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SUMMARY

Mixed signal system-on-package (SoP) technology is a key enabler for increasing

functional integration, especially in mobile and wireless systems. SoP allows the inte-

gration of high speed digital, RF and passive components at a package level, thereby

preserving performance at a lower cost compared to system-on-chip based solutions.

Due to the presence of multiple dissimilar modules, each having unique power supply

requirements, the design of the power distribution network (PDN) becomes critical.

Typically, this PDN is designed as alternating layers of power and ground planes

with signal interconnects routed in between or on top of the planes. This arrange-

ment serves two purposes - firstly, it allows a reduction in the package inductance,

and secondly, signal lines on separate layers are isolated from each other due to the

shielding effect of the planes.

In the case of a SoP module, to provide DC isolation between power supplies,

the power and ground planes may be segmented into islands. In this case, electro-

magnetic (EM) coupling becomes a critical factor. Consider the SoP containing four

modules shown in Figure 1. The digital module is the source of the simultaneous

switching noise (SSN) containing harmonics at multiples of the clock frequency. For

the case of a cell phone receiver, even relatively low levels of insertion loss between the

digital and RF modules can significantly degrade the performance of the front-end

low-noise amplifier. Also, decreasing supply voltages coupled with increasing power

requirements tends to place stringent requirements on the target impedance [3] of the

digital IC. Time-efficient and accurate signal and power integrity (SI/PI) simulation

is therefore a critical component of the SoP design flow.

The goal for the simulation of multi-layer power/ground planes, is the following:

Given a stack-up and other geometrical information, it is required to find the network

parameters (S/Y/Z) between port locations. For simple structures, it is possible to
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Figure 1. A System on Package Module (courtesy [2]).

use existing commercially available methods (full-wave EM solvers) to obtain the

response of the PDN. However, commercial packages have extremely complicated

stack-ups, and the trend to increasing integration at the package level only points to

increasing complexity. It is computationally intractable to solve these problems using

these existing methods.

The approach proposed in this thesis for obtaining the response of the PDN is the

multi-layer finite difference method (M-FDM). A surface mesh / finite difference based

approach is developed, which leads to a system matrix that is sparse and banded,

and can be solved efficiently. The approach relies on approximating the electric field

distribution in power/ground planes. Certain geometrical features may invalidate

these approximations, which may lead to significant inaccuracy in simulation results.

Thus, methods to update the system matrix to restore accuracy to M-FDM, while not

adding significant computational overhead, have been considered. These methods are

called the fringe augmentation (FA) and plane gap augmentation (PGA) methods.

While discussing the simulation of multi-layer packages, it is not possible to iso-

late the PDN from the signal traces routed between them. With increasing frequency,

these signal traces behave as transmission lines, and hence, their distributed proper-

ties such as delay and phase become important. Also, signal traces use the PDN as

their reference planes, and hence their characteristics cannot be decoupled from the

PDN. Discontinuities in the PDN can manifest as signal integrity problems such as
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reduction in eye height or increased jitter.

Finally, an application of M-FDM for the optimization of a PDN design using

Genetic Algorithms (GA) is considered. From a design perspective, the requirement

on the PDN is that it should represent a low impedance at all frequencies at which

current transients exist. Traditionally, the solution to providing a low impedance

power supply as seen by the device has been to place decoupling capacitors (decaps)

across the power supply pins [4].

The impedance profile of the PDN can be optimized by carefully choosing the val-

ues and placement locations of the decaps. This is critical since the anti-resonances

(or parallel-resonances) that occur between decaps and between the decap and the

PDN can lead to an impedance maximum. If this impedance maximum occurs at a

frequency at which current transients exist, the severity of the SSN can be exacer-

bated. This choice and placement of decoupling capacitors can be accomplished using

an optimization engine based on a genetic algorithm (GA).

To summarize, the contributions of this research are the following:

1. The development of a PDN modeler for multi-layer packages and boards called

the the multi-layer finite difference method.

2. The enhancement of M-FDM using multi-port connection networks to include

the effect of fringe fields and gap coupling.

3. An adaptive triangular mesh based scheme called the multi-layer finite element

method (MFEM) to address the limitations of M-FDM

4. The use of modal decomposition for the co-simulation of signal nets with the

PDN.

5. The use of a robust GA-based optimizer for the selection and placement of

decoupling capacitors in multi-layer geometries.
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6. The implementation of these methods in a tool called MSDT 1.
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CHAPTER 1

THEORETICAL BACKGROUND AND SUMMARY OF
CONTRIBUTIONS

1.1 Electrical Bottlenecks in Microelectronic Packaging

An electronic package or board module is an electromechanical platform which has

traditionally provided the following functions for an integrated circuit (IC)[5]:

1. Mechanical support and protection

2. Thermal dissipation

3. Geometric translations

4. Interfaces to the next level package

5. Electrical connectivity

However, modern packages are moving beyond these traditional roles. In a com-

plex multi-functional device, system level integration occurs in stages, where the I/O

pads of ICs are connected to individual packages or to multi-chip modules (MCM).

This is the first level package, a few of which are integrated together onto daughter

cards or printed wiring boards (PWB). These daughter cards may then be connected

to backplanes, as shown in Figure 2.

While the reduction of size and corresponding increases in power and operating

frequency have been key drivers for ICs, a corresponding scaling on package has not

occurred, leading to the package being a significant electrical bottleneck in terms of

supporting high frequency signalling. The solution to this problem has been to pro-

gressively integrate more functionality at lower levels of packaging. This has resulted

in system integration strategies such as the system on package (SoP) approach, where

multiple dissimilar components are integrated together.
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Figure 2. Package hierarchy.

Mixed signal SoP technology is a key enabler for increasing functional integration,

especially in mobile and wireless systems. SoP allows the integration of high speed

digital, RF and passive components in the first-level package, thereby preserving per-

formance at a lower cost compared to system-on-chip based solutions. A conceptual

SoP test bed is shown in Figure 3[2]. This illustration depicts the integration of

different kinds of circuits on package. These circuits include embedded RF thin-film

components such as resistors, inductors and antennas. To support high performance

digital components, SoP also supports digital thin-film components such as embedded

capacitors. Also, shown are optical waveguides with laser diodes for signaling, other

packaged and bare modules, and a MEMS device.

While conceptually this integration scheme shows incredible promise in revolu-

tionizing the electronics industry, there are still several challenges to be faced. One
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Figure 3. Schematic of a system on package (courtesy [2]).

of the key reasons for the success of past efforts in system integration (for exam-

ple, the system-on-chip), is because of key advances in design automation technology

[6]. Novel technology advances require support for the designer, and in this regard,

Computer-aided-design (CAD) for SoP is still emerging.

The contributions of this work are aimed primarily at improving the state-of-the-

art in design tools for conventional packages and boards, while also addressing some

of the new challenges posed by SoP. The problem being considered is the design of

the power distribution network (PDN). The challenge posed by SoP is primarily due

to the integration of multiple dissimilar modules, each having unique power supply

requirements. In traditional packaging, each of these dissimilar modules have power

supplies that are relatively isolated from each other. This isolation is essential, be-

cause some modules are noisy (such as high-speed digital), while others are extremely

sensitive to noise (such as RF-circuits). In this context, the noise is because of simul-

taneous switching of multiple circuits, a characteristic of synchronous digital circuits.

The magnitude and impact of this noise is dependant on the design of the power sup-

ply, which in turn depends on accurate and efficient design tools capable of analyzing

the complex and large problems posed by next generation package PDNs.

Typically, this PDN is designed as alternating layers of power and ground planes

with signal interconnects routed in between or on top of the planes. This arrange-

ment serves two purposes - firstly, it allows a reduction in the package inductance,
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and secondly, signal lines on separate layers are isolated from each other due to the

shielding effect of the planes. The former, i.e., reduction in package inductance, is

one of the design guidelines for the reduction of simultaneous switch noise (SSN).

1.2 Motivation: Increasing Efficiency of the Design Flow

A typical approach that is used in the industry for the design of printed circuit boards

(PCBs) and packages is shown in Figure 4. This approach is called the partial-

simulation approach to PCB/package design and involves making modifications to an

original design layout based on rigorous simulations and analysis. In this approach

a design engineer develops an initial layout of a system based on the design speci-

fications of the product and the design rules of the fabrication process. The signal

distribution network (SDN) and the PDN, which are a part of this layout are then

analyzed using rigorous post-layout simulations. The simulation and analysis of the

SDN, termed as signal integrity (SI), is typically carried out in the time domain and

involves analyzing voltage drops on interconnects, conductor and substrate losses, re-

flections on electrically long interconnects, impedance mismatches, and transmission

line discontinuities like vias and bends. On the other hand, the simulation and analy-

sis of the PDN, termed as power integrity (PI), is performed in the frequency domain

and primarily involves analyzing power/ground planes, decoupling capacitors, and

simultaneous switching noise (SSN). The original layout is modified based on these

SI and PI analyses to account for any design flaws. This process is often iterated

through multiple times untill the SI and PI analysis are satisfactory. The layout is

then sent for fabrication. The physical prototype obtained from fabrication is mea-

sured and analyzed in a laboratory. Design flaws arising due to parasitic effects that

could not be captured in the simulation phase are accounted for here by performing

the necessary layout modifications. This modified layout is then re-fabricated and

re-measured till a working prototype of the required system is obtained.
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Figure 4. Current design flow.

The bottleneck of the above flow is the need to iteratively perform time expensive

EM simulations for post-layout verification. Major design flaws, when detected post-

layout, are costly and can cause significant delays.

The simulation method proposed in this research is called the multi-layer finite

difference method (M-FDM).

The proposed design flow (Figure 5) adds an additional step, based on the compu-

tational efficiency of M-FDM. Since simulations with M-FDM, as will be shown, are

relatively inexpensive, an iterated verification and re-design can be performed at the

pre-layout stage. Catching major design flaws at this step can significantly reduce

budget overruns. These simulations are used to guide the final layout process, which

as before is validated using full-wave EM simulations, or M-FDM. This process leads

to minimizing the number of EM iterations, reducing cost and time to market.

1.3 Simultaneous Switching Noise

The elaborate design of the PDN is required to provide a clean and stable power

supply to the switching elements on-chip. These switching elements are primarily
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Figure 5. Efficient design flow.

CMOS drivers and other logic gates. Typical digital computers are synchronous

circuits, with their various components synchronized by a clock. At each clock cycle,

depending on the process being carried out, a significant portion of the circuits on-chip

can switch, leading to simultaneous switching noise (SSN).

SSN is created as a consequence of Faraday’s law, which can be stated as:

e = −L
dI

dt
(1)

where e is the electromotive force, or the potential drop across an inductor, L,

subjected to a time-varying current. In digital systems, this inductance is the effective

inductance between the device ground (or power supply) and the system ground (or

power supply). The direction of this induced electromotive force is determined by

Lenz’s law. The system ground is usually located on a voltage regulator module

(VRM), off-chip, and the switching current required by the switching transistors on-

chip follows a loop through the board and the package, which essentially constitutes
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this inductance.

In a digital device, there are usually two kinds of circuits that need to be powered,

the core and the I/O circuits. The core circuits are entirely contained on an IC, while

the I/O circuits allow communication between multiple ICs (for example, memory and

CPU), which requires that the signal traces exit the chip, and traverse the package

and board.

For a single core circuit, the maximum voltage dropped across the inductor can

be shown[1] to be

∆v ≈ Lc × Vdd

Rtr
(2)

where tr is the rise time of the switching signal, and R is the interconnection resistance,

and Lc is the loop inductance associated with the core I/O circuits.

Since I/O circuits drive off-chip interconnections, which are typically much longer,

these behave as transmission lines. Hence, the expression for the maximum voltage

dropped across a I/O circuit is[1]:

∆v ≈ LI/O × Vdd

Z0tr
(3)

where Z0 is the characteristic impedance of the transmission line and LI/O is the loop

inductance of the I/O circuits.

1.3.1 SSN and Signal Integrity

Simultaneous switching noise causes transients on the DC power supply, as seen by

the drivers. To see the effect of these transients on signaling, consider the voltage at

the input end of a transmission line for a pulse with a rise time tr, given by

v(t) =





ZoVdd

Ltr

(
L2

Z2
0

[
e

−t
(L/Z0) − 1

]
+ L

Z0
t
)

for t ≤ tr

A + B
(
1− e

−t
L/Z0

)
for t > tr

(4)

where

A = Vdd − [Vdd − v(tr)] e
tr

L/Z0 B = [Vdd − v(tr)] e
tr

L/Z0 (5)
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Figure 6. SSN induced jitter (courtesy [1]).

Clearly, transients on the power supply rail can lead to uncertainty in the rise

time of the input pulse, causing jitter.

Figure 6, reproduced with modifications from [1], illustrates the impact of SSN on

signal jitter. An increase in voltage droop on the the power supply strongly correlates

with increasing rise times. For pseudo-random bit sequences, SSN (and hence voltage

droop) is random, and hence there is uncertainty in the rise time of the signal. This

uncertainty is the jitter caused due to SSN. Thus SSN can lead to delay and false

switching.

1.3.2 Coupling in Package Structures

In the case of a SoP module, to provide DC isolation between power supplies, the

power and ground planes may be segmented into islands. In this case, EM coupling

becomes a critical factor. Consider an SoP containing four modules shown in Figure 1.

The digital module is the source of the simultaneous switching noise (SSN) containing

harmonics at multiples of the clock frequency. For the case of a cell phone receiver, a

−60dB insertion loss between the digital and RF modules can significantly degrade

the performance of the front-end low-noise amplifier.

Figure 7 shows a three layer package PDN supplying power to a mixed-signal IC.

Multiple power supplies are typically required in modern SoPs due to the various
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Figure 7. SSN coupling mechanisms in a realistic package.

integrated components. Split planes are required to provide DC isolation to the

different supply voltages. Also, holes are created in the solid power/ground planes in

order to route signals or to provide via anti-pads. The switching activity of digital

circuitry causes a time varying current to be drawn from its power supply terminals,

Vdd1-Gnd1. Due to the associated inductance of the loop, SSN is generated. SSN

can couple horizontally across a plane pair and across power islands. Also, SSN

couples vertically through vias, and through apertures. This can be regarded as a

coupling by means of a wrap-around current on the edges of the planes. Through

these mechanisms, ground bounce can occur across the Vdd2-Gnd2 planes in Figure

7. Thus, it becomes critical to model split planes and apertures.

1.3.3 Target Impedance

Digital components are broadband circuits whose switching circuits typically have

energy concentrated in multiple discrete frequencies, which tend to be harmonics of

the various clock frequencies that are employed. On the other hand, the transient

behavior of the system depends on a large number of variables, including some high

level considerations such as the program being executed.
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The PDN has a capacitive behavior at low frequencies and shows inductive be-

havior as we move towards the higher frequency range. However, this inductive trend

is punctuated with a number of discrete resonances and anti-resonances. As far as

a driver on-chip is concerned, the PDN must appear to be an ideal AC ground be-

tween its power and ground terminals. Therefore, the inductance of the PDN must

be reduced to enable easy flow of charge to the required active circuits to mitigate

the noise. The target impedance of the PDN is decided based on the core voltage and

average current drawn by the processor. Based on the equations for voltage droop

across the power supply impedance, it is possible to define a maximum allowed rip-

ple. In practice, the maximum allowed ripple is assumed be 5% of the power supply

voltage (V dd)[3].

Ztar =
V dd× 5%

Id× 50%
(6)

The current term in the denominator is 1
2

the switching current in a clock cycle,

which is assumed to be the current in each clock edge.

Decreasing supply voltages coupled with increasing power requirements tends to

place stringent requirements on the target impedance [3] of the digital part. Clearly,

time-efficient and accurate signal and power integrity (SI/PI) simulation will be a

critical component of the SoP design flow.
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1.4 Electrical Simulation of the Package

To meet the demands of high-performance packages, a simulation tool will have to

capture the effects of the following geometrical features of the package:

1. Multiple power supply and signal layers

2. Apertures in power/ground planes

3. Slots in power/ground planes

4. Multiple signal line configurations (microstrip, stripline, CPW; single ended,

differential)

5. Power/ground planes with necking (i.e. narrow strips)

6. Signal and power supply vias

7. Decoupling capacitors

The simulation methods for packages may be classified based on their formulation

as circuit-based or EM-based, as well as a a third category which borrows conceptually

from the two, and is labeled hybrid. These methods face a trade-off between their

generality and CPU Time, as illustrated in Figure 8. Here, generality is meant to

emphasize the class of problems for which a particular method can provide reasonably

accurate results.

1.4.1 Circuit-based Methods

The simplest PDN model for packages is an equivalent inductance to model each

ground pin. This has been used for quad flat packages (QFP) [7] and other lead-

frame packages. However, for high speed micro-processors and ASICs, power/ground

planes are routinely used to distribute power. These power/ground planes are elec-

trically large and can support steady state cavity resonances. These resonance occur
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Figure 8. Trade-off between generality and CPU time for package simulation methods.

because the excitation port, for example, the I/O pin of a microprocessor can create

noise which propagates in the lateral directions as a radial wave. This radial wave

impinges upon what is effectively an open-circuit boundary at the edges of the pack-

age which causes reflections. Hence, circuit-based methods using partial inductance

are applicable for low-frequency applications where the distributed effects of the PDN

geometry can be neglected.

A circuit-based method which can be applied to package geometries is based on

the transmission-line method (TLM). In this method, the power-plane is modeled as

a 2D-grid of transmission line segments [8]. This method is applicable only for two-

layer geometries, and is the basis for the transmission matrix method (to be discussed

in Section 1.4.3.1).
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Figure 9. (a) Surface and (b) Volumetric mesh.
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1.4.2 EM-based Methods

Of the full-wave EM methods available to simulate a package, the techniques resorted

to are conventionally frequency domain methods. Packages are highly resonant low-

loss structures. To completely characterize a package (in the time domain) requires

simulating it for an impractically long period of time.

Full-wave frequency domain simulation methods can be broadly classified under

the integral equation based method-of-moments (MoM) or differential equation based

finite element method (FEM). These methods are accurate for the broadest class

of problems. For package geometries, MoM methods are available [9][10] that use

multi-layer Green’s functions which enable it to use a surface mesh (Figure 9(a)).

However, the resulting system matrix is dense. Hence, the computational complexity

for such methods can be large, and the goal of full-package simulation is intractable.

FEM-based techniques, on the other hand, lead to volumetric meshes (Figure 9(b)).

Although the resultant system matrix is sparse, the use of a volumetric mesh results

in rapid growth of the number of unknowns as problem size grows. Since packages

are electrically large structures, only small subdomains of the package geometry can

be simulated using FEM.

1.4.3 Hybrid Methods

A package can be described as a planar circuit. The concept of planar circuits was

introduced in [11]. A planar circuit is a microwave structure in which one of the three

dimensions, say z, is much smaller than the wavelength. Under this condition, it can

be assumed that the field is invariant along the z-direction. Hence, ∂
∂z

= 0 and the

Helmholtz wave equation can be reduced to 2 dimensions as follows:

(∇2
t + k2

)
u = jωµdJ (7)
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Figure 10. Cascade connection in TMM.

where

∇2
t =

(
∂2

∂x2
+

∂2

∂y2

)

k = jω
√

µε

The open circuit at the boundary can be represented by a magnetic wall or Neu-

mann boundary condition, which completes the problem formulation.

The two most prominent solutions in literature are the transmission matrix method

(TMM)[12] and the Green’s function based segmentation technique.

1.4.3.1 The Transmission Matrix Method

TMM is a technique used to solve the equivalent circuit representation that results

under the finite difference solution of the wave equation. The equivalent circuit de-

scribed in [8] can conventionally be solved using SPICE. However, the same equivalent

circuit can also be reduced in terms of cascaded transmission matrices, as shown in

Figure 10. Each of the cascaded T-matrices represents one column of cells in the

discretized geometry. Thus, port to port ABCD parameters can be calculated which

can in turn be used to calculate S-, Y-, or Z-parameters.

The advantage of this approach is that the overall system to be solved for a

problem containing N cells is only of order
√

N , and with the ability to incorporate

decoupling capacitors, this technique does have considerable advantages for single

plane-pair geometries.

Using Gauss elimination, the equivalent circuit solved directly (resulting in a sys-

tem containing N equations) will have a computational complexity of O(N3), while
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by employing TMM, the complexity reduces to O(N1.5). Memory reduces from O(N2)

to O(N).

However, it must be noted that while the equivalent circuit when solved directly

leads to a much larger matrix, this matrix is also sparse. Thus, by employing reorder-

ing techniques such as nested dissection [13], and by using an optimized sparse-solver,

the computational complexity of direct solution can be reduced to O(N1.5) and mem-

ory to O(N log N).

Thus, in terms of computational effort, TMM has a slight if not overwhelming ad-

vantage. This advantage needs to be reconciled with the limitations of the technique,

which are:

1. TMM relies on identical columns of cells. The matrix-power operations that

have to be performed while cascading the T-matrices requires a similarity trans-

formation for each non-identical column. Thus, this technique works well for

rectangular geometries, but is not as efficient for irregular geometries.

2. The matrix power operations lead to an ill-conditioned system.

3. The modeling of gap-coupling may require placing elements between columns

of cells which are not neighbors. This cannot be done under TMM, as the

cascading property is lost.

4. TMM cannot be applied for multiple plane-pair geometries with apertures, as

this would require placing coupling elements between non adjacent layers.

1.4.3.2 The Segmentation Technique

The impedance matrix of a rectangular plane-pair of dimensions a × b, with plane

separation d and dielectric constant ε, with aribitrary port locations (xi, yi) and

(xj, yj), can be derived as [11]:

Zij(ω) = jωµd

n=∞∑
n=0

m=∞∑
m=0

ε2
nε

2
m

(k2
mn − k2) ab

f(xi, yi, xj, yj) (8)
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Figure 11. Equivalent circuit for a plane-pair.

where

f(xi, yi, xj, yj) =
(
cos mπxi

a
sin cmπtxi

2a

) (
cos nπyi

b
sin c

nπtyi

2b

)

(
cos

mπxj

a
sin c

mπtxj

2a

)(
cos

nπyj

b
sin c

nπtyj

2b

)
(9)

Here tx(i/j), ty(i/j) is the size of the port, k2
mn =

(
mπ
a

)2
+

(
nπ
b

)2
and k is the complex

wavenumber. Further details can be found in [14][15][16].

While (9) provides a numerical technique for calculating the response of a rectan-

gular plane-pair, this response cannot be directly used in a system-level simulation,

containing other circuit elements such as non-linear circuitry and terminations. An

intermediate step is required whereby the frequency response is used to synthesize

a SPICE netlist. This macro-modeling step is not desirable because the synthesized

equivalent circuit may not preserve passivity. Thus, to eliminate this step, (9) can

be used to directly synthesize an equivalent circuit. This process is described in [17],

and the equivalent circuit for a plane-pair is shown in Fig 11.

When irregular geometries are encountered, the structure is segmented into sec-

tions which are rectangular. The rectangular sections are then simulated separately

and the boundaries between segments are stitched together using many “virtual
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Figure 12. Segmentation of an L-shaped plane-pair.

ports”. An example of this segmentation process is shown in Figure 12.

The limitations of this technique are:

1. Equation (9) requires a double infinite sum for all the modes that may exist in

the structure. The convergence of the sum may be slow. However, an accelera-

tion technique has been proposed in [18], which compromises on accuracy.

2. The technique is cumbersome for extremely irregular geometries, which requires

several virtual ports between segments. Also, for multi-layered structures with

apertures, the segmentation must be performed both horizontally and vertically.

1.5 Overview of the Proposed Hybrid Method

The methods developed in this thesis are based on a combination of insights from

circuit theory and EM-field solvers, specifically tuned to modeling electrically large,

multi-layer planar package geometries. The flow for the proposed method is shown

in Figure 13.
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Figure 13. Overview of proposed hybrid method.

Modern packages consist of the PDN and the SDN. As can be expected, the

response of the SDN is highly dependant on the design of the PDN. This is because

the interconnects that form the SDN use the power/ground planes of the PDN as their

reference planes. In this thesis, the complexity of the problem is reduced by decoupling

the SDN and PDN problems. Thus the PDN and the SDN can be simulated in

isolation, and the obtained response can finally be integrated together.

1. Simulation of the PDN in isolation:

The PDN problem involves obtaining the frequency response of an irregular,

electrically large, multi-layer power/ground planes containing apertures, vias

and decoupling capacitors. This thesis focuses on the development of two meth-

ods, the second of which is an evolutionary development of the first. These meth-

ods are the multi-layer finite difference method (M-FDM) and the multi-layer

finite element method (M-FEM). Both methods are based on the extraction of
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an equivalent circuit model for a two-layer geometry, which is then extended

to multiple layers based on transformations of the admittance matrix (to be

described in Section 1.6.

2. Simulation of the SDN in isolation

The difficulty in using a full-wave method for co-simulating the SDN and the

PDN is primarily because the interconnection width is much smaller than the

lateral dimensions of the PDN. This leads to a dense mesh and a computation-

ally intractable problem size. However, the interconnections can be divided into

segments which can be considered to support a quasi transverse electromagnetic

(TEM) mode. These segments can be analyzed as multi-conductor transmis-

sion lines (MTL). In this thesis, an electrostatic 2D solver is used to obtain

the multi-conductor per unit length inductance and capacitance matrices, that

characterize the interconnects.

3. Integration of the PDN and SDN responses to obtain the system response

One of the solution techniques for the simulation of multi-conductor transmis-

sion structures is the theory of modal decomposition, to be described in Section

1.7. Modal decomposition enables the decoupling of the multi-conductor trans-

mission line (MTL) equations, such that a system of n-conductors (including

the reference conductor) can be represented in terms of a circuit containing

n − 1 transmission-lines referenced to the system ground, and coupling net-

works containing controlled sources. This model can be shown to provide an

exact solution to the MTL equations. Thus modal decomposition can be used

to integrate the responses of the PDN and the SDN, that have been obtained

in isolation.
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1.6 Nodal Admittance Matrices and Shifting of Reference
Nodes

The Helmholtz wave equation (7) is the governing equation for power/ground plane

problems. The solution of this equation using finite methods leads to system of equa-

tions that can be expressed in terms of an equivalent circuit containing only passive

elements and independent current sources. These equations hence are expressions of

Kirchoff’s current law (KCL).

Thus, the theory of indefinite admittance matrices can be applied to the solution

of power/ground problems. Although the application of finite methods such as finite

differences to (7) directly provides the admittance matrix for a simple two-layer prob-

lem, an understanding of the properties of admittance matrices is required to extend

the method to multi-layer geometries, as well as for addition of components to the

PDN. These components include decoupling capacitors, transmission lines referenced

to power planes, as well as circuit models to capture second order effects, such as

fringing fields.

The key advantage of using admittance matrices is that it can be assembled on a

per-element basis, and the admittance matrices of individual components can simply

be superpositioned to yield the total circuit admittance matrices. The contributions

of these individual elements are referred to as stamps, and the rules for their inclusion

in the system matrix are called stamp rules. Thus, element stamps can be directly

included in the system matrix without the need to consider the rest of the circuit.

The only required information are the node numbers of the terminals of the element

and its stamp. Current sources do not contribute to the admittance matrix, but can

similarly be superpositioned to yield the right hand side of the matrix equation. This

superposition is valid as long as the reference node of the element under consideration

is the same as the reference node of the complete circuit.

For example, consider the simple circuit containing three conductances G1, G2
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Figure 14. Simple circuit containing conductances.

and G3, as shown in Figure 14.

The stamp for a conductance G is

Yg =




G −G

−G G


 (10)

Applying this stamp and the superposition principle, the admittance matrix of

the circuit in Figure 14 can be obtained simply from inspection:

Y =




G1 + G2 −G1

−G1 G1 + G3


 (11)

A critical limitation of nodal analysis using indefinite admittance matrices is in

the handling of voltage sources. This limitation is addressed by the modified nodal

analysis method [19]. However, the formulations employed in this thesis do not require

voltage sources, and hence, nodal analysis is sufficient.

An important application of admittance matrices in this thesis is in shifting ref-

erences. Typically, the type of problem that is regularly faced is the following: the

admittance matrix of a particular component (for example, a transmission line) is

readily available. However, the reference node of this component is not the same as

the reference node of the rest of the circuit. This can occur, for example, when a

microstrip is routed on top of a power and ground plane-pair. The reference node of

the overall circuit is the ground plane. However, the reference for the microstrip line

is the power plane, on which the return current of the microstrip line flows.
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Figure 15. (a) Two-port networks with separate references (b) Combined four-port
network with common reference.

Thus simply applying the element stamp will lead to an incorrect response. The

reference of the component (in this case, the microstrip line) must be shifted to that

of the system ground. This can be done using admittance matrices [20].

This is illustrated, without loss of generality, by using two-port networks with

separate ground references, as shown in Figure 137(a). The four-port admittance

matrix for the system with the common reference node can be derived as follows:

Y A
11V1l + Y A

12V1r = I1 (12)

Y B
11V2l + Y B

12V2r = I2 (13)

By noticing that

Ibl = I2 − I1, Ial = I1,

V1l = Val − Vbl, V1r = Var − Vbr,

V2l = Vbl and V2r = Vbr,
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it is possible to write one row of the admittance matrix of the combined four-port.

Y A
11(Val − Vbl) + Y A

12(Var − Vbr) = Ial (14)

A similar approach can be used to obtain the complete system in the following

form:




Y A −Y A

−Y A Y A + Y B







Val

Var

Vbl

Vbr




=




Ial

Iar

Ibl

Ibr




(15)

This approach of shifting reference nodes to accommodate local references of sub

circuits will be repeatedly applied throughout this thesis.

1.7 Modeling the Interaction between Signal Lines and the
Non-Ideal Power/Ground Planes

Signal lines placed on chip have small electrical lengths. Hence, it is possible to

model these lines simply as lumped components. However, with increasing signal-

ing frequency the signal lines routed on the package and board exhibit significant

transmission line behavior, and must be modeled as transmission lines.

Traditionally, in packaged systems the analysis of the signal distribution network

(SDN) and the power distribution network (PDN) have been carried out indepen-

dently. Once the layout of a system is available, geometrical information is extracted

to obtain models for the PDN and the SDN separately. However, it is known that

effects like simultaneous switching noise (SSN) that occur in the PDN can affect the

quality of the signal that propagates through the SDN. Analyzing the two networks

separately fails to account for these effects accurately and hence compromises on the

quality of the SI analysis.

Thus, most modeling approaches have simply considered the transmission lines
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Figure 16. Flowchart for system level SI-PI analysis.

to be ideal without considering the effect of the return path. In reality, transmis-

sion structures on package experience significant coupling to the power distribution

network. For example, an interconnect routed between a power and ground plane

resembles a stripline; however, the power and ground planes need not be at the same

AC potential. Hence, additional modes can be supported by the structure.

Transmission structures on package must be treated as a multi-conductor trans-

mission line under the quasi transverse electromagnetic (TEM) field assumption[21].

The fields may not be pure TEM because the dielectric medium may not be homoge-

nous (as in the case of microstrip). Also, the loss in the structure causes a non-zero

field component in the direction of propagation. However, as long as this loss is small,

the longitudanal component of the fields is small compared to the transverse compo-

nent, and can be ignored. Thus, the methods of multi-conductor transmission line
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(MTL) analysis can be applied.

The MTL equations are given by [4][21]

∂

∂z
V(z, t) = −RI(z, t)− L

∂

∂t
I(z, t) (16)

∂

∂z
I(z, t) = −GV(z, t)−C

∂

∂t
V(z, t) (17)

where R, L, G and C are the per-unit-length resistance, inductance, conductance and

capacitance matrices, respectively. For n + 1 conductors, these equations represent a

set of coupled first-order partial differential equations. In the time harmonic case, it

is possible to decouple the MTL equations and express them as second order ordinary

differential equations in the frequency domain as

d2

dz2
V(z) = (R + jωL)(G + jωC)V(z) (18)

d2

dz2
I(z) = (G + jωC)(R + jωL)I(z) (19)

A general technique for solving these equations involves a similarity transformation

and is often referred to as modal decomposition. The n × n complex matrices TV

and TI are defined such that

V(z) = TVVm(z) (20)

I(z) = TIIm(z) (21)

TV and TI are similarity transformations that covert the actual phasor voltages

and currents, V and I to the mode voltages and currents, Vm and Im.

Substituting the modal vectors in 18 and 19,

d2

dz2
Vm(z) = TV

−1
ZYTVVm(z) (22)

d2

dz2
Im(z) = TI

−1
YZTIIm(z) (23)

where Z = R+jωL and Y = G+jωC. If TV and TI diagonalize the matrix product

ZY and YZ, respectively,

TV

−1
ZYTV = TI

−1
YZTI = λ (24)
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where λ is a diagonal n×n matrix containing the eigenvalues of the matrix products

ZY and YZ. The columns of TV and TI contain the eigenvectors of the corresponding

matrix products ZY and YZ. If the multiplicity of all the eigenvalues is equal to one,

then the transformation matrices simultaneously diagonalize both Z and Y. Now,

since the per-unit-length matrices are symmetric,
(
ZY

)T

= YZ. Hence,

(
TV

−1
ZYTV

)T

= λ (25)

Also,

(
TV

−1
ZYTV

)T

= TV

T
YZ

(
TV

−1
)T

(26)

Comparing (26) with (24),

TV

T
= TI

−1
(27)

Thus it is sufficient to only find the transformation to diagonalize one of the matrix

products, ZY or YZ, to find the transformation to diagonalize the other. These

transformation matrices allow us to solve the MTL equations as simply n single

transmission line problems, to obtain the modal voltages and currents, Vm(z) and

Im(z). To illustrate this, consider (24) in the following form:

TV

−1
Z

(
TITI

−1
)

YTV = TI

−1
Y

(
TVTV

−1
)

ZTI = λ (28)

Regrouping the matrix products in (28) and defining TV

−1
ZTI = Zm and TI

−1
YTV =

Ym, (28) can be rewritten as

ZmYm = YmZm = λ (29)

Zm and Ym are called the modal per-unit-length impedance and admittance matrices,

respectively. Also,

λZm =
(
ZmYm

)
Zm = Zmλ (30)

Since λ is diagonal, the above equation implies that so is Zm. A similar approach

can be used to show that Ym is also diagonal. This is only the case, however, if all
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the eigenvalues have a multiplicity of one. If not, then Zm and Ym will be block

diagonal.

Thus, it can be shown that

∂

∂z
Vm(z) = −ZmIm(z) (31)

∂

∂z
Im(z) = −YmVm(z) (32)

These equations represent a set of n single transmission line problems, whose solu-

tions are the modal voltages and currents. To convert the modal parameters to the

actual line voltages and currents is simple, and merely requires the application of

the transformations given in (20) and (21). In a circuit simulation environment, this

can be done by simulating the n modal transmission lines with modifications to their

terminations, which essentially performs this transformation.

1.8 Contributions and Dissertation Outline

The motivation behind this thesis is the need to accurately model signal and power

integrity problems in large packages and boards. The main focus of this thesis is

on the development of an EM-Circuit hybrid method called the multi-layer

finite difference method (M-FDM).

The contributions of this thesis are listed in Figure 17. The formulation for M-

FDM is developed by applying the finite difference method to a single plane-pair

package. It is assumed that, since the lateral dimensions of the board or package

are much larger than the substrate height, the electric fields within the package are

predominantly oriented along the direction of stacking. This assumption results in

a surface finite difference mesh that is applied only to the metal layers. For single

plane-pair geometries, the finite difference equations are treated as expressions of

Kirchoff’s current law, and hence an equivalent circuit is derived. For multiple plane-

pair geometries, the equivalent circuit for each plane-pair is obtained individually.
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Figure 17. Contributions of this research.
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These isolated network models are connected together by shifting the reference nodes

to a common system ground. This approach is the underlying algorithm of M-FDM.

The key contribution of this approach is the ability to model vertical coupling of SSN

through apertures in the solid planes. Using efficient reordering and factorization

techniques, the computational and memory complexity of the method are O(N1.5)

and O(N log2

√
N), respectively.

One limitation of M-FDM stems from the inaccuracy induced because of model-

ing only the vertically directed electric field component. This scheme is sufficiently

accurate for structures whose lateral dimensions are much larger than the dielectric

thickness. When this condition is not met, the technique may not be accurate. How-

ever, using 2D electrostatic analysis, it is possible to obtain correction elements that

can be used to update the M-FDM system matrix. These fringe augmentation

(FA) elements can be represented in circuit form as inductances and capacitances.

When applied to the edge cells of the M-FDM model, these circuit elements can

correct the discrepancy due to neglecting the fringe fields.

Most PDNs are split into power islands which have been used to supply multiple

devices with different power supply voltages. It is possible for these power islands

to be coupled to each other across the slot. This coupling has been modeled by

performing a 2D electrostatic analysis of the coupled structures. The results of the

2D analysis have been used to derive a multi-port coupling network. The approach is

called plane gap augmentation (PGA), and extends the capabilities of M-FDM

to accurately modeling multilayered packages with slots.

Together, the FA and PGA methods form the second major contribu-

tion of this research.

The second limitation of M-FDM arises due to the meshing scheme. Since a square

mesh is used, the dimensions of the mesh are controlled by the minimum feature size.

This can lead to an extremely large number of unknowns for a practical geometry.
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This problem has been addressed by the development of a promising novel approach

called the multilayer finite element method (MFEM). An adaptive triangular mesh is

applied to the geometry. The dimensions of the edge elements in this mesh are based

on the wavelength at the maximum frequency of simulation. The mesh becomes dense

only in the vicinity of small features. This enables MFEM to model realistic structures

containing such small features with far fewer unknowns than M-FDM. Also, the model

generated using MFEM is also SPICE compatible, and the resultant system matrix is

sparse. Thus MFEM preserves the advantages of M-FDM, while overcoming the mesh

density limitation. MFEM is the third major contribution of this research.

The response of a signal net is critically affected by its return path, which in

packages/boards is constituted by a non-ideal power/ground plane. The integration

of the signal nets with the PDN has been accomplished using modal decomposition

techniques.

The selection and placement of decoupling capacitors on the PDN critically af-

fects its impedance profile, that must be maintained below the target impedance

over a wide frequency range. This process has been automatized using a GA-based

optimizer. The location and description of the decaps have been used as the “chromo-

somes” on which the GA operates. At the end of each generation, solutions that will

contribute to the next generation are selected based on relative success in meeting the

objective function. The optimizer has been used to place decaps for meeting target

impedance in multi-layer test structures as well as for maintaining signal integrity in

structures with transmission lines.

The integration of the transmission lines with M-FDM using modal decomposition,

and the GA-based optimization engine for the selection and placement of decoupling

capacitors are the minor contributions of this research.

1.8.1 Summary of Contributions

The contributions of this research are summarized below:
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Major Contributions:

1. The multi-layer finite difference method (M-FDM) for the modeling of arbitrary

multi-layer power and ground planes of modern electronic packaging.

2. The fringe augmentation (FA) and plane gap augmentation (PGA) methods for

modeling second order effects such as fringing fields at metal edges, and gap

fields across slots in the metal planes

3. The multi-layer finite element method (MFEM) for modeling multi-layer power

and ground planes with multi-scale geometries.

Minor Contributions:

1. Integration of transmission line structures with M-FDM using modal decompo-

sition

2. A genetic algorithm based optimization method for the selection and placement

of decoupling capacitors

3. The implementation of these methods in a tool called MSDT 1.

1.8.2 Dissertation Outline

The rest of this thesis is organized as follows:

1. The formulation of the multi-layer finite difference method (M-FDM) is dis-

cussed in Chapter 2. Initially, the discussion is confined to packages with two

metal layers, and is then extended to multi-layer geometries. This extension is

accomplished by shifting the reference node, as discussed in Section 1.6. The

results from the method have been verified by comparisons with EM-simulations

and measurements. A study of the scalability of M-FDM has also been under-

taken.

32



2. The modeling of fringing fields at metal edges is considered in Chapter 3. The

proposed method, called fringe augmentation (FA), is used to update the system

matrix obtained from M-FDM.

3. The modeling of gap fields using the plane gap augmentation (PGA) method is

the focus of Chapter 4. Both the FA (Chapter 2) and the PGA methods rely on

a 2D electrostatic solution for obtaining the corrections to the M-FDM system

matrix.

4. The simulation of signal nets in the context of their non-ideal return paths is

discussed in Chapter 5.

5. The selection and placement of decoupling capacitors is critical to meeting tar-

get impedance requirements. This process has been automatized using a genetic

algorithm, and is the focus of Chapter 6.

6. The ideas behind M-FDM can be applied to other finite methods as well. An

adaptive triangular mesh based scheme, called the multi-layer finite element

method (MFEM), has been developed to handle multi-scale geometries. The

formulation for MFEM and some initial results are developed in Chapter 7.

7. The dissertation is concluded in Chapter 8.
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CHAPTER 2

POWER INTEGRITY MODELING USING THE
MULTI-LAYER FINITE DIFFERENCE METHOD

2.1 Introduction

Modern PCB and package power distribution networks (PDN) are designed using mul-

tiple layers of solid metal planes, which are alternatively assigned power and ground

potentials. Since these power/ground planes are layered alternatively, a useful term to

describe a stack-up containing multiple layers dedicated to the PDN is power/ground

plane-pair. This arrangement reduces the effective inductance as seen by the power

supply terminals of switching circuits on chip, which helps in mitigating simultaneous

switching noise (SSN).

The use of power/ground planes in modern electronic packaging depends on the

ability of design tools to characterize their behavior. SSN or voltage fluctuations on

the planes are called plane bounce. These occur when the current transients in the

PDN excite resonant modes, which can lead to signal integrity problems as well. For

example, mode conversion at vias due to return-path discontinuities (RPD) is one

of the main contributors to power/ground noise in packages. At the via hole, the

parallel-plate mode gets excited due to switching signal currents, and conversely, the

noise voltage between the planes gets coupled to the stripline mode.

Thus the problem of obtaining the response of a PDN is fundamental to solving

power and signal integrity problems. Power/ground plane geometries can be separated

into single plane-pair and multiple plane-pair structures.

2.1.1 Single Plane-Pair

The cross-section of a single plane-pair geometry is shown in Figure 18. In a single

plane-pair, the fundamental noise coupling occurs in the horizontal direction between

the two planes that constitute the plane pair. The source of this noise coupling can
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Figure 18. Single Plane-Pair Problem.

Figure 19. Multiple Plane-Pair Problem.

be modeled as a current source between the power and ground planes at the location

of the power supply pins of the chip. The resulting noise propagates radially in the

lateral directions, as shown in Figure 18. Also shown, assuming that the voltage

regulator module (VRM) is connected to the left side of the cross-section, is the path

of the current on the power plane and the corresponding return current on the ground

plane.

2.1.2 Multiple Plane-Pair

Noise coupling occurs in the lateral directions in a single plane-pair structure. How-

ever, in a multilayered structure, like the example shown in Figure 19, there can be

noise coupling in both the horizontal and vertical directions through the power/ground

planes. Such a structure consists of multiple plane-pairs. The vertical coupling can

then be considered as a coupling between these plane-pairs. Assuming a well devel-

oped skin effect, the vertical coupling through the conductors can be neglected. The

major vertical coupling occurs through the interactions between these plane pairs at
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their boundaries. This coupling mechanism can be described as the aperture cou-

pling or the coupling due to the wrap-around currents as described in the following

example.

For the 1D-example in Figure 19, the right half of the middle plane has been re-

moved. For this example, there are three plane-pairs based on different combinations

of the planes. Assume that there is a current on the middle plane with its return

current on the bottom plane. These currents are confined inside the plane-pair 2

as shown in the figure. When this current arrives the right boundary of this plane

pair, it can wrap-around the aperture. Hence this so-called wrap-around current can

excite currents in plane-pair 1 and plane-pair 3 as shown in the figure. This is a direct

current coupling path between the plane pairs and is critical for accurate estimation

of coupling in multilayered planes.

The rest of this chapter is organized as follows. The formulation for the solution

of the single plane-pair problem using the method of finite differences is provide in

2.2.

2.2 Formulation for Single Plane-Pair Geometries
2.2.1 Governing Equation

The voltage fluctuation that characterizes SSN propagates as a radial wave in a single

plane-pair geometry. Thus, the underlying elliptic partial differential equation for the

modeling of planes is a Helmholtz equation

(∇2
t + k2

)
u = −jωµdJz (33)

where ∇2
t is the transverse Laplace operator parallel to the planar structures, k is the

wave number, u is the voltage, ω is the angular frequency, µ is the permeability, d is

the distance between the planes, and Jz is the current density injected normally to

the planes [22].

The periphery of the plane-pair are typically left open. Hence, ignoring fringing
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Figure 20. Discretization of the Laplace operator.

fields, the problem definition is completed by assigning homogenous Neumann bound-

ary conditions, which correspond to assuming a magnetic wall, or an open circuit, on

the periphery of the planes.

2.2.2 Application of the Finite Difference Method

One method to solve the Helmholtz equation is by applying the finite-difference

scheme. The 2-dimensional Laplace operator can be approximated as

∇2
t ui,j =

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

h2
(34)

where h is the mesh length and ui,j is the voltage at node (i,j) for the cell-centered

discretization shown in Figure 20.

This discretization results in a well-known bedspring unit cell model [23] for a

plane-pair consisting of inductors (L) between neighboring nodes, and capacitors (C)

from each node to ground, as shown below:

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

h2
+ k2ui,j = −jωµdJz (35)

Applying k = ω
√

µε and multiplying throughout by h2

jωµd
, we have,

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

jωµd
− jωε

h2

d
ui,j = −h2Jz (36)
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Figure 21. Unit-cell model using 5-Point Approximation (T-Unit cell).

Setting, µd = L and εh2

d
= C, we have the Kirchoff’s current law

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

jωL
− jωCui,j + I = 0 (37)

where I is the value of the current source placed at location (i, j). The above equa-

tions are equivalent to using a 5-point stencil function to approximate the Laplacian.

2.2.3 5- and 9- Point Approximations

The Laplacian in (34) can be represented in its stencil form as follows

∇2
t =

1

h2




1

1 −4 1

1




(38)

The 5-point approximation can be represented as an equivalent circuit for each unit-

cell, as shown in Figure 21. The resultant equivalent circuit is called the T-unit cell.

Note that the impedances shown in the unit-cells are half of the total impedances
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between two neighboring nodes. When unit cells are connected with each other, two

half impedances from neighboring unit cells establish the correct impedance value.

In the figure, the per unit cell impedance and admittance are represented as

Z = R + jωL (39)

Y = G + jωC (40)

where,

C = ε
h2

d
(41)

L = µd (42)

R =
2

σt
+ 2

√
jωµ

σ
(43)

G = ωC tan δ (44)

for a given permittivity ε, permeability µ, conductivity σ, conductor thickness t, loss

tangent tan δ, and cell size h. Note that R in (43) represents the internal impedance,

including both the dc and the skin effect resistance, as well as the contribution of the

internal inductance.

Another finite-difference approximation that can be applied is the 9-point stencil

form, which leads to the X-unit cell, shown in Figure 22. The 9-point stencil form of

the Laplacian can be written as:

∇2
t =

1

h2




1
6

2
3

1
6

2
3
−10

3
2
3

1
6

2
3

1
6




(45)

The main difference between the T- and X-unit cells, is that the X-unit cell in-

cludes a direct inductive path to the diagonally neighboring cells in addition to the

neighboring cells sharing a side. Note that the impedances shown in the unit-cells

are half of the total impedances between two neighboring nodes. In this thesis, the

T-unit cells have been used for the following two reasons.
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Figure 22. Unit-cell model using 9-Point Approximation (X-Unit cell).

1. The T- and X-unit cells are both derived from a second-order finite difference

approximation of the Laplacian operator. As shown in [24], the difference in

accuracy between the T- and X- unit cells is not significant.

2. The T-unit cell is simpler to implement.

2.2.4 Equivalent Circuit and Matrix Equation

Representing the unit-cells in a discretized single plane-pair problem in terms of T-

unit cells allows the extraction of equivalent circuit such as the one shown in Figure

23.

This equivalent circuit model can be solved using a standard circuit solver based

on the modified nodal analysis (MNA) approach[19]. However, direct solution of the

finite difference equations using a linear equation solver can improve the memory

requirements and speed, since the resulting admittance matrix is a sparse banded

matrix. Based on the plane model in Figure 23, a linear equation system can be
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Figure 23. Electrical model for a plane-pair.

obtained which can be written in matrix form as:

YŪ = I (46)

where U and I are the cell voltage and current vectors. The matrix Y is the nodal

admittance matrix. If the unit cells are numbered using natural ordering, Y has the

following form:

Y =




¯̄A ¯̄B

¯̄B ¯̄A− ¯̄B ¯̄B

¯̄B
. . . . . .

. . . . . . ¯̄B

¯̄B ¯̄A




(47)

where ¯̄A =
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


Yuc + 2Z−1
uc −Z−1

uc

−Z−1
uc Yuc + 3Z−1

uc −Z−1
uc

−Z−1
uc Yuc + 3Z−1

uc
. . .

. . . . . . −Z−1
uc

−Z−1
uc Yuc + 3Z−1

uc −Z−1
uc

−Z−1
uc Yuc + 2Z−1

uc




(48)

and

¯̄B =




−Z−1
uc

. . .

−Z−1
uc




(49)

Yuc and Zuc are the unit cell admittance and inductance terms, defined earlier in

(40) and (39), respectively.

2.2.5 Computational Complexity

If the plane pair were to be discretized with M1 cells horizontally and M2 cells ver-

tically, then the matrices ¯̄A and ¯̄B are of order M2 × M2 and Y is N × N where

N = M1M2. If unit cells are numbered along columns, the bandwidth of Y is M2.

Using a direct solver, the computational complexity for equation 46 is O(N ×M2
2 ).

For typical geometries, M1 ≈ M2 ≈
√

N , resulting in a complexity of O(N2). Also,

if sparse storage is used, memory required is O(N1.5). The method can be fur-

ther enhanced by the use of nested dissection, which is an asymptotically optimal

node ordering method. This can improve the flop count to O(N1.5) and memory to

O(N log2

√
N) [13].

2.2.6 Results

The finite difference method described in this chapter for the modeling of two layer

geometries was implemented in a tool called Panswitch. The code was developed in
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Figure 24. Geometry of test case.

Visual C++ and used the Intel math kernel library (MKL) for the linear equation

solution.

The MKL library uses the PARDISO [25][26] linear equation solver. PARDISO is

a robust thread safe parallel direct solver, and enables multi-threading.

The test case used to demonstrate the accuracy of the single plane pair formulation

is a simple 2-layer 100 mm × 100 mm structure, with a 0.2 mm thick FR-4 dielectric

separating the plates.

The structure is shown in Figure 24. The ports are located at the center of

opposing edges. The structure was meshed using 10 mm, 5 mm, 2.5 mm and 0.5 mm

meshes. It is expected that the impedance parameters Z11 and Z21 converge with

increasing mesh refinement. This is substantiated by the self and transfer impedance

plots shown in Figures 25 and 26 respectively. Also,the results have been compared

with a commercial FEM-based simulation tool, which shows good agreement.

The structure in Figure 24 is one for which analytical calculation of the resonance

frequencies is possible. The resonance frequencies of the (m,n)th TM-mode is given

by:

fmn =
1

2π
√

µε

√(mπ

a

)2

+
(nπ

b

)2

(50)
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Figure 25. Self impedance, Z11, with increasing mesh refinement.
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Figure 26. Transfer impedance, Z21, with increasing mesh refinement.
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Table 1. Theoretical and calculated resonance frequencies.
Mode Theoretical (GHz) Calculated (GHz)

f10 = f01 0.74949 0.74
f11 1.06 1.06

f20 = f02 1.499 1.50
f21 = f12 1.6759 1.67

Using a = b = 100 mm, the values of the first few resonance frequencies are

tabulated in Table 1. There is good agreement between the theoretical and the

numerically calculated values.

45



Figure 27. Equivalent network model of geometry in Figure 19.

2.3 Formulation for Multiple Plane-Pair Geometries
2.3.1 Aperture Coupling

The problem posed by the presence of apertures in multiple plane-pair geometries

is illustrated in Figure 19, and was discussed briefly in Section 2.1.2. The vertical

coupling of SSN can be described in terms of coupling as a result of interactions at

the boundaries of the multiple plane-pairs formed due to the presence of apertures.

The mechanism of coupling can be described in terms of wrap-around currents.

An equivalent model for such a problem can be developed by individually modeling

each of the plane-pairs in the problem, and interconnecting them as shown in Figure

27. In this example, the network model for the 1D geometry in Figure 19 is built on

a combination of three plane-pairs, which are formed between the three layers. This

network model enforces the correct boundary conditions such that the wrap-around

currents are taken into account. Since it is assumed that the electric-field has only

one component (in the vertical direction, or direction of stacking), the fringing fields

at the aperture are neglected, for the moment. The following sections will focus on a

practical implementation of the model shown in Figure 27, using the finite difference

scheme discussed earlier.

2.3.2 Formulation

The T-unitcell model of a single plane-pair geometry is shown in Figure 28(a). This

model uses a common ground node. In a multilayered structure consisting of more
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Figure 28. (a) T-unit cell for single plane-pair (b) Incorrect model for multiple plane-
pairs based on stacking of individual T-unit cells.
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Figure 29. (a) Side view of a unit cell for a 3 plane structure showing the current loops
associated with the p.u.c. inductances. (b) P.u.c. inductance of each plane pair. (c)
Combining the p.u.c. inductances by changing the reference planes.

than two planes, unit cells of different plane pairs can assign this ground potential

to different planes. Therefore, such unit cells cannot be stacked on top of each

other without any modification to model a multilayered plane. A straightforward

stacking, shown in Figure 28(b) would short-circuit the elements between two ground

connections, resulting in a completely erroneous model.

2.3.2.1 Reference Node Assignment

Consider the unit-cell for a 3-layer structure. In the two plane-pairs (shown in Figuure

29(a)) that constitute this structure, it can be observed that when the excitation is

confined within each plane-pair, the currents also form a loop. For example, a current

flowing in the top layer return on the middle layer, while a current flowing in the

middle layer returns on the bottom. This is simply another means of modeling the

electric field confinement within a plane-pair.
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To obtain a model for the combined unit cell representing all the planes in the

structure, consider the inductor elements in a unit cell as shown in Figure 29(a). L1

is the per unit cell (p.u.c.) inductance between plane 1 and plane 2, whereas L2 is

the inductance between plane 2 and 3. Hence, reference planes are different in both

models in Figure 29(b) and L2 would be short-circuited if the same nodes on plane

2 were connected with each other. In order to avoid that, the p.u.c. inductances

can be combined as shown in Figure 29(c) using a mutual inductance and assigning

plane 3 as the reference plane. This model can be extended in a similar way to any

number of planes. Physically, this model is based on the fact that there is a complete

coupling of the magnetic field when the return current is on plane 3, as represented

by the mutual inductance that is equal to L2.

This can be seen by calculating the per-unit-length inductance for the 3 plane

structure, with the bottom layer assigned as the reference conductor. The capacitance

in vacuum, for 3 planes of width w and spacing between planes d1 and d2, ignoring

fringing fields is:

Cv = ε0




w
d1

− w
d1

− w
d1

w
d1

+ w
d2


 (51)

The inductance matrix can therefore be calculated as

L = µ0ε0Cv

−1
(52)

= µ0




d1+d2

w
d2

w

d2

w
d2

w


 (53)

Interestingly, this model can also be derived using the reference node assignment

principle, discussed in Section 1.6.

Figure 30 is reproduced here for convenience. Recalling that the combined four-

port admittance matrix, Y, for the 2 two-ports Y A and Y B in the figure is given
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Figure 30. (a) Two-port networks with separate references (b) Combined four-port
network with common reference.

by:

Y =




Y A −Y A

−Y A Y A + Y B


 (54)

Substituting for Y A and Y B

Y A =
1

jω




1
L1

− 1
L1

− 1
L1

1
L1


 (55)

Y B =
1

jω




1
L2

− 1
L2

− 1
L2

1
L2


 (56)

(57)

Since L1 and L2 are the loop inductances of plane-pairs 1 and 2, respectively,

L1 = µ0
d1

w
(58)

L2 = µ0
d2

w
(59)
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Substituting (58) and (59) in (55) and (56), (54) becomes

Y =
1

jω




L
−1 −L

−1

−L
−1

L
−1


 (60)

where L is defined in (53).

2.3.3 Equivalent Circuit and Matrix Equation
2.3.3.1 Without Apertures

The total unit cell can be obtained as shown in Figure 31(b) for the example of

three planes, where the bottom plane is chosen as the voltage reference plane. The

equivalent circuit that would be obtained for a three layer geometry is shown in Figure

31(c).

2.3.3.2 With Apertures

An example for the equivalent circuit obtained from M-FDM when the structure to

be modeled contains apertures is illustrated in Figure 32(a).

This is the same example with which the multiple plane-pair problem was intro-

duced, in Figure 19. The equivalent circuit for this case is shown in Figure 32(b).

2.3.3.3 Matrix Equation

For solid multilayered rectangular planes, discretized with M1 cells in the x-direction

and with M2 cells in the y-direction, the admittance matrix Y can be written as

Y =




¯̄A ¯̄B

¯̄B ¯̄A− ¯̄B ¯̄B

¯̄B
. . . . . .

. . . . . . ¯̄B

¯̄B ¯̄A




(61)

where ¯̄A =
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Figure 31. (a) Geometry and p.u.c. parameters. (b) Combined unit cell model for
three planes. (c) Plane model consisting of multilayer unit cells.

Figure 32. (a) Multiple plane-pair problem containing apertures. (b) 1D Equivalent
Circuit.
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


¯̄Yuc + 2 ¯̄Z−1
uc − ¯̄Z−1

uc

− ¯̄Z−1
uc

¯̄Yuc + 3 ¯̄Z−1
uc − ¯̄Z−1

uc

− ¯̄Z−1
uc

¯̄Yuc + 3 ¯̄Z−1
uc

. . .

. . . . . . − ¯̄Z−1
uc

− ¯̄Z−1
uc

¯̄Yuc + 3 ¯̄Z−1
uc − ¯̄Z−1

uc

− ¯̄Z−1
uc

¯̄Yuc + 2 ¯̄Z−1
uc




(62)

and

¯̄B =




− ¯̄Z−1
uc

. . .

− ¯̄Z−1
uc




(63)

Here, A and B are kM1 × kM1 matrices for (k + 1) planes, assuming that the nodes

are numbered starting from the top node in the lowest row, increasing in the vertical

direction to the bottom node, then starting with the next cell in the x-direction until

the last cell, and then starting with the next row. Hence, Y is a (kM1M2)×(kM1M2)

matrix. The unit cell matrices, ¯̄Yuc and ¯̄Z−1
uc are tri-diagonal and are given by

¯̄Yuc =




Y1 −Y1

−Y1 Y1 + Y2 −Y2

−Y2
. . . . . .

. . . . . . −Yk−2

−Y k − 2 Yk−2 + Yk−1 −Yk−1

−Yk−1 Yk−1 + Yk




(64)
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and

¯̄Z−1
uc =




1
Z1

− 1
Z1

− 1
Z1

1
Z1

+ 1
Z2
− 1

Z2

− 1
Z2

. . . . . .

. . . . . . − 1
Zk−2

− 1
Zk−2

1
Zk−2

+ 1
Zk−1

− 1
Zk−1

− 1
Zk−1

1
Zk−1

+ 1
Zk




(65)

where Yi and Zi can be obtained similar to the unit cell parameters for a single plane

pair structure as

Yi = jωCi + ωCi tan δi (66)

Zi = jωLi +
2

σt
+ 2

√
jωµ

σ
(67)

By an analysis similar to what was provided in the previous section, it can be

shown that the computational complexity of M-FDM applied to k+1 layers is O(N2)

where N = (kM1M2). Using nested dissection [13] improves the flop count to O(N1.5)

and memory to O(Nlog2

√
N). Typically in the presence of mutual inductor elements

such as what has been shown in Figure 31, the unit cell inductance matrix ¯̄Z−1
uc will

be full-dense. However, the nature of the loop inductances considered lends to the

tri-diagonal form shown in (65) and hence to the unique advantages of M-FDM.

2.3.4 Model to Hardware Correlation for Structures with Apertures

The following test cases were designed to demonstrate the capability to model vertical

coupling through apertures in the metal planes. The geometries of the test cases are

shown in Figures 33 and 36. In either case, the two ports were used to excite two

different plane-pairs.

Ideally, if the metal-layers were all solid and contained no holes or apertures, then

there will be no coupling between the ports, at the frequencies of interest. This is due
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Figure 33. Test vehicle 1 (a) Geometry (b) Stack cross-section.

to the fact that the field penetration depth reduces with frequency. The skin-depth

can be expressed as

δs =

√
1

πfµσ
(68)

where f is the frequency of operation, µ is the permittivity of the medium and σ

is the conductivