partial coefficient of potential (F−1), and

V k
lmd =

∫

Sl

Φk(~rl)vlmd(~rl)d~Sl

is the modal voltage on the conductor surface due to the coupling of the kth conductor.

The modal voltage, which is the potential value relative to the ground at infinity,

must be distinguished from the modal voltage difference (32) between two nodes on

conductors.

The computation of the partial coefficient of potential Plmd,knq involves integrals

over four variables (ϕl, ϕk, zl, and zk). Since the integrals have the same form as

those of the partial inductances (24), we can use the techniques in Section 2.1.2.2,

where analytic integrals over the axial variables (zl and zk), the coordinate transform

of angular variables, and numerical quadratures are discussed.

Since cylindrical AMBFs are scalar surface functions, the partial coefficient of

potential does not include the integrals over radial variables. The independency

to the radial variable reduces the computational cost for applying the numerical

quadrature rule. In addition, cylindrical AMBFs do not depend on frequency, so

frequency sweep is not necessary. Therefore, the required cost for computing integrals

involving cylindrical AMBFs is much lower than the cost for computing CMBF-based

integrals.

The modal voltage V k
lmd in (46) also shows similar properties to the modal voltage

difference for fundamental and higher-order mode basis functions in (32). When an

AMBF is in the fundamental mode (m = 0), the integral over the lateral surface

becomes unity, so Vlmd equals to the actual nodal voltage Φl. When the AMBF is

one of higher-order mode harmonic functions (m > 0), the integral becomes zero.

Thus, the equivalent network of modal coefficients of potential is composed of the

fundamental-order capacitive coupling among conductor nodes and higher-order ca-

pacitive coupling from the closed loops. The details of the construction of combined

equivalent circuit will be discussed in Section 3.4.
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3.3 Consideration of Homogeneous Media

In the previous section, the surrounding medium of interconnections was assumed

to be free space (ε = ε0). The free space assumption is valid when interconnections

are exposed for measurement, but the real environment for 3-D interconnections is

usually filled with various packaging or substrate materials. For example, bonding

wire interconnections are usually submerged in molding compounds, and vertical

interconnections are fabricated in multilayered substrates using organic, ceramic, and

silicon materials.

Most of the packaged interconnection applications are based on inhomogeneous

media, which includes the combination of various materials and free space. To con-

sider inhomogeneous media in integral equations, we need to use a special type of

Green’s functions such as the multilayered Green’s function. In this thesis, only the

homogeneous media is considered. For example, the molding compound surround-

ing bonding wires can be assumed to be a homogeneous media since the size of the

molding region is large relative to the size of the entire wire structure.

3.3.1 Vector and Scalar Potentials

When the retardation term is neglected, the permittivity is shown in SPIE (44) but

is not apparently involved EFIE (21). Thus, replacing the free space permittivity

(ε0) by a dielectric background permittivity (ε0εB) seems to be sufficient for modeling

interconnections in a homogeneous dielectric media [70]. However, the permittivity

difference also influences the EFIE (21) if the background is not free space. To clarify

the effect of the permittivity term in EFIE, we need to reconsider Maxwell’s equation

for modifying the formulation.

At first, the displacement current term in Ampere’s law can be rewritten as follows:

∇× ~H = ~JC + εrε0jω ~E

= ~JC + [ε0(εr − εB)]jω ~E + ε0εBjω ~E,

(47)

62



where εr is the relative permittivity of an interconnection, and εB is the relative

permittivity of the background media. Similar to the free-space media case [48], we

can define the following total current, which is composed of conduction current due

to free charge and equivalent polarization current due to dielectrics:

~J = ~JC + [ε0(εr − εB)]jω ~E. (48)

It is important to note that the polarization current is nonzero even in conductors

having free-space permittivity (ε0) since the background media is not free space. In

the equivalent circuit model, an excessive capacitance represents this effect. Inserting

the total current density, the following vector Helmholtz equation is obtained:

∇2 ~A− µε0εB(jω)2 ~A = −µ~J. (49)

In the homogeneous dielectric media, Gauss’ law can be written as follows:

∇ · ~E =
qT

ε0εB

, (50)

where qT = qF + qB is total charge density, qF is free charge density, and qB is bound

charge density. By using this total charge density as an excitation term, the following

scalar Helmholtz equation is derived:

∇2Φ− µε0εB(jω)2Φ = − qT

ε0εB

. (51)

The solutions to the vector and scalar Helmholtz equations (49, 51) are the fol-

lowing vector and scalar potentials:

~A =
µ

4π

∫

v′
G(~r, ~r′) ~J(~r′)dv′. (52)

Φ =
1

4πε0εB

∫

v′
G(~r, ~r′)qT (r′)dv′. (53)

If the exact form of Green’s function G(~r, ~r′) is used, the non-free-space medium

permittivity εB is also included in the retardation term (e−jk|~r−~r′|) of (52) and (53).
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If the media is lossy, the attenuation in the retardation term may not be negligible

even under the assumption that the interconnection structure is electrically small.

However, when the media is lossless, we can neglect the retardation term and the

effect of the media permittivity on the Green’s function.

Since the difference of scalar potential equation (53) and (44) is the addition of the

non-free-space media permittivity, the capacitive coupling between interconnections

in the background dielectric media can be calculated in the same way as discussed

in Section 3.2. However, we have to modify the construction of the voltage equation

from the vector potential integral equation (52), since the total current contains the

polarization current.

3.3.2 Equivalent Circuit Model of Conductor

In a conductor, the total electric field is contributed by the conduction current ~JC

(Ohm’s law) and inductive coupling. When the background media is not free space,

total current ~J is not reduced to the conduction current only, but also has the polar-

ization current term. Therefore, the integral equation is expressed as follows:

~JC

σ
+ jω

µ

4π

∫

v′
G(~r, ~r′) ~JC(~r′)dv

′
+ jω

µ

4π

∫

v′
G(~r, ~r′)ε0(εr− εB)jω ~Edv

′
= −∇Φ. (54)

In the above equation, the two current terms in the two integrals are coupling terms

from conduction current and polarization current from all of the interconnections.

Approximating the conduction current with the cylindrical CMBFs and applying

inner product based on Galerkin’s method, we obtain the following voltage equation:

RimdIimd + jω
∑
j,n,q

Limd,jnqIjnq + jω
∑
j,n,q

Limd,jnq[jωRjnqC
ex
jnqIjnq] = Vimd, (55)

where

Rimd =
1

σ

∫

Vi

~w∗
imd · ~wimddVi,

Limd,jnq =
µ

4π

∫

Vi

∫

Vj

G(~ri, ~rj)~w∗
imd · ~wjnqdVjdVi,

Cex
jnq =

ε0(εr − εB)∫
Vj

~w∗
jnq · ~wjnqdVj

,
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and

Vimd = −
∫

Si

Φ(~ri)~w∗
imd(~ri, ω) · d~Si.

In (55), all the modal partial resistances and inductances and the voltage differences

remain the same as derived in Chapter 2, and the added excess capacitance term

Cex
jnq represents the polarization current in the interconnection. The voltage equation

(55) can be expressed by the equivalent circuit model shown in Figure 33, where the

modal current Iimd flows across the partial resistance.

imdL
V

,

imd
R

imd
L

ex

imd
C

imd
I

Figure 33. Equivalent circuit model including excess capacitance. VL,imd represents the
voltage drop through inductive coupling.

To check the significance of the excess capacitance, the equivalent impedance of

the parallel R-C network is considered as follows:

ZRC =
R

1 + jωRCex

=
R

1 + jω 1
σ

∫
Vi

~w∗
imd · ~wimddVi × ε0(εr−εB)∫

Vj
~w∗imd·~wimddVi

=
R

1 + jω ε0(εr−εB)
σ

.

(56)

In case of good conductors such as copper and gold, the term jωε0(εr − εB)/σ is very

small in the typical frequency range of interest. For example, if gold bonding wires are

used in a typical molding compound (εB = 4.3), the frequency where the magnitude
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of jωε0(εr − εB)/σ becomes 0.1 is

f =0.1× 1

2π

∣∣∣ σ

ε0(εr − εB)

∣∣∣ = 0.1× 1

2π
×

∣∣∣ 4.1× 107

8.854× 10−12 × (1− 4.3)

∣∣∣

=2.23× 1016Hz.

(57)

The effect of the excess capacitance appears at considerably high frequencies, which

means the charge relaxation time is negligible in the typical frequency ranges, where

package structures are currently used. Therefore, we can omit the the excess capaci-

tance of the interconnection branch and use the original equivalent circuit constructed

in Chapter 2.

3.3.3 Consideration of Dispersive Media

As discussed in the previous subsections, we can observe the effect of dielectric media

surrounding interconnections by using dielectric permittivity in the SPIE (53). Using

(53) is still valid when the background media is a dispersive media, which is expressed

by a complex-valued function of frequency. In this case, the resultant equivalent po-

tential coefficients become frequency-dependent complex numbers, so the equivalent

network is composed of capacitances and conductances.

3.4 Broadband Equivalent Circuit (RLC Network)

The combination of calculated potential coefficients (Section 3.2) and series R-L in

the previous chapter can be used to construct the equivalent network of the intercon-

nection structure, and the resulting equivalent model can cover a wide frequency band

by subdividing interconnections along the axial direction. This section discusses the

procedure to establish an equivalent RLC network and to compute multi-port network

parameters.

The initial step to extract an equivalent model of a given interconnection is to set

the maximum modeling frequency, which determines the required number of inductive

and capacitive cells along the axial direction. The initial number of cells is determined
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by the geometrical model input, but the length of the generated cell from the geometry

can be electrically long at the maximum frequency. In this case, the initial cell is

divided into additional subcells, the length of which is less than

lcmax =
λrc√

εBfmax

, (58)

where lcmax is the maximum cell length, λr is the wavelength ratio, c = 3× 108(m/s)

is the velocity of light in free space, εB is the relative permittivity of the background

media, and fmax is the maximum modeling frequency. The parameter λr is defined

to ensure the cell length is sufficiently small at the modeling frequency. If λr =

0.05, the maximum cell length should be less than 1/20th of the wavelength at the

maximum frequency. Since the maximum cell size lcmax is proportional to the inverse

of the maximum frequency, the complexity of a interconnection problem increases

with frequency. For example, the size of global impedance matrix becomes four-times

larger if the maximum modeling frequency is doubled, as discussed in Section 2.1.2.1.

Figure 34 shows how inductive and capacitive cells are generated. Each inductive

cell defines the volume current flowing through the cross section of the interconnec-

tion, and each capacitive cell defines the surface charge on the lateral surface of the

interconnection. Figure 34 illustrates that the volume inductive cells and the sur-

face capacitive cells overlap each other, so they establish an RLC network like the

lumped-element approximation of transmission lines. Placing small capacitive cells

at the ends of interconnections enables capturing charge density crowding at the ends

of interconnections.

From the defined discretization, partial resistance, partial inductance, and partial

coefficients of potential between modal basis functions are calculated by using (24)

and (46), and voltage equations can be obtained as shown in the following matrix

form: 


Zss Zsp

Zps Zpp







Is

Ip


 =




∆Vi

0


 . (59)
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inductive (volume) cells capacitive (surface) cells

i
k+1

k

i
k+1

k

i
k+1

k

i: branch index

k: node index

Figure 34. Axial cell discretization and the generation of RLC equivalent circuit model.
(Mutual coupling terms are omitted for simplicity.)




Pss Psp

Pps Ppp







Qs

Qp


 =




Vi

0


 . (60)

Equation (59) is the identical to (33) in Chapter 2. Equation (60) represents the

relation of charge and modal scalar potential, which was discussed in Section 3.2. The

above voltage equations are expressed in Figure 35 for a two-bonding wire example,

where the R-L and the C circuitry are drawn separately for clarity. In a capacitance

network, the self potential coefficient from the SE mode is attached at the physical

node of the original interconnection, and the higher-order mode potential coefficients

form grounded loops. Since the potential coefficients are independent of frequency,

this capacitance equivalent model can be reduced to the capacitance matrix that does

not show the higher-order mode loops explicitly.

The connection of the series R-L’s and the shunt C’s in Figure 35 is based on the
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loops from 

PE modes

branches

from SE 

modes

grounded

loops from 

PE modes

branches

from SE 

modes

Figure 35. Modal RLC equivalent circuit model of two bonding wires. RL network and
C network are separated for clarity.

following approximate matrix form of the continuity equation or Kirchhoff’s Current

Law (KCL) for each node:




−E

0
∆I







It

Ii


 + jωQs = 0, (61)

where It is a terminal current vector, Ii is an internal current vector, E is an iden-

tity matrix, and Qs is the SE-mode charge vector. The internal current vector Ii is

identical to the SE-mode current vector Is. ∆I contains the information of incoming

and outgoing currents for each node. The matrix form of the continuity equation and

the voltage equations (59, 60) constitute the entire matrix equation to compute the

network parameters of the equivalent circuit. The terminal current It, a known vari-

able representing the excitation condition, appears on the right side of the following
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combined matrix equation.




Zss Zsp −∆V 0 0

Zps Zpp 0 0 0

∆I 0 0 jωE 0

0 0 −E Pss Psp

0 0 0 Pps Ppp







Is

Ip

Φt

Φi

Qs

Qp




=




0

0

It

0

0

0




. (62)

In the above equation, ∆V contains the information of voltage differences for each

branch. [ΦtΦi]
T and Qs are re-arranged to collect the terminal variables, so a per-

mutation matrix multiplies ∆V, Pss, Psp, and Pps. The solutions Φt of (62) for

each terminal current excitation provides the Z-parameter matrix Z, which can be

converted to an S-parameter matrix S using the following relation [71].

S =
(
Z + Z0E

)−1(
Z− Z0E

)
, (63)

where Z0 is a characteristic impedance. Examples of using the combined RLC net-

work to obtain S-parameters of bonding wires and TSV interconnections will be

shown in the next two chapters.

3.5 Capacitance Computation Examples

This section presents two examples to validate the capacitance computation approach

proposed in Section 3.1 and 3.2. The first example is the calculation of even- and

odd-mode capacitances of three conductors in parallel [68]. The second example is

the calculation of the turn-to-turn stray capacitance of a solenoidal coil inductor [72],

which is a rather complicated 3-D structure.

3.5.1 Even- and Odd-Mode Capacitances of a Triplex Cable

Figure 36 shows the configuration of three cylindrical conductors in parallel. This

structure represents a typical low-voltage indoor triplex cable used for electric power
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transmission in buildings, where two of the conductors are active and the third cable is

grounded [68]. In this case, the following analytic expression of capacitance between

two parallel cylindrical conductors is not accurate since it does not consider the

proximity effect from the third conductor.

C =
πε

cosh−1 d
2R

, (64)

In (64), d is the distance between two cylinders and R is the radius of each conductor,

as shown in Figure 36. By using the cylindrical AMBF-based approach, this section

shows even- and odd-mode capacitances for varying distances of the third conductor

from the center of the other two conductors. The capacitance calculation results

will be compared with the results from a similar analytic approach using harmonic

functions [68].

d
0

d/2 d/2

R

1 2

3

Figure 36. Three conductors in parallel.

The first example is the capacitance between two parallel cylinders, defined by the

analytic expression in (64). The analytic formula was compared with the calculated

values of capacitance between two cylinders, which can be found by using the following
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definition of odd-mode capacitance:

Codd =
q1

V1 − V2

∣∣∣∣∣
q1=−q2,q3=0

, (65)

where qi and Vi (i = 1, 2, 3) are the total charge and the voltage on each conductor,

respectively. Figure 37 compares the calculated odd-mode capacitances with the

analytic expression while varying the distance of the grounded third conductor. As

expected, the odd-mode capacitance converges to the value of (64) when the grounded

conductor is sufficiently far away. On the other hand, the calculated capacitance

value is about twice the analytic capacitance value when the charge proximity effect

is significant.
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Figure 37. Comparison of calculated odd-mode capacitances (black) and the analytic
results (grey) with increasing distance of the conductor 3.

Figure 38 shows the elements of the capacitance matrix and the even-mode ca-

pacitance, which is defined as follows:

Ceven =
2q1

V1 − V3

∣∣∣∣∣
q1=q2,q3=−2q1

. (66)

All the calculated values obtained by using the cylindrical AMBFs are matched well

with the calculated data in [68] because both methods are based on the expression
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of charge density distribution on cylinders using a linear combination of harmonic

functions. As the distance of the third conductor increases, the variation of each

capacitance becomes small.
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Figure 38. Elements of the capacitance matrix and the even-mode capacitance of the
three conductor structure with increasing distance of the conductor 3.

In Figure 39, the distance of the third conductor is fixed to d0 = d, and the odd-

mode capacitances are calculated with different radii of conductors. Compared to the

plots in [68], the calculated capacitance values are accurate when d/R ≥ 2.5. The

difference comes from using different number of basis functions. The maximum order

of the AMBFs used in the calculation is three, however, basis functions up to the 15th

order may be necessary to obtain accurate results when d/R ≤ 2.5. It is important

to note that d/R = 2.5 is already a sufficiently small pitch in current interconnection

design applications.

3.5.2 Stray Capacitance of a Two-Turn Solenoidal Inductor

All the inductors have parasitic resistances and capacitances, the effects of which

become dominant as frequency increases. The parasitic extraction method in this
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Figure 39. Odd-mode capacitances with different radii of conductors.

chapter is also valid for other passive structures. In this subsection, the stray ca-

pacitances of solenoidal type inductors are calculated and compared with published

research [72].

A two-turn solenoidal air-core inductor shown in Figure 40 is a popular structure

in EMC and analog applications. Main design parameters include ring diameter (D),

wire radius (rw), pitch (p), and the number of turns. The ring structures are approx-

imated by a straight line segment model as in the case of bonding wire modeling.

In the line segment model, each conductor segment is coupled to other conductors

with varying orientations, so the ring structure is a good example to validate the

accuracy of the 3-D capacitance calculation. From any two identical rings, the turn-

to-turn capacitance can be calculated, and then the combination of the turn-to-turn

capacitances provides the overall capacitance of an inductor.

Table 6 shows the turn-to-turn capacitances of the two-turn inductor for three

different pitches when D and rw are fixed at 47.2 mm and 3.25 mm, respectively.
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Figure 40. Two-turn solenoidal air-core inductor with the main design parameters.

The analytic results come from the capacitance of two parallel straight cylinders with

length equal to the circumference of rings [72]. The capacitance values from CST EM

Studio (EMS) [73] are a little smaller than the analytical results. The results from

IPEX3D shows the maximum error of 3.5 % as compared to the 3-D EM simulation

results. Since the ratio of the wire radius to pitch is very small, the required number

of basis functions exceeds five in this example.

Table 6. Turn-to-turn capacitance of the two-turn inductor for different ring pitches

Pitch Capacitances (pF)
(mm) Analytic EMS IPEX3D
6.90 11.82 11.73 11.32
7.32 8.30 8.24 8.07
9.00 4.85 4.81 4.73

Figure 41 shows the variation of the turn-to-turn capacitances when the rings are

not aligned. Geometry parameters D, rw, and p are fixed to 47.2 mm, 3.25 mm,

and 6.90 mm, but the relative shift S between two rings is variable, as shown in

Figure 41 (a). In this case, estimating the capacitances is difficult with the analytical

expression. The IPEX3D results are well matched with EMS results.
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Figure 41. Turn-to-turn stray capacitances of two-turn inductance when the two rings
are not aligned.

3.6 Summary

To construct a broadband RLC model of 3-D interconnections, this chapter presented

a method to extract the capacitive coupling in a cylindrical conductor system. The

proposed method approximates charge density on conductors by a linear combination

of cylindrical AMBFs and derives a modal equivalent circuit equation from the SPIE.

Similar to cylindrical CMBFs, the cylindrical AMBFs are efficient for modeling a

large number of cylindrical interconnections. During the SPIE formulation, the effect

of background dielectric material on the capacitance and other parasitic elements was

also considered. The capacitance extraction method can be combined with the RL

extraction method in Chapter 2, and the combined broadband RLC model provides

the multi-port network parameters. At the end of this chapter, two examples of

capacitance calculation were shown to validate the proposed capacitance extraction

method.
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CHAPTER 4

MODELING OF BONDING WIRE
INTERCONNECTIONS IN STACKED ICS

As discussed in Chapter 1, bonding wire interconnections have limitations in their

use for high-speed applications because of long interconnection length. In addition,

interconnecting between vertically stacked chips is rather difficult with bonding wires,

since the peripheral wiring cannot optimize high-density 3-D integration. Neverthe-

less, bonding wire interconnections are still useful for low-frequency and consumer

electronic applications since their mature process ensures low production cost. Even

for high-speed applications, optimized wiring design enables the use of bonding wire

interconnections, as reported in recent design research [74, 75, 76]. If the electrical

coupling model of bonding wires in 3-D integration can be found easily, the applica-

tion range of the bonding wires can be extended further.

The RLC extraction approach presented in Chapter 2 and 3 is the basis of bonding

wire modeling in this chapter. Partial impedances and potential coefficients are calcu-

lated, and their combined equivalent network can be converted to frequency-domain

scattering parameters. However, the wire RLC model captures parasitic elements

among interconnections only. In real situations, the bonding wires are influenced by

various planar structures. Thus, the coupling effects of the planar structures should

be considered to construct the complete bonding wire package model.

This chapter discusses how the RLC extraction method can generate a model

of bonding wires in stacked ICs, including the effect of various planar couplings.

Section 4.1 suggests a typical wired packaging structure with a defined signal and

ground configuration. Section 4.2 revises the integral equation formulation to include

coupling from planar structures such as wire pads and presents an image method

for the approximate description of a solid ground plane. Section 4.3 validates the
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Figure 42. Typical bonding wires in stacked dies with various planar structures.

proposed method for three bonding wire examples.

4.1 Typical Bonding Wire Configuration in Stacked ICs

Figure 42 illustrates a typical bonding wire structure that is mounted on stacked dies

and a package substrate [74, 77]. The bonding wires are mainly inductive components,

and their partial inductance and resistance can be calculated by using the method in

Chapter 2. The capacitive coupling can be found by computing the partial coefficients

of potentials, as discussed in Chapter 3. However, the complete electrical behavior of

the bonding wires is also dominated by several other factors.

The first factor that influences bonding wire characteristic is the substrate ground

plane. The actual inductance of a bonding wire in a package is the loop inductance

formed by the signal line current and return current on the ground. Therefore, the

location of the ground determines the total loop inductance. If the ground plane is
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finite or has irregular shapes with holes and slots, the loop inductance is also modified

due to the increased return current path. Similarly, the capacitance of the bonding

wire is also determined by the location of the ground, and the resultant characteristic

impedance of the wire depends on the loop inductance and the capacitance between

the wire and ground.

The other factor is coupling from various planar structures, including bonding

pads, power/ground rings, and planar-type interconnections such as microstrip or

strip lines. The bonding pad, which is another discontinuity in the signal path,

may increase the capacitive coupling to neighboring wires and ground [37]. The

power/ground rings are usually designed to ensure equipotential for all power/ground

wires, but their high frequency effects on the bonding wires might be undesirable. The

location of power/ground wires also influences the characteristics of signal propaga-

tion.

In summary, the complete modeling of 3-D bonding wire structures requires not

only the partial parasitic components of bonding wires but also various planar struc-

ture models.

4.2 Coupling from Planar Structures

This section presents two methods to model the coupling from various planar struc-

tures. The first method is a general approach that combines conventional PEEC

method [46] with the proposed modal equivalent circuit method. Since the PEEC

method is able to extract the equivalent network of any finite planar structure, we

can couple the effect of a finite ground plane, ground ring, and boding pads to bond

wires. In case of modeling large solid ground planes, the image method can be used

alternatively. By using a simple simulation example, the two methods are validated

with analytic and 3-D EM simulation results.
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Y

Figure 43. Planar structure cell generation. (upper left: node definition. upper right:
inductive cells in X direction. lower left: inductive cells in Y direction. lower right:
capacitive cells.)

4.2.1 Combination with Conventional PEEC Method

For considering the coupling from planar structures, the conventional PEEC method

can be combined with the proposed method. In the context of solving an integral

equation, this combination is completed by computing additional partial elements

involving the interaction between piecewise planar basis functions and cylindrical

modal basis functions.

Inductive and capacitive couplings among planes can be found from the conven-

tional PEEC method. For inductive cells, each planar structure is discretized so that

X-directional and Y -directional cells form a grid model as shown in Figure 43 [78].

For the self inductance calculation of inductive cells, several analytical formula can be

used [79, 8]. For the mutual inductance between two parallel bricks, a combination

of virtual self inductance provides good analytical results [8]. Capacitive cells are

defined to cover a node, where X- and Y -directional conduction currents and dis-

placement current through the capacitor should satisfy KCL. The analytical formula

of mutual coefficients of potential between two conducting panels are used [9]. All
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the closed-form formula of partial elements used are summarized in Appendix D.

In general, the capacitive cells should cover the entire surface of a planar structure,

which is composed of six faces. However, if we can assume the plane is sufficiently

thin, four capacitive cells on the lateral surface can be omitted. In addition, the charge

distribution on the upper and the lower surfaces can be considered at the same time

under the assumption that the mutual coefficients of potential between the upper and

lower plates are the same as those of the self coefficients of potential. In this case,

simply doubling the coefficient of potential on the upper plane approximates the total

planar capacitive coupling.

Computing the electrical coupling between a plane segment and a cylindrical con-

ductor requires an additional integral involving piecewise constant basis function and

cylindrical CMBF. Figure 44 shows the typical configuration of a cylinder segment

and a planar conductor segment with their geometrical parameters. Similar to the

integral calculations used in Chapter 2 and 3, the following partial inductances and

coefficients of potentials can be found by using the combination of analytical and

numerical integrals:

Li,jnq =
µ

4π

∫

Vi

∫

Vj

l̂i · ~wjnq(~rj, ω)
1

|~ri − ~rj|dVjdVi. (67)

Pi,jnq =
1

4πε

∫

Si

∫

Sj

vjnq(~rj)
1

|~ri − ~rj|dSjdSi. (68)

For example, the integral corresponding to inductive coupling (67) is reduced

to the following form after the analytical integration over the axial variable of the

cylinder (zj):

Li,jnq =
µ

4π

∫

xi,yi

∫

ρj ,ϕj

(
l̂i · ~wjnq(~rj, ω)

)
Iz(xi, yi, ρj, ϕj)ρjdρjdϕjdxidyi. (69)

In the above expression, we simplified the integral over zi under the assumption that

the thickness of the planar structure is negligibly small. Another expression similar
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Figure 44. Definition of the orientation parameters of a plane and a cylinder segment.

to (69) can be obtained from (68) for the capacitive coupling. The details of deriving

the analytical integral over the axial variable (Iz) are discussed in Appendix E.

After computing all the partial element matrices of wires and planes, continuity

equations (KCL) are applied for each wire and plane, and the following global matrix

can be generated:



Zpl Zpl,w
s Zpl,w

p −∆pl
v

Zw,pl
s Zss Zsp −∆w

v

Zw,pl
p Zps Zpp

∆pl
I jωE

∆w
I jωE

−E Ppl Ppl,w
s Ppl,w

p

−E Pw,pl
s Pss Psp

Pw,pl
p Pps Ppp







Ipl

Iws

Iwp

Φpl

Φw

Qpl

Qw
s

Qw
p




=




Ipl
t

Iwt




,

(70)

where the terminal currents Ipl
t and Iwt are from planes and wires, respectively. With
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the defined terminal excitation currents, network parameters are obtained in the same

way as discussed in Section 3.4. The ports on planes and wires can be connected to

each other to obtain the network parameter of the entire interconnection signal path.

4.2.2 Image Method for Modeling Infinite Ground

Although the reference or ground plane in a package is a finite and irregularly shaped

structure including discontinuities such as holes and slots, approximating the ground

as a perfect and infinite one is sometimes useful to analyze bonding wires in a package.

Thus, together with the classical PEEC method to model small finite planar struc-

tures, the image method can be employed to capture the effect of relatively large

ground planes [42]. Compared to the rigorous use of the conventional PEEC method,

the image method reduces the computational cost.

As shown in Figure 45, symmetric image conductors are defined in the opposite

side of the ideal ground plane. Since the image conductor has the identical shape of

the original conductor, we can use the same resistance, inductance, and coefficients of

potential matrices of the original conductor. However, the inductive and capacitive

coupling between the original and the image conductors need to be calculated.

The simulation setup with the image conductors provides a network parameter

with a doubled port number, which can be converted to single-ended S parameter

with ideal ground by using the following modal conversion matrix [80]:




ad

ac


 =

1√
2




1 −1

1 1







ar

ai


 , (71)

where ar and ai are incoming or reflected power waves of the actual port and the image

port, and ad and ac are differential and common mode power waves, respectively. The

differential power wave will be used as the resultant incoming wave. By stamping

(71) into a global conversion matrix M, the following transform leads to the total S
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Figure 45. Example of image conductors and port definition.

parameter: 


Sdd Sdc

Scd Scc


 = MSM−1, (72)

where Sdd is the resultant S parameter that characterizes the original interconnec-

tions.

4.2.3 Validation: Single Cylinder on Ground

For validation of the modeling method to capture coupling effect from planar struc-

tures, a cylindrical conductor on ground is modeled and compared with analytical

and 3-D EM simulation results.

As discussed in the previous subsection, the ground plane can be considered with

the image method (ideal infinite ground) or the combination with a conventional

PEEC method (finite ground). Figure 46 illustrates a cylinder with a finite ground

model, the length of which is the same as that of the cylinder. The plane is discretized
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Figure 46. IPEX3D model of a cylinder on a finite ground plane.

to 11 (X) by 21 (Y ) nodes, and four edge points and two points at ports are grounded.

Figure 47 shows the magnitude of S parameters of the cylindrical interconnection

on the ideal and finite ground plane. Compared to the ideal grounded case, the

capacitive coupling from the finite ground weakens, resulting in the increase of the

characteristic impedance of the interconnection. Therefore, |S11| of the cylinder on

the finite plane is higher than that of the cylinder on the ideal ground. Nevertheless,

the return loss is still smaller than that of the cylinder without any ground plane,

which has minimum capacitance.

For validation of the cylinder with ideal ground, the scattering parameters were

calculated from 2-D lossless transmission line model of a cylinder on ideal ground,

which has the following analytical expression for per-unit-length inductance and ca-

pacitance [59]:

C =
2πε

cosh−1 H/r
, (73)
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Figure 47. Magnitudes of S parameters of a cylinder on ground plane.

L =
µ0

πε
cosh−1 H/r, (74)

where r and H are the cylinder radius and height of the cylinder from the ground

plane, respectively. The capacitance formula is identical to (64), with a different

definition of distance of the conductor to the ground. Figure 47 shows that the

magnitude of S parameters from IPEX3D model is well matched with the analytical

results, except for the additional insertion loss from the cylinder resistance.

The cylinder on finite ground is compared to the S parameters from the simulation

of the identical structure using CST Microwave Studio (MWS) [81]. Although some

differences between the two results are shown in Figure 47, the overall level of the

insertion and return losses are well matched. In addition, both the simulation results

indicate the increase in the effective electrical length of the interconnection, compared

to the ideal ground case.

The accuracy of modeling the finite ground plane improves with an increase in

the number of cells. However, the discretization process requires more memory, and

computing the coupling among all the planar bases and frequency-dependent modal

increases the computational cost considerably. Thus, a more practical way will be to
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approximate the large finite ground with the ideal ground plane. Nevertheless, the

conventional PEEC-based planar coupling model is still useful when modeling small

structures such as bonding wire pads. Several practical examples will be shown in

the next section.

4.3 Bonding Wire Modeling Examples

This section presents three bonding wire modeling examples to observe various cou-

pling effects. Frequency-domain S parameters are extracted from RLC models of

JEDEC4 type bonding wires, bonding wires in a plastic ball grid array package, and

wires in stacked ICs. Through these examples, we can find how electrical coupling

from planar structures modifies the expected characteristics of bonding wires. In ad-

dition, the effects of signaling and grounding design schemes can be observed, and

the complicated contribution of coupling from horizontal and vertical wires can be

quantified. This section validates the examples with a 3-D full-wave EM simulator.

4.3.1 Three JEDEC4 Type Bonding Wires

The bonding wire structure shown in Figure 48 is adopted from low-frequency package

applications such as thin quad flat pack (TQFP) and lead-frame type packaging. The

length of wires is about 5 mm, which is rather long in the current technology trend.

The shape of each wire is constructed from the simplified model of EIA/JEDEC

standard (JEDEC4) [82]. The coordinate values of each wire segmentation point

are also shown in Figure 48. The diameter of wires is 25 µm. For wire and plane

conductivities, gold and copper are used, respectively.

To observe the effect of ground, the three bonding wires were simulated with

and without ideal ground. As discussed in the previous section, additional image

wires were defined to describe the ideal ground effect, and then the resultant single-

ended S parameter matrix is converted to differential- and common-mode S parameter

matrix. Figure 49 and 50 compares the magnitudes of all S-parameters, where we
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Figure 48. Configuration of three JEDEC4 type bonding wires.

can find that both the insertion loss and return loss are improved when ideal ground

is applied. This is because the ground reduces the total loop inductance of wires,

and the inductance reduction is more dominant than the capacitance increase. The

comparison of IPEX3D results of the grounded wires with CST MWS simulation

results show good match, although small errors are shown in the couplings.

To observe the effects of planar structures, another configuration of wires with

a long planar structure (in Figure 51) was simulated. The inclusion of the finite

conductor segment breaks the geometrical symmetry of the original bonding wire

structure because the level of coupling from the planar structure is different for each

wire. Therefore, in the resultant S parameters shown in Figure 52, the insertion loss

of the wire that is the closest to the plane is better than other wires.

4.3.2 Bonding Wires in a Plastic Ball Grid Array (PBGA) Package

In this subsection, bonding wire structures in wire-bonded PBGA [74] were simulated.

By using the proposed method, the characteristics of different signaling structures

88



0 2 4 6 8 10

x 10
9

-20

-15

-10

-5

0

S
 p

ar
am

et
er

s 
(d

B
)

frequency (Hz)

Insertion loss

Return loss

(a) Insertion and return losses.

0 2 4 6 8 10

x 10
9

-40

-35

-30

-25

-20

-15

-10

S
 p

ar
am

et
er

s 
(d

B
)

frequency (Hz)

(b) Couplings.

Figure 49. S parameters of three JEDEC4 type bonding wires without the ideal ground.
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Figure 50. S parameters of three JEDEC4 type bonding wires on the ideal ground
without pads (black: IPEX3D, red: MWS).

were validated and compared with 3-D full-wave EM simulation data. Simulation

results showed that a proper choice of signaling scheme as well as the wire structure

design determine interconnection bandwidth.

Figure 53 shows the configuration of wires and grounds to be simulated. All
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Figure 52. S parameters of three JEDEC4 type bonding wires with a finite plane
segment.

the structures are based on differential signaling, and ground-signal-signal-ground

(GSSG) structures have additional ground wires. In case of GSSG signaling, the

ground wires can be assigned on a separate region of the package or can be tied to a

common ground ring as shown in GSSG-2 structure.

For considering the effect of plastic molding around the wires, the dielectric con-

stant of molding compound is defined as 4.3 [83]. An ideal ground is assumed at a
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Figure 53. Bonding wire configurations in PBGA package to be simulated.

location of 100 µm below the package surface. To capture wire shapes more accu-

rately, we used the following curves that describe wedge-ball bonding wires [84].

z = H ξ2−ξn

ξ2
y−ξn

y
0 ≤ y ≤ Y

(y−y∗)2
a2 + (z−z∗)2

b2
= 1 Y ≤ y ≤ L

, (75)

where ξ = y
L
, ξy = Y

L
= ( 2

n
)

1
n−2 , y∗ = Y , z∗ = 0, a = L − Y , b = H, and H, Y , L

are the height and the lengths of the bonding wire, respectively. The curves ensure

both zero slope at the wedge bonding on the package and an infinite slope at the

ball bonding on the die. After obtaining the curves with pad distances and die/wire

heights, approximate conductor segments were generated as shown in Figure 54. The

long wires will be used for signal and ground wires in GSSG-1 and signal-signal (SS)

structures, and the short wires will be used for ground wires on the ground ring in

GSSG-2. The lengths of the long and the short wires are 1.75 mm and 1.12 mm,

respectively.

Before the simulation of the structures in Figure 53, the effects of bonding pads

were studied for the SS signaling case. The bonding pads with a size of 200 µm ×
75 µm were attached at the ends of the bonding wires, as shown in Figure 55 (a).
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Figure 54. Smooth wedge-ball Bonding wire curves (grey) and their segment approxi-
mations (dotted black) with segmentation points.

In Figure 55 (b), which compares the S parameters of SS bonding wires with and

without the bonding pads, the effect of the bonding pads is similar to the response

obtained with a slight increase of electrical length. Since the bonding pad effect on the

bonding wire characteristic is small in this case, we can neglect them in the following

simulations.

(a) Bonding wires with pads (including image
conductor).
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Figure 55. Effect of bonding pads on S parameters of wires.
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Figure 56 shows the magnitude of scattering parameters for the three structures

in Figure 53. As discussed in research on PBGA package design [74], the GSSG

structure (especially GSSG-1) is better for signal transmission than the SS structure.

However, the S parameters of the GSSG-2 structure indicate that only designing

the signal/ground wiring in schematics does not ensure the improvement of signal

transmission. For GSSG design to work effectively, ground wires should guide signal

wires in parallel. Comparison with CST MWS results show good accuracy of IPEX3D,

but error increases beyond 15 GHz.
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Figure 56. Scattering parameters of different wiring structures (lines: IPEX3D, circles:
MWS).

4.3.3 Bonding Wires in Three Stacked ICs: The Effect of Vertical Cou-
pling

In this section, parasitic elements of bonding wires on three stacked ICs are extracted.

The bonding wire structure in Figure 57 has been obtained approximately from the

model of a triple-chip stacked chip-scale package (CSP) [14]. Wire diameter is 25 µm,

and the pitch between adjacent wires is 60 or 80 µm [15]. All wires are in parallel.

The approximate lengths of wires are 1.26 mm (class 1), 0.82 mm (class 2), and 0.48

mm (class 3), respectively.
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Figure 57. Side view and segmentation geometry (in µm) of gold bonding wires on three
stacked ICs.

For validation, inductance and resistance values of six bonding wire structures in

Figure 58 were extracted, and S parameters from the R-L equivalent circuit model

were compared with values from CST Microwave Studio (MWS), a commercial full-

wave EM simulator [81]. In the simulation setup, six ports were defined as shown in

Figure 58, which assumes each wire as a signal or a ground wire. Simulation results

in Figures 59 and 60 indicate good correlation, except at high-frequencies. This high-

frequency error can be attributed to the quasi-static assumption used in IPEX3D,

which does not include capacitive coupling. Since bonding wires are dominated by

inductive coupling, the absence of capacitive coupling is expected to have a small

effect on the typical structure. The other source of error is the approximation of

conductor segments. As discussed in Section 2.1.2.3, the 1-D current assumption

in IPEX3D may be inaccurate, especially at the sharp edges of adjoining conductor

segments. For example, the sharp edge shown in class 3 wire of Figure 57 will generate

some high-frequency error. The two combined error effects translate to a maximum

error of 15.1 % for |S3,3| in Figure 59, but this maximum error is acceptable, since it

occurs at small return loss values.
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Figure 58. Six bonding wire structure and port configuration.
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Figure 59. S−parameters of six bonding wires. (circles: IPEX3D, lines: CST MWS)
Insertion losses. (left: 60 µm pitch, right: 80 µm pitch)

The next example consists of 102 bonding wires as shown in Figure 61, where 34

wires are mounted for each stack. Figure 62 (b) and (c) show resistances and self

inductances of all bonding wires at 10 GHz, with one conductor of class 2 grounded.

The ground conductor influences adjacent wires as well as upper and lower wires,

so the resultant high-frequency resistances and inductances change. Figure 62 also
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Figure 60. S−parameters of six bonding wires. (circles: IPEX3D, lines: CST MWS)
Return losses. (left: 60 µm pitch, right: 80 µm pitch)

shows small variations of wire impedances at the edge of the structure, where prox-

imity effects are smaller than those at the middle of the structure. Capturing these

parasitic variations at high-frequencies is useful for efficient design of high-density

3-D interconnections for broadband applications.

1
2

34

Figure 61. 102 bonding wire structure with index.

Finally, an RLC model of thirty bonding wires (10 wires for each stacked die) was

generated to observe the inductive and capacitive coupling effects from horizontally

and vertically located wires. To model an ideal ground, an additional 30 image wires
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Figure 62. Extracted bonding wire parasitics at 10 GHz with a wire of class 2 grounded.

were included in the simulation setup. Differential ports were defined based on GSSG

signaling, so the total number of differential ports is 18, as shown in Figure 63. The

comparison of the simulation results with other full-wave simulators is not available

because of the huge simulation times involved.

G S S G G S S GS S

G S S G G S S GS S

G S S G G S S GS S

G S S G G S S GS S

G S S G G S S GS S

G S S G G S S GS S
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13 14 15

4 5 6

10 11 12

16 17 18

Figure 63. Port definitions of 30 bonding wires based on GSSG signaling.
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Figure 64. Single-ended port insertion losses of 30 bonding wires.

Figure 64 shows the insertion loss of bonding wires when all the wires were assumed

to be single ended. The entire structure was simulated (Figure 64 (b)), and then the

upper wires (class 1) were simulated with the lower wires removed (Figure 64 (a))

to observe the effect of vertical coupling. The maximum loss is about -1.5 dB at 10

GHz, and the variations in the insertion losses are shown for both cases. The single-

ended insertion loss of the upper wires is improved when the middle and lower wires

are present, but the difference of insertion loss is removed when applying the GSSG

signaling, as shown in Figure 65.

Figure 66 shows the coupling (in S parameters) from all the wire ports to ports 1

and 2 at 10 GHz. Since the distances between upper and lower wires are smaller than

those between upper wire ports, the vertical coupling is relatively small. However, the

maximum coupling from middle wires to upper wires can be about -35 dB, which may

not be negligible in mixed-signal and RF applications. Using the GSSG differential

signaling improves the balance between outer and inner ports, but the change of

signaling method to single-ended signaling can be significantly affected by unbalanced
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Figure 65. GSSG port insertion losses of 30 bonding wires.
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4.3.4 Comparison of Simulation Time with a Full-Wave EM Simulator

Table 7 shows the simulation times of IPEX3D and MWS for four structures in

the previous sections. All simulations were performed using an Intel Xeon 3 GHz

CPU with 3.25 GB RAM. Simulation time of IPEX3D depends on the number of

frequency points and the maximum modeling frequency. Simulation time of MWS is

not influenced by frequency points, but it depends on the error threshold to converge

solutions. Except for the single cylinder case, IPEX3D requires less simulation times

than MWS.

Table 7. Simulation times of bonding wire structures

Example name MWS IPEX3D
Total sim-
ulation
time (sec.)

Total sim-
ulation
time (sec.)

Number of
frequency
points

Maximum
frequency
(GHz)

Single cylinder on
ground (Sec. 4.2.3)

871.00 6177.01 30 30

Three JEDEC4 bond-
ing wires (Sec. 4.3.1)

30009.00 3324.90 30 10

PBGA wires (SS)
(Sec. 4.3.2)

54206.00 5946.25 31 25

PBGA wires (GSSG-
1) (Sec. 4.3.2)

82163.00 16466.32 31 25

4.4 Summary

To model practical configurations of bonding wires in stacked ICs, this chapter pre-

sented a method to couple planar coupling effects into the modal RLC interconnection

model discussed in Chapter 2 and 3. Combination with the PEEC method enables the

modeling of finite planar structures such as bonding pads and finite ground structures.

In addition, the image method approximates large solid ground planes. The proposed

method was validated for various bonding wire structures with a 3-D full-wave EM

simulator, and showed good accuracy and efficiency.
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CHAPTER 5

MODELING OF THROUGH SILICON VIA (TSV)
INTERCONNECTIONS

To increase 3-D integration density, TSV interconnections are emerging as major

interconnection elements. Compared to bonding wires, TSV interconnections are

much more efficient to reduce interconnection pitch since they are fabricated in silicon

substrate. In addition, the direct vertical connection by TSVs shortens electrical

length, especially for communication between stacked chips. With these features,

the use of TSV interconnections can be extended to various integrated mixed-signal

system designs.

In spite of these merits, the commercialization of TSV-based integration is facing

technical barriers. Until now, the main interest has been on the fabrication process,

but the electrical design methodology is becoming a major issue. Characterizing TSV

interconnections needs more consideration than other types of interconnections. Un-

like bonding wires, the TSVs are embedded in a multilayered lossy silicon substrate,

which generates additional loss and distortion. Furthermore, the oxide coating struc-

ture around the TSV is another important design parameter. Need for controlling

these parameters makes TSV modeling more challenging and costly.

As in the case of bonding wires in 3-D integration, the electrical coupling of a large

number of TSVs is difficult to obtain with existing methods. A typical number of TSV

interconnections in SiP applications may exceed several hundreds or thousands, as

shown in a recent realization in memory chip stacking [22]. Another estimate indicates

that I/O interconnection density will be 105 − 108 /cm2, which is compatible with

the on-chip density [18]. As discussed in Chapter 1, simple analytical methods [6] are

available for characterizing one or two TSVs, but they cannot address general multi-

TSV problems. Another way of modeling a large number of TSV interconnections is
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using EM simulation tools [85], but computational cost can increase since the meshing

of a thin oxide region around a thick and long conductor can lead to a large number

of elements.

In order to address the current TSV modeling issues, this chapter proposes an

efficient approach that is extended from the integral equation method in Chapters 2

and 3. To consider the oxide coating effect, a new kind of basis function is developed,

and a generalized modal equivalent network is constructed. The lossy substrate ef-

fect is incorporated by using a complex permittivity model in the SPIE, under the

assumption that TSVs are in homogeneous silicon media. The error from neglecting

the effect of multilayered substrate is discussed in future work.

The following section introduces a typical TSV structure with its geometrical

descriptions and design parameters. Section 5.2 discusses the silicon permittivity

model and operation modes of interconnections on silicon substrate. Section 5.3

presents the formulation of integral equation for modeling the oxide coating effects

with an extended equivalent circuit model. Section 5.4 shows several TSV modeling

examples to validate the proposed method.

5.1 Structure Description

Figure 67 shows a typical direct copper-plug TSV structure in a single silicon sub-

strate. The upper and lower sides of the silicon substrate are covered by oxide layers.

Annular oxide coating also fills the gap between conductor and silicon. Since the

oxide is a pure insulator, the oxide layers and coating form capacitances that blocks

DC current leakage. Usually, the TSV interconnections are fabricated as an array in

a silicon carrier and stacked vertically to construct a SiP, as shown in Figure 68.

Fabrication constraints define the available range of TSV dimensions. For exam-

ple, the oxide thickness is usually from 0.5 to 2 µm, but realizing an oxide layer that

is thicker than a few microns is difficult. The height of via conductor depends on the
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Figure 67. Typical direct Cu-plug TSV structure (left: side view, right: top cross
sectional view.)

Figure 68. TSV array in a silicon carrier (left) and a stacked ICs with TSV intercon-
nections (right).

substrate thickness, ranging from 20 to 100 µm. The diameter of TSV interconnec-

tions can have a diverse range, and a typical interconnection diameter of 25 µm is

also popular in TSV design.

An important parameter to characterize TSV performance is the resistivity (or

conductivity) of silicon substrate. According to the level of doping, the silicon sub-

strate can be categorized as high resistivity silicon (HRS) or low resistivity silicon

(LRS). The electrical behavior of interconnections in silicon strongly depends on the

silicon resistivity and frequency, which determine the operation modes of silicon in-

terconnections [25].
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5.2 Silicon Permittivity Model and Operation Modes

A major difference between silicon substrate and other (organic or ceramic) packaging

substrates is that the silicon substrate has a finite conductivity induced by doping,

which may range from 10 to 100 S/m. When constant conductivity is used, the

complex permittivity of silicon substrate cannot be expressed by using dielectric loss

tangent only, but it should include another complex term that originates from the

constant conductivity as follows [86]:

εSi = ε0εSi,i(1− j tan δ − j
σSi

ωε0εSi,i

), (76)

where εSi,i is the dielectric constant (the real part of complex permittivity), tan δ is

the intrinsic loss tangent, and σSi is the conductivity of silicon.

The intrinsic loss tangent (tan δ) is originated from the dielectric loss of an intrinsic

silicon without doping. Thus, tan δ represents a loss characteristic of general low-loss

dielectrics, which can be expressed by causal dielectric models such as the Debye,

Lorentz [87], and Djordjevic-Sarkar models [88]. For simplicity in frequency-domain

simulation, a constant tan δ model is also effective since the effect of the conductivity

σSi is more significant than the loss tangent in the electrical behavior of TSVs.

The silicon conductivity is determined by the level of doping. Low-doped silicon

substrates have similar characteristics to low-loss dielectrics, so their dielectric loss

is significant only at high frequencies. Nevertheless, highly-doped silicon (LRS) sub-

strate needs to be used sometimes because of cost considerations in system design.

However, the electrical design with LRS-based TSV interconnections is difficult since

considerable loss and substrate coupling should be compensated.

The electrical behavior of interconnection on silicon is classified by the following

three operation modes [25], according to the operation frequency and resistivity of

silicon layer.
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• Dielectric quasi-TEM mode: When the resistivity of silicon is high, the high-

frequency characteristic of the silicon substrate is almost the same as those

of low-loss dielectric substrate. At high frequencies, the effect of conductivity

becomes smaller ( σ
ωε

), and the equivalent interconnection model is similar to the

RLGC network of conventional low-loss transmission lines.

• Skin effect mode: When the resistivity of silicon is low, conduction current in

the silicon substrate exhibits a crowding distribution as in the case of current

in a good conductor at high frequencies. Thus, the return currents flow on the

boundary surface of silicon and oxide, and the per-unit-length capacitance of

interconnection becomes identical to oxide capacitance.

• Slow-wave mode: For both the low and high resistivity silicon substrate, the

low-frequency behavior of interconnections is influenced by the combination of

oxide capacitance and silicon conductance. The resultant effect is a large effec-

tive dielectric constant, which makes the phase velocity of the interconnection

considerably lower.

5.3 TSV Modeling with Cylindrical Modal Basis Functions

For the complete modeling of TSV interconnections, the following interconnection

parasitic elements need to be found.

1. Loss and inductive coupling in copper conductors.

2. Substrate loss and capacitive coupling on copper conductor surfaces.

3. Substrate loss and Capacitive coupling on oxide surfaces.

4. Excess capacitance in annular oxide structures.

For extracting conductor loss and inductive coupling (1), the EFIE formulation with

cylindrical CMBFs (Chapter 2) can be used directly. Thus, R-L models of the THV
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interconnection examples in Section 2.3 can be a part of the TSV interconnection

model. After replacing the free-space permittivity with the silicon permittivity, ca-

pacitive couplings (2 and 3) can be found from the SPIE with cylindrical AMBFs,

which was discussed in Chapter 3. Therefore, this section does not discuss 1, 2 and

3 in detail, and mainly focuses on the excess capacitance extraction in the oxide

structure.

The oxide coating between the substrate and TSVs should be considered for accu-

rate analysis of the TSV structures. In the case of planar interconnections mounted

on silicon substrate, the planar oxide layer forms a capacitance between the line and

silicon, so the oxide effect can be included by using a multilayered Green’s function,

the transverse resonance method [89], or a spectral domain approach [90]. However,

the oxide coating that covers the cylindrical TSV interconnection cannot be expressed

with the above methods easily, especially when the number of TSVs is more than two.

Thus, the annular oxide structure should be considered as a part of interconnections,

but these dielectric interconnections need additional computation to obtain the equiv-

alent circuit parameters. To use the benefit of the reduced number of basis functions,

this section extends the original modal basis functions for modeling the annular oxide

structures. The idea of modeling TSV interconnections is summarized in Figure 69.

5.3.1 EFIE Formulation in Oxide Region and Cylindrical PMBF

Since no conduction current flows in a dielectric insulator, the electric field based on

Ohm’s law is not included in the following EFIE [48]:

~E(~r) + jω
µ

4π

∫

v′
G(~r, ~r′) ~JC(~r′)dv

′
+ jω

µ

4π

∫

v′
G(~r, ~r′)ε0(εox − εSi)jω ~Edv

′
= −∇Φ,

(77)

where ~E(~r) is the electric field in the oxide region. Since the oxide thickness is

usually thin relative to the other dimensions of a TSV structure, the electric field is

assumed to have radial (ρ) and angular (ϕ) directions only. Thus, the conduction
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Figure 69. TSV modeling idea using cylindrical modal basis functions. (Some of com-
ponents in the equivalent circuit are omitted for simplicity.)

current ~JC(~r′ , ω) is perpendicular to the polarization current, and the first integral

term becomes zero. After replacing the polarization current by ~JP (~r, ω) = jωε0(εox−
εSi) ~E(~r), (77) is reduced to the following form:

~JP (~r, ω)

jωε0(εox − εSi)
+ jω

µ

4π

∫

v
′
G(~r, ~r′) ~JP (~r, ω)dv

′
= −∇Φ. (78)

Extending the modal basis concept, we can approximate the polarization current

density as follows:

~JP (~r, ω) '
∑
j,n,q

Ijnq~ujnq(~rj). (79)

By applying the inner product based on Galerkin’s method, following equation is

obtained:

∑
j,n,q

Ijnq
1

jωCex
imd,jnq

+
∑
j,n,q

jωLimd,jnqIjnq =

∫

Vi

~uimd · (−∇Φ)dVi, (80)

where

Cex
imd,jnq =

ε0(εox − εSi)∫
Vi

~uimd · ~ujnqdVi

,
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Limd,jnq =
µ

4π

∫

Vi

∫

Vj

G(~ri, ~rj)~uimd(~ri) · ~ujnq(~rj)dVjdVi.

Here, we have to define proper basis functions and terminal voltage terms. In the

annular insulators, the inner surface of which contacts the conductor, the solution of

the Laplace’s equation is expressed as follows [65]:

Φn(ρ, ϕ) =





A0 + B0 ln ρ n = 0
(− ( ρ

ρc
)n + ( ρ

ρc
)−n

)
(An cos nϕ + Bn sin nϕ) n > 0

. (81)

These potential components contribute to a capacitive voltage drop, not the total

voltage drop across the interconnect. The electric field from the above potential is

expressed as follows:

−∇Φn(ρ, ϕ) =





B0

ρ
ρ̂ n = 0

n
{ρn−1

ρn
c

+
ρ−n−1

ρ−n
c

}
(An cos nϕ + Bn sin nϕ)ρ̂

+ n
{ρn−1

ρn
c

− ρ−n−1

ρ−n
c

}
(−An sin nϕ + Bn cos nϕ)ϕ̂

n > 0
. (82)

For higher-order modes (n > 0), we can rewrite the following “direct” and “quadra-

ture” fields:

−∇Φn(ρ, ϕ) = ~Ed + ~Eq, (83)

where

~Ed =
Pn(ρ/ρc)

ρ
cos nϕρ̂− Qn(ρ/ρc)

ρ
sin nϕϕ̂,

~Eq =
Pn(ρ/ρc)

ρ
sin nϕρ̂ +

Qn(ρ/ρc)

ρ
cos nϕϕ̂,

Pn(ρ/ρc) = n
{ρn

ρn
c

+
ρ−n

ρ−n
c

}
,

and

Qn(ρ/ρc) = n
{ρn

ρn
c

− ρ−n

ρ−n
c

}
.
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Therefore, we can define the following modal basis functions:

~uimd(ρ, ϕ) =





1
Ai0

ρc

ρ
ρ̂ m = 0

1
Aimd×ρ

{
[Pm(ρ/ρc) cos mϕ]ρ̂− [Qm(ρ/ρc) sin mϕ]ϕ̂

}
m > 0, d−mode

1
Aimq×ρ

{
[Pm(ρ/ρc) sin mϕ]ρ̂ + [Qm(ρ/ρc) cos mϕ]ϕ̂

}
m > 0, q−mode

.

(84)

The normalization parameters Ai0andAimd are found so that the coefficient Iimd

is an actual modal polarization current in amperes. For m = 0,

∫

Sd

~ui0 · d~S = 1, (85)

where Sd is the surface boundary between the thin dielectric and the surrounding

media. Although the integration surface can be defined as the boundary between the

insulator and the conductor, using Sd makes the final formulation more simple. The

resultant normalization coefficient is:

Ai0 = 2πρcli. (86)

In case of higher-order modes, the same integral over the entire peripheral region is

zero, so we define the normalization factor as follows:

∫

S+
d

~uimd · d~S =
1

2m
. (87)

Therefore,

Aimd = 4liPm

(ρd

ρc

)
= 4lim

{ρm
d

ρm
c

+
ρ−m

d

ρ−m
c

}
. (88)

The new modal basis functions capture polarization current density in the insula-

tor region, and therefore can be called cylindrical polarization mode basis functions

(PMBFs). Figure 70 shows plots of the PMBF from the fundamental to the second

mode.

Using the defined normalization factors, we obtain the following modal excess

capacitances. From the orthogonal and local properties of basis functions, there are
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Figure 70. Example plots of cylindrical PMBFs when conductor radius is 1 and insulator
radius is 1.5.
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no off-diagonal terms.

Cex,imd =
ε0[εr − εB]∫

Vi
~uimd · ~uimddVi

=





2πliε0(εr−εB)

ln
ρd
ρc

m = 0

16mliε0(εr−εB)

π
Qm(ρd/ρc)

Pm(ρd/ρc)

m > 0
. (89)

Interestingly, the fundamental mode excess capacitance is identical to the capacitance

of a coaxial cylinder having an inner radius of ρc and an outer radius of ρd.

The following modal self and mutual inductance can be calculated using techniques

similar to those used in the calculations where the conduction mode basis functions

are involved:

Limd,jnq =
µ

4π

∫

Vi

∫

Vj

G(~ri, ~rj)~uimd(~ri) · ~ujnq(~rj)dVjdVi. (90)

However, the inductance across the thin insulator is negligible since the ratio of

the oxide thickness to the cylindrical area is small. In the TSV design, the oxide

thickness cannot exceed a few microns, but the cylindrical area can be over 1000

µm2. Therefore, the oxide inductances can be considered as a secondary effect.

The modal voltage difference is formulated as follows, by using the vector identity

∇ · (Ψ ~A) = Ψ∇ · ~A + ~A · ∇Ψ:

∫

Vi

~uimd · (−∇Φ)dVi =

∫

Vi

Φ∇ · ~uimd −∇ · (Φ~uimd)dVi. (91)

Since ∇ · ~uimd should be zero, only the second term of the right part of the above

formula remains, and we can apply the divergence theorem. Therefore,

∫

Vi

~uimd · (−∇Φ)dVi = −
∮

Si

(Φ~uimd) · d~S. (92)

Since we assume that the polarization current has no z component, (92) is reduced to

surface integrals over Sc and Sd shown in Figure 71. On Sc, the electric potential is

fixed to a constant value (Dirichlet boundary condition), which is defined as Φi
c. On

the dielectric interface Sd, the potential cannot be fixed to a constant, but should be

111



a function of ϕ. Therefore, the final expression of the modal voltage difference is as

follows:

∆Vimd = −
∫

SC

ΦC
i ~uimd · n̂cρcdϕdz −

∫

SD

ΦD
i (ϕ)~uimd · n̂dρddϕdz, (93)

where ΦD
i (ϕ) = ΦD

i0 + 4
π

∑
m=1[Φ

D
imd cos nϕ + ΦD

imq sin mϕ].

C
n̂

D
n̂

),(
imd

u

C
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i
)(
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Figure 71. Potential definitions on surfaces in a TSV cross section.

When m = 0,

∆Vimd = +ΦC − ΦD
i0, (94)

which means that the modal voltage difference is the difference between the actual

conductor voltage and the fundamental mode of the dielectric interface potential.

When m > 0,

∆Vimd = 0− 1

Aimd

∫

SD

ΦD
i (ϕ)Pm(ρd/ρc) cos mϕdϕdz = −ΦD

imd. (95)

In case of good conductor interconnections, the modal voltage difference involving the

higher-order basis is zero, so the equivalent circuit forms a closed loop, as discussed

in Chapter 2. However, when an insulator is involved, the higher-order modal voltage

difference is the higher-order voltage drop of the dielectric interface. The actual
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value of the higher-order voltage is not determined here, but can be found from the

formulation combined with the SPIE involving the bound charges in the insulator

boundary.

5.3.2 SPIE Formulation on Conductor and Insulator Surfaces

Equation (53) in Section 3.3 shows that SPIE involves the total charge that includes

free and bound charge. In the case of TSV interconnections, the conductor boundary

contains free charge and bound charge, but the insulator boundary contains bound

charge only. Therefore, total charge density distributions on conductor and insulator

boundary are assigned as follows:

qC =
∑

kmd

QC
kmdv

C
kmd, (96)

qD =
∑

kmd

QD
kmdv

D
kmd, (97)

where qC,D is total surface charge density distributions, vC,D
kmd is cylindrical AMBFs,

and superscripts C and D represent the conductor surface (SC) and the insulator

surface (SD), respectively.

Using the above modal expansions, the coefficients of potential are obtained in

the same way as discussed in Chapter 3, except that the modal potential expression

in the insulator boundary is not the same as that in the conductor boundary. That

is, the equivalent circuit equation for the kmd-th mode is as follows:

∑

lnq

PD
kmd,lnqQlnq = ΦD

kmd. (98)

Therefore, the capacitive coupling expressed in (98) is directly connected to the volt-

age difference in (95).

5.3.3 Equivalent Circuit and Matrix Formulation

Summarizing all the relations of modal circuit elements regarding conductor R-L

model, insulator excess capacitance model, and coefficient of potential models, we

obtain the following matrix equations.
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1. Conductor series impedance equation: The series resistance and inductance

results in the voltage drop across a via conductor, which represents the same

equivalent model shown in Chapter 2.




Zss Zsp

Zps Zpp







Is

Ip


 =




∆ΦC

0


 . (99)

2. Insulator parallel impedance equation: The equivalent modal impedance shown

in Section 5.3.1 contributes to the voltage drop across the oxide coating as

follows: 


Zex
ss Zex

sp

Zex
ps Zex

pp







Ipol
s

Ipol
p


 =




ΦC −ΦD
s

−ΦD
p


 , (100)

where

Zex ' 1

jω
Cex−1

and Ipol
s,p are the modal polarization current vectors.

3. Coefficients of potential equation: Equations (96) and (97) are combined to

the following matrix equation, which represents the capacitive coupling among

charges on conductor insulator surfaces. The fundamental modes and higher-

order modes are also indicated.



PC
ss PC

sp PCD
ss PCD

sp

PC
ps PC

pp PCD
ps PCD

pp

PDC
ss PDC

sp PD
ss PD

sp

PDC
ps PDC

pp PD
ps PD

pp







QC
s

QC
p

QD
s

QD
p




=




ΦC
s

0

ΦD
s

ΦD
p




. (101)

4. Matrix form of continuity equations: The matrix equations from (99) to (101),

which come from EFIEs and SPIEs, are linked to the continuity equations or

KCL. Firstly, current in conductor cells should satisfy the continuity relation
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with the free charge on the conductor surface. Therefore,

(
−E ∆i

)



It

Is


 + jω(QC

s + QD
s ) = 0, (102)

where QC
s +QD

s is the free charge on the conductor surface. The above equation

is identical to (61) in Chapter 3, where the terminal current It becomes the

forcing term in the global matrix equation. The other continuity relation should

be satisfied on the insulator surface as follows:



Ipol
s

Ipol
p


 + jω




QD
s

QD
p


 = 0. (103)

The above equation indicates that the polarization currents should be continu-

ous with the time variation of the bound charge on the insulator surface.

For obtaining Z parameters, we assign the terminal current It as a known value,

and then solve the following combined matrix equation:



Zss Zsp −∆v

Zps Zpp

Zex
ss Zex

sp −E E

Zex
ps Zex

pp E

∆i jωE jωE

E −jωE

E −jωE

−E PC
ss PC

sp PCD
ss PCD

sp

PC
ps PC

pp PCD
ps PCD

pp

−E PDC
ss PDC

sp PD
ss PD

sp

−E PDC
ps PDC

pp PD
ps PD

pp







Is

Ip

Ipol
s

Ipol
p

ΦC

ΦD
s

ΦD
p

QC
s

QC
p

QD
s

QD
p




=




It




,

(104)

where unassigned elements are all zeros. The matrix equations can be expressed

by an equivalent circuit model shown in Figure 72, which includes series conductor

impedances, capacitive couplings, and excess capacitance in the oxide coating. The

addition of the excess capacitance and the capacitance from SPIEs should provide

the actual oxide capacitance depending on the oxide permittivity only. However, the
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assumption that no axial electric field exists in the oxide region may not match with

the full capacitive coupling model from SPIE. This mismatch causes fictitious loss,

which should be corrected.
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Figure 72. Modal equivalent circuit of TSV interconnections.(Higher-order loops for
inductive proximity effect are omitted.)

5.3.4 Generalized Excess Modal Capacitances

The modal excess capacitor in the oxide region (89) is obtained under the assumption

that the electric field has radial and angular directional components only. However,

the assumption is not correct when a TSV interconnection is divided into several

capacitive cells. The neighboring cells have capacitive couplings coming from the

axial electric fields, so the additional coupling should be compensated with more

accurate excess capacitances. The alternative way to obtain the excess capacitances

is discussed by reformulating the matrix equations in the previous subsection.

Instead of solving the global matrix equation (104) directly, we can eliminate the

internal current and charge vectors in (99-102) to obtain the following reduced matrix
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equation relating the terminal currents and conductor potentials:

(Yc + jωCeq)ΦC = It. (105)

Yc is an admittance matrix contributed by the conductor impedances and is defined

as follows.

Yc = ∆I,TZ−1
c ∆V,T, (106)

where

∆I,T =

(
∆I 0

)
,∆V,T =




∆V

0


 ,

and

Zc =




Zss Zsp

Zps Zpp


 .

Ceq represents the matrix including all the capacitances from the conductor and the

insulator cells, and the excess oxide capacitances.

Ceq = Ceq
C −Ceq

CDCeq
D
−1

Ceq
DC, (107)

where 


Ceq
C Ceq

CD

Ceq
DC Ceq

D


 =




CpC CpCD

CpDC CpD


 +




Cex −Cex

−Cex Cex




and




CpC CpCD

CpDC CpD


 =




PC
ss PC

sp PCD
ss PCD

sp

PC
ps PC

pp PCD
ps PCD

pp

PDC
ss PDC

sp PD
ss PD

sp

PDC
ps PDC

pp PD
ps PD

pp




−1

.

Equation (107) shows that the capacitance between the conductor and the insu-

lator cells are replaced by the excess capacitance. Thus, the oxide capacitance with

the permittivity of εox connects the connector nodes and the insulator nodes. If the

excess capacitance matrix is considering only the direct coupling between two facing
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cells, the resulting matrix Ceq has the complex permittivity in the oxide capacitor,

which provides additional loss. This modeling defect can be addressed by redefining

the excess capacitance matrix as follows.

Cex = −εox − εSi

εSi

CpCD. (108)

By using the above expression, the excess capacitance completely removes the complex

permittivity in the oxide region.

5.4 Validation

This section applies the proposed TSV modeling method to various structures. At

first, to observe the effect of the oxide coating, cylindrical structures with annular

oxide coatings are validated in free space. Then the silicon background is included,

and three TSV interconnections are simulated and compared with data in existing

references or measurement data. Finally, in order to show the generality of the pro-

posed method, TSV array structures are simulated. The origins of the errors from

the proposed method are also discussed.

5.4.1 Effect of Oxide Coating without Silicon Substrate

Figure 73 shows the geometry of two oxide-coated cylindrical interconnections. In

free space, we can observe the pure effect of oxide coating on the characteristics of via

interconnections by testing the cases with or without the oxide coating. The thickness

of oxide (dox) is 20 µm, which is rather thick compared to the diameter of conductor

(D = 100µm). Interconnection length (L) and pitch (D) are 1000 µm and 150 µm,

respectively.

2-D analytical methods to calculate the capacitance between two parallel con-

ductors can be used to obtain analytical results. When the oxide layer is removed,

the problem is reduced to a simple two cylindrical conductor problem, the analytical
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Figure 73. Geometry and electrical configuration of two via interconnections with oxide
coating in free space.

solution of which is well known [59]. Two parallel cylindrical conductors with annu-

lar dielectrics can be calculated by using a conformal mapping technique [91]. For

both cases, the per-unit-length inductances are assumed to be identical because the

inductive coupling is not influenced by the oxide coating.

Comparing S parameter data of the proposed method to the analytical formula

shows good correlation, as shown in Figure 74. Since the addition of the oxide coating

modifies the capacitance between two interconnections, the characteristic impedance

is changed. Although the effect of oxide coating on the variation of S parameters

seems small in this example, the effect can be emphasized in lossy dielectric sur-

roundings as shown in the next example.

5.4.2 Three TSV Interconnections

The proposed method with the silicon permittivity model was applied to a three-TSV

structure problem, which is shown in Figure 75. The original setup of the geometry

and electrical configuration can be found in [6], where S parameters are obtained

from measurements and simulations with a commercial 3-D EM simulator. As the

background media, silicon substrate has the conductivity of 10 S/m and dielectric
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Figure 74. S-parameter results (left: insertion loss, right: return loss, solid lines: ana-
lytic transmission line, dots: proposed method).

constant of 11.9. These material parameters were used in the complex permittivity

formula (76). Copper radius (R), pitch (D), and conductor length (L) were fixed to

50 µm, 150 µm, and 100 µm, respectively. To observe the effect of the oxide layer,

three cases (0.1, 1, and 10 µm) of the oxide thickness (dox) were simulated. As shown

in Figure 75, the center via interconnection was used as a signal path, and the other

two vias were used as ground path. From the GSG signaling, 2-port S parameters

were obtained.

Figure 76 shows insertion losses obtained from the proposed modeling method for

three TSV interconnections with three different oxide thicknesses. The frequency-

dependent behaviors show the effects of various oxide thicknesses clearly, and they

show similar trends with the 3-D EM simulation results in [6]. When the oxide

thickness is small (0.1 µm), the insertion loss increases sharply at low frequencies,

but the increase becomes slower from about 1 GHz. The high-frequency insertion

loss is about 1.8 dB, which is a rather high value for the interconnection length of

100-µm. As the oxide thickness increases, the trend of insertion loss over frequency

becomes smooth like interconnections in low-loss dielectric substrates.
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Figure 75. Three TSV interconnections.
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Figure 76. Insertion losses of the three TSV interconnections with different oxide thick-
nesses.

A main difference between the results of the proposed method and 3-D EM simu-

lation results is the non-zero loss of about -0.4 dB at DC. Although the conductor DC
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resistance may contribute to the DC loss, its high conductivity makes the conductor

DC loss negligible. The origin of the finite DC loss is from the use of the homoge-

neous media Green’s function. With the homogeneous media assumption, the TSV

interconnections are surrounded by the lossy silicon, and the two ends of the copper

conductor are exposed to silicon directly. Thus, DC leakage currents flow through

the edge of the interconnections, causing DC loss due to the silicon conductance.

However, the TSV structure is exposed to the oxide layer and air as shown in Figure

67, so the DC leakage current does not exist.

5.4.3 Coupling Characteristics of TSV Array

Extending the previous example, a 5-by-5 TSV array structure shown in Figure 77

was simulated to observe the coupling effects from nearby via interconnections. Based

on the same via dimensions as the previous example, the following cases were tested

for comparison.

1. THV array (in free space).

2. TSV array with thin oxide layer (σSi = 10 S/m, oxide thickness = 0.1µm).

3. TSV array with thick oxide layer (σSi = 10 S/m, oxide thickness = 10µm).

For all cases, the length and diameter of each via interconnection were 100 µm and

30 µm, respectively. The pitch between via interconnections is 60 µm.

Figure 78 compares insertion losses of all via interconnections for three cases.

Assuming all the via interconnections as single-ended interconnections, the resultant

50-port S parameters were calculated. The negligible insertion losses of the THV

array are predictable since the interconnection length is too small to have significant

parasitic effects. However, the insertion losses of TSV arrays are much higher with the

same interconnection length because of the effect of substrate conductivity. As shown

in the three-TSV case of the previous subsection, the oxide thickness also decides the
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Figure 77. 5-by-5 TSV array configuration.
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Figure 78. Insertion losses of THV and TSV arrays.

level of the insertion loss. Figure 78 shows that using the thicker oxide layer is helpful

to reduce the insertion loss.

Figure 79 shows the entire S parameters at 10 GHz to observe the coupling be-

tween via interconnections. Since the coupling levels are related to the insertion losses

in Figure 78, the coupling from TSV interconnections are higher than those of THV
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array in free space. In case of the TSV array with the oxide thickness of 0.1 µm, the

maximum coupling level is about -29 dB. The coupling level can be worse when the

silicon conductivity is higher, and the electrical design of TSV becomes challenging

because of the increased coupling level as well as increased signal loss.

5.5 Summary

This chapter discussed a method to model TSV interconnection, which is a new

silicon-based 3-D packaging structure that promises high density integration. After

introducing typical structure and electrical operations, this chapter presented the use

of cylindrical modal basis functions to model TSV structures. In addition, to capture

the effect of annular oxide structure of TSV, this chapter proposed a new modal basis

function called cylindrical PMBF. The proposed method, which is an extension of the

modal equivalent modeling method in this dissertation, has the benefit that it can

generate the model for a large number of TSV interconnections. The validation of

the proposed approach showed good correlation with 3-D EM simulation and analyt-

ical methods. However, because of the limitation due to the use of the homogeneous

media Green’s function, the low-frequency accuracy of the proposed method needs

to be improved in future work. Nevertheless, the modal equivalent circuit model-

ing is the first systematic approach that can be efficiently used for modeling TSV

interconnections in practice.
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Figure 79. S parameters at 10 GHz of the center conductor to observe near- and far-end
couplings.
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CHAPTER 6

CONCLUSIONS

For the realization of high-density mixed-signal systems, 3-D integration is becom-

ing a fundamental design concept. Successful 3-D integration should be based on

high-yield chip stacking process, reliable thermal management, and efficient electrical

design. However, all the prerequisites for 3-D integration are challenging with current

technologies, which therefore needs to be supported by systematic design methodolo-

gies.

Throughout the previous four chapters, this dissertation focused on developing an

efficient CAD tool that enables the electrical characterization of interconnections in

3-D integration. Optimized to cylindrical interconnections such as bonding wire and

through-via interconnections, the proposed method can extract parasitic elements and

coupling of large number of interconnections in 3-D integration with minimum com-

putational cost. Therefore, the new method demonstrates the modeling of bonding

wires in stacked ICs and TSV interconnections efficiently.

In conclusion, the following section clarifies the major contributions in this dis-

sertation, emphasizing the usefulness of the proposed method for electrical design of

3-D integrated systems. For further improvement of the modeling tool, Section 6.2

presents the current limitations of the developed method and suggests future work

to address the limitations. The final section shows papers and inventions published

through the dissertation research.

6.1 Contributions

The research objective of developing a method to obtain a broadband model of a

large number of 3-D interconnections is achieved by the development of IPEX3D, a

interconnection modeling tool focusing on 3-D design. By listing the main features of
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IPEX3D, the details of the contributions in this research can be clarified as follows.

• Efficient series impedance (R-L) extraction using cylindrical CMBF: A

main feature of IPEX3D is to extract frequency-dependent resistance and induc-

tance of cylindrical-type interconnections. To capture the inductive coupling of

large number of interconnections without causing much computational cost due

to conductor discretization, this research proposed the cylindrical CMBF. The

use of cylindrical CMBF to compute mutual inductances is further improved

by controlling the required number of PE-mode basis functions. Therefore, the

proposed method can obtain frequency-dependent resistances and inductances

of a hundred of strongly coupled bonding wires in stacked ICs.

• Parallel capacitance extraction using cylindrical AMBF: The feature

of capacitance extraction is included to extend modeling bandwidth since the

capacitive coupling is important to ensure high-frequency accuracy. As a match

with the cylindrical CMBF for impedance calculations, this research proposed

the cylindrical AMBF, which can be utilized in a similar way for calculating

integrals. In addition, this research revisited the integral equation to consider

the case when the background material is a lossless (non-free-space) dielectric,

and showed that the simple substitution of permittivity enables the capacitance

calculation in the molding compound. Without breaking the efficiency of the

R−L calculation, the proposed method can obtain the broadband RLGC model

of large number of interconnections.

• Inclusion of planar coupling by a combination with the PEEC method:

Although the proposed cylindrical modal basis functions (CMBF and AMBF)

are suitable for modeling cylindrical structures such as bonding wires and via in-

terconnections, real design environment is composed of cylindrical interconnec-

tions as well as various planar structures including strip-type interconnections,
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bonding pads, and finite ground structures. To consider the coupling from pla-

nar structures, this research used the combined integral-equation-based model

by adding staircase (piecewise constant) basis functions used in the conventional

PEEC method.

• TSV modeling using modal excess capacitance extraction: To extend

the method based on the modal basis functions for the TSV interconnection

modeling, this research proposed to use the modal excess capacitance, which

captures the capacitance in the annular oxide coating around the via conductor.

By computing the additional capacitive coupling from the insulator surfaces,

an equivalent model including the excess modal capacitance can be obtained.

The modal equivalent model in this research is the first proposed method for

modeling a large number of TSV interconnections in a systematic way, although

further work is necessary to improve model accuracy.

6.1.1 Mixed-Signal System Design Using IPEX3D

Since IPEX3D provides the model of a large number of interconnections, we can

utilize the generated model in the design flow of practical mixed-signal system. For

a given interconnection structure, IPEX3D produces a generic multi-port equivalent

circuit or network parameter, which does not depend on any specific excitation design.

Thus, we can observe the effects of different excitation schemes using the multi-port

network model and decide a specific signaling scheme that reduces parasitic effects.

For example, the loss and coupling of transmitted signal are influenced by the location

of power and ground wires, which can be in the middle or at the edge of a chip. If

a large number of power, ground, and signal wires should be assigned, an additional

CAD tool can be used to designate each wire port so that electrical performance is

optimized.
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6.2 Future Work

The current contributions of this dissertation can be improved in their applicability to

practical 3-D interconnection designs by completing the following future work. The

future work is specific to TSV interconnection and bonding wire applications.

6.2.1 Modeling of TSV Interconnections

The most important work to be done for more accurate TSV modeling is to consider

the multilayered silicon substrate. Although the preliminary research in Chapter

5 shows fair model accuracy, the assumption of a homogeneous silicon background

reduces the accuracy, especially when the silicon conductivity is high. The error comes

from the DC leakage current flowing though the homogeneous conducting media,

which should be modeled more accurately by using a multilayered Green’s function

[92]. Since the multilayered Green’s function includes the information of oxide layers

and free space region in the upper and lower parts of the silicon, the improved model

will accurately incorporate the effect that DC leakage current can be blocked with

the oxide and free space.

After improving the TSV modeling method with the multilayered Green’s func-

tion, we can extend the modeling for further design applications. One of the interest-

ing TSV applications is to utilize the effect of bias voltage to adjust the capacitance

of TSV interconnections. Controlling the bias voltage changes the value of TSV ca-

pacitance, which can be used for control circuits in RF and digital applications like

a varactor. By including the variable capacitance effect, the TSV modeling tool will

be able to provide a design guideline for controlled TSV applications.

Finally, a future TSV modeling tool should address various shapes of TSV struc-

tures since the TSV technology is still evolving for improved process yield and better

electrical performance. Some of the possible structures include coaxial TSV [85],

annular type TSV, and square type TSV structures. To generalize the modeling

approach proposed in Chapter 5, a new kind of basis function may be necessary.
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6.2.2 Modeling of Bonding Wires in Stacked ICs

As discussed in this dissertation, the generated interconnection models are basically

composed of RLC elements. Nevertheless, the direct use of the RLC model in SPICE-

type simulators is not available in the current status because the model is the com-

bination of frequency-dependent R-Ls and frequency-independent Cs, which might

violate causality. Therefore, for the time-domain co-simulation with other subsys-

tems, the series R-Ls should be converted to an equivalent network of fixed-valued

components like a ladder circuit.

Further improvements in computing the effect of planar coupling is also necessary.

The combination with the PEEC method (Chapter 4) can capture the planar coupling,

but computing integrations involving the modal basis functions and the discretized

cells from the planar structure may require increased computational cost. Therefore,

the efficiency enhancement of computing the coupling between planer and modal basis

functions is required. For another solution, a more efficient method of combining

planar coupling can be sought. For example, the plane modeling methods such as

MFDM [93] and MFEM [94] can be linked to the integral-equation based method,

and the generalized modal decomposition can be developed.

To extend the modeling bandwidth of the current modeling method up to the

millimeter wave range, more generalized modeling is necessary. A main issue with

bonding wires at millimeter wave frequencies is the radiation effect, which means that

wires act like antennas. The integral equation should be reformulated as in the case

of the generalized full-wave PEEC method. The radiation effect may be incorporated

as additional radiation resistance in the interconnection model.

6.3 Publications

In the course of the dissertation research, the following journal articles, conference
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APPENDIX A

DERIVATION OF PARTIAL RESISTANCE FORMULA

Partial resistances formula (26) can be calculated directly from the following definition

of partial resistances.

Rimd,jnq =
1

σ

∫

Vi

~w∗
imd(~r, ω) · ~wjnq(~r, ω)dVi. (109)

When i 6= j, the inner product of ~wimd and ~wjnq is zero since the cylindrical

CMBFs are localized to the conductors i and j. Thus, Rimd,jnq becomes zero when

i 6= j.

When i = j, the inner product can be written as follows.

~w∗
imd(~r, ω) · ~winq(~r, ω) =

ẑi · ẑi

A∗
imAin

Jm(α∗(~r − ~ri) · ρ̂i)Jn(α(~r − ~ri) · ρ̂i)

cos(mϕi − ϕd) cos(nϕi − ϕq),

(110)

where ϕd,q can be zero (PE-d mode) or π/2 (PE-q mode). Since the inner product

involves a single conductor i, global vectors in Bessel functions are simplified to local

variables ρ and ϕ. By the same reason, the inner product of unit axial vectors becomes

unity. Therefore,

~w∗
imd(~r, ω) · ~winq(~r, ω) =

1

A∗
imAin

Jm(α∗ρ)Jn(αρ) cos(mϕi − ϕd) cos(nϕi − ϕq). (111)

Plugging (111) into (109) results in

Rimd,jnq =
li

σA∗
imAin

( ∫ 2π

0

cos(mϕi−ϕd) cos(nϕi−ϕq)dϕ

)( ∫ ρi

0

ρJm(α∗ρ)Jn(αρ)dρ

)
.

(112)

The above formula shows that we can integrate for variables ρ and ϕ separately.

Firstly, the integration over ϕ is reduced as follows because of the orthogonal property
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of harmonic functions.

∫ 2π

0

cos(mϕi − ϕd) cos(nϕi − ϕq)dϕ =





2π m = n = 0(SE mode)

π m = n 6= 0, d = q

0 m = n 6= 0, d 6= q

0 m 6= n

(113)

(113) indicates that mutual resistances between different modes are all zeros, and we

only need to calculate integral over ρ when m = n and d = q. For SE (m = 0) and

PE modes (m 6= 0), the integral over ρ is as follows.

∫ ρi

0

ρJm(α∗ρ)Jm(αρ)dρ =





2jρi

−α2+α∗2=[α∗J0(αρi)J1(α
∗ρi)] m = 0(SE mode)

2jρi

−α2+α∗2=[αJn−1(αρi)Jn(α∗ρi)] m 6= 0(PE mode)

(114)

By substituting α2 = −2j/δ2 in (114) and combining (113) and (114) in (112), we

can obtain the following expression of partial resistance.

Rimd,jnq =





πδ2ρili
σ|Ai0|2=(αJ∗0 (αρi)J1(αρi)) i = j, m = n = 0

πδ2ρili
2σ|Aim|2=(α∗J∗m−1(αρi)Jm(αρi)) i = j, m = n 6= 0, d = q

0 otherwise

. (115)
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APPENDIX B

DERIVATION OF INTEGRANDS IN PARTIAL SELF
INDUCTANCE FORMULA

As in the case of partial resistance in Appendix A, global coordinate expression of

partial inductance can be reduced to the following local coordinate expression when

self inductance (i = j) is considered.

Limd,inq =
µ

4π

∫

V
′
i

∫

Vi

~w∗
imd(~r, ω) · ~winq(~r′, ω)

1

|~r − ~r′|dVidV
′
i

=
µ

4πA∗
imAin

∫

V
′
i

∫

Vi

Jm(α∗ρ)Jn(αρ′) cos(mϕ− ϕd) cos(nϕ′ − ϕq)
1

|~r − ~r′|dVidV
′
i ,

(116)

where

|~r − ~r′| =
√

D2
i (ρ, ρ′, ϕ, ϕ′) + (z − z′)2

and

D2
i (ρ, ρ′, ϕ, ϕ′) = ρ2 + ρ

′2 − 2ρρ′ cos(ϕ− ϕ′)

is the distance between two points on the cross sectional plane, as shown in Figure

80.

i
D

'

'

Figure 80. Local coordinate variables in the cross section of a cylinder.
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Since the axial variables (z and z′) are found in 1/|~r−~r′| only, an indefinite integral

over (z, z′) can be found as follows.

Iz(Di, li) =

∫ +li/2

−li/2

∫ +li/2

−li/2

1

|~r − ~r′|dzdz′

=

∫ +li/2

−li/2

∫ +li/2

−li/2

1√
D2

i + (z − z′)2
dzdz′

= 2(
√

D2
i −

√
l2i + D2

i ) + li log

[
l2i +

√
l2i + D2

i

−l2i +
√

l2i + D2
i

]
.

(117)

By inserting the above formula, (116) is reduced to the integration involving radial

and angular variables.

Limd,inq =
µ

4πA∗
imAin

∫

ρ′

∫

ρ

ρρ′Jm(α∗ρ)Jn(αρ′)

×
∫

ϕ′

∫

ϕ

cos(mϕ′ − ϕd) cos(nϕ− ϕq)Iz(Di, li)dϕdϕ′dρdρ′.
(118)

In (118), the sum of two angular variables (ϕ+ϕ′) is involved with harmonic functions

only, so analytical integral over (ϕ + ϕ′) is possible. Thus, we apply the following

coordinate transform.



ϕ∆

ϕΣ


 =




1 −1

1 1







ϕ

ϕ′


 . (119)

When defining the integration region for (ϕ, ϕ′) as [−π+π,−π+π] as shown in Figure

81, the integration of any function f(ϕ, ϕ′) is rewritten as follows.

∫ +π

−π

∫ +π

−π

f(ϕ, ϕ′)dϕdϕ′ =
∫ +2π

0

∫ +2π−ϕ∆

−2π+ϕ∆

f(ϕ(ϕ∆, ϕΣ), ϕ′(ϕ∆, ϕΣ))
1

2
dϕΣdϕ∆

+

∫ 0

−2π

∫ +2π+ϕ∆

−2π−ϕ∆

f(ϕ(ϕ∆, ϕΣ), ϕ′(ϕ∆, ϕΣ))
1

2
dϕΣdϕ∆

=
1

2

∫ +2π

0

∫ +2π−ϕ∆

−2π+ϕ∆

f(ϕ(ϕ∆, ϕΣ), ϕ′(ϕ∆, ϕΣ))

+ f(ϕ(−ϕ∆, ϕΣ), ϕ′(−ϕ∆, ϕΣ))dϕΣdϕ∆.

(120)
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Figure 81. Coordinate transform of angular variables and integration region.

By substituting f(ϕ(ϕ∆, ϕΣ), ϕ′(ϕ∆, ϕΣ)) = cos(m(ϕ∆+ϕΣ)/2−ϕd) cos(n(−ϕ∆+

ϕΣ)/2 − ϕq) in (118), we can obtain the integral over ϕΣ that can be calculated

analytically.

IϕΣ
(ϕ∆) =

∫ +2π−ϕ∆

−2π+ϕ∆

cos(m(ϕ∆ + ϕΣ)/2− ϕd) cos(n(−ϕ∆ + ϕΣ)/2− ϕq)

+ cos(m(−ϕ∆ + ϕΣ)/2− ϕd) cos(n(ϕ∆ + ϕΣ)/2− ϕq)dϕΣ

=





8π − 4ϕ∆ m = n = 0

2(2π − ϕ∆) cos (nϕ∆)− 2
n

sin (nϕ∆) cos (2ϕd) m = n 6= 0, d = q

4(−1)m+n+1

m2−n2 [m sin (mϕ∆)− n sin (nϕ∆)] m 6= n, d = q(PE-d)

4(−1)m+n+1

m2−n2 [n sin (mϕ∆)−m sin (nϕ∆)] m 6= n, d = q(PE-q)

0 otherwise

(121)

By inserting IϕΣ
into (118), the triple integral (27) can be obtained.
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APPENDIX C

INDEFINITE INTEGRAL FOR AXIAL VARIABLES IN
MUTUAL INDUCTANCE FORMULA

With the variables that are defined in Figure 15, the distance between two points is

formulated as follows.

R12 = | ~R2 − ~R1| =
√

z2
1 + 2bz1z2 + z2

2 + 2dz1 + 2fz2 + g, (122)

where

b = − sin β1 sin β2 cos (α2 − α1)− cos β1 cos β2,

d = ρ2x[sin β1 sin (α2 − α1)] + ρ2y[sin β1 cos β2 cos (α2 − α1)− sin β2 cos β1]

−Dx sin β1 sin α1 + Dy cos α1 sin β1 −Dz cos β1,

f = ρ1x[− sin β2 sin (α2 − α1)] + ρ1y[cos β1 sin β2 cos (α2 − α1)− sin β1 cos β2]

+ Dx sin β2 sin α2 −Dy cos α2 sin β2 + Dz cos β2,

g = D2
21 + ρ2

1 + ρ2
2 + 2[−ρ1xρ2x cos (α2 − α1)

− ρ1yρ2y(cos β1 cos β2 cos (α2 − α1) + sin β1 sin β2)− ρ1yρ2x cos β1 sin (α2 − α1)

+ ρ1xρ2y cos β2 sin (α2 − α1)] + 2ρ1x[−Dx cos α1 −Dy sin α1]

+ 2ρ1y[Dx cos β1 sin α1 −Dy cos α1 cos β1 −Dz sin β1]

+ 2ρ2x[Dx cos α2 + Dy sin α2]

+ 2ρ2y[−Dx cos β2 sin α2 + Dy cos α2 cos β2 + Dz sin β2]

,

ρnx = ρn cos ϕn, ρnx = ρn sin ϕn, and αn, βn are the rotation angles of conductors

based on Euler angles (n = 1, 2).

Plugging (127) into the integral over (zi, zj) in (29) and finding indefinite integral

result in following formula.

Iz(ρi, ρj, ϕi, ϕj) =

∫

zi,zj

1

Ri,j

dzidzj = Iz1 − Iz2, (123)

138



where

Iz1 = I(B1, C1, D1,−bL2/2 + d + L1/2, +bL2/2 + d + L1/2),

Iz2 = I(B2, C2, D2,−bL2/2 + d− L1/2, +bL2/2 + d− L1/2),

I(B, C, D, x−, x+) =
1

b

∫ x+

x−
log[x + C

√
(x−B)2 + D2]dx,

B1 = +(1− b2)
L1

2
− bf + d,

B2 = −(1− b2)
L1

2
− bf + d,

C1 = C2 = |1
b
| = | sec θ0|,

D2
1 = b2{1− b2

4
L2

1 + (d− bf)L1 + g − f 2},

and

D2
2 = b2{1− b2

4
L2

1 − (d− bf)L1 + g − f 2}.

Detailed analytic expressions of I(B, C, D, x−, x+) depend on the specific values of

B, C, and D.
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APPENDIX D

PARTIAL ELEMENT FORMULA OF BRICK-TYPE
CONDUCTORS

D.1 Partial Self Inductance

The partial self inductance of a brick element can be found from the following formula

[79].

Lpii

l
=

2π

π

{ ω2

24u

[
ln

(1 + A2

ω

)− A5

]
+

1

24uω
[ln (ω + A2)− A6]

+
ω2

60u
(A4 − A3) +

ω2

24

[
ln

u + A3

ω
− A7

]
+

ω2

60u
(ω − A2)

+
1

20u
(A2 − A4) +

u

4
A5 − u2

6ω
tan−1

( ω

uA4

)
+

u

4ω
A6 − ω

6
tan−1

( u

ωA4

)

+
A7

4
− 1

6ω
tan−1

(uω

A4

)
+

1

24ω2
[ln (u + A1)− A7] +

u

20ω2
(A1 − A4)

+
1

60ω2u
(1− A2) +

1

60uω2
(A4 − A1) +

u

20
(A3 − A4)

+
u3

24ω2

[
ln

(1 + A1

u

)− A5

]
+

u3

24ω

[
ln

(ω + A3

u

)− A6

]

+
u3

60ω2
[(A4 − A1) + (u− A3)]

}

, (124)

where A1 = (1 + u2)
1
2 , A2 = (1 + ω2)

1
2 , A3 = (ω2 + u2)

1
2 , A4 = (1 + ω2 + u2)

1
2 ,

A5 = ln
(

1+A4

A3

)
, A6 = ln

(
ω+A4

A1

)
, A7 = ln

(
u+A4

A2

)
, u = l

W
, ω = T

W
, and l, T , and

W are the length, the thickness, and the width of a rectangular conductor segment,

respectively. If the thickness T is negligible, a simple self inductance formula can be

used instead [79].

D.2 Partial Mutual Inductance between Parallel Conductors

When two rectangular conductors are in parallel, the partial mutual inductance be-

tween the two conductors can be found by using the following weighted sum of the

self inductances of 64 virtual conductor segments, as shown in the following formula
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[8].

M =
1

W0T0W1T1

1

8

1∑

i0,i1,j0,j1,k0,k1=0

(−1)i0+i1+j0+j1+k0+k1+1×A2
pi0,j0,k0

,qi1,j1,k1
Lpi0,j0,k0

,qi1,j1,k1
,

(125)

where Lpi0,j0,k0
,qi1,j1,k1

represents the self inductance of a brick element that has the

two diagonal end points pi0,j0,k0 and qi1,j1,k1 . All the point indices are shown in Figure

82. The partial self inductance formula can be found in the previous section of this

appendix.

p1,0,0

p0,0,0 p0,1,0

p0,1,1

p1,1,1p1,0,1

p0,0,1

p1,1,0

X

Y

Z

q1,0,0

q0,0,0 q0,1,0

q0,1,1

q1,1,1q1,0,1

q0,0,1

q1,1,0

Figure 82. Two parallel brick elements and their point indices to calculate partial
mutual inductance [8].
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D.3 Partial Coefficient of Potential between Parallel Con-
ductors

For computing the capacitive coupling between two parallel capacitive cells, the fol-

lowing formula can be used [9].

4πεPpi,j =
1

fafbsasb

4∑

k=1

4∑
m=1

(−1)k+m
[b2

m − C2

2
ak ln (ak + ρ)

+
a2

k − C2

2
bm ln (bm + ρ)− 1

6
(b2

m − 2C + a2
k)ρ

− bmCak tan−1 akbm

ρC

]
, (126)

where ρ =
√

a2
k + b2

m + C2, {a, b}1 = {a, b}ij− f{a,b}
2
− s{a,b}

2
, {a, b}2 = {a, b}ij +

f{a,b}
2
−

s{a,b}
2

, {a, b}3 = {a, b}ij +
f{a,b}

2
+

s{a,b}
2

, {a, b}4 = {a, b}ij − f{a,b}
2

+
s{a,b}

2
, {a, b}ijs are

the relative distances between cells in a and b directions, C is the relative vertical

distance between cells, and {f, s}{a,b}s are the sizes of cells shown in Figure 83.

C aij bij

sa

sb

j

i

fa

fb

a

bc

Figure 83. Two parallel panel cell elements and their coordinate variables to calculate
partial mutual coefficient of potential [9].
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APPENDIX E

INDEFINITE INTEGRAL FOR AXIAL VARIABLES IN
MUTUAL INDUCTANCE BETWEEN A CYLINDER AND

A PLANE

With the variables that are defined in Figure 44, the distance between two points is

formulated as follows.

R12 = | ~R2 − ~R1| =
√

z2
2 + 2fz2 + g, (127)

where

f = [(Dx − x1) sin α− (Dy − y1) cos α] sin β + (Dz − z1) cos β,

g = D2
21 + ρ2 + x2

1 + x2
1 + x2

1

+ 2ρ[− cos ϕ(x1 cos α + y1 sin α) + sin ϕ(x1 sin α− y1 cos α) cos β − sin ϕz1 sin β

+ (Dx cos α + Dy sin α) cos ϕ + Dz sin βsinϕ + (−Dx sin α + Dy cos α) sin ϕ cos β]

− 2x1Dz − 2y1Dy − 2z1Dz,

ρnx = ρn cos ϕn, ρnx = ρn sin ϕn, and α, β are the rotation angles of conductors based

on Euler angles (n = 1, 2).

By using (127) in the integral over (z2), the following indefinite integral can be

found.

Iz(ρ2, ϕ2, x1, y1) =

∫ +
L2
2

−L2
2

1

R12

dz2 = − sinh−1 f − 0.5L2√
−f 2 + g

+ sinh−1 f + 0.5L2√
−f 2 + g

. (128)
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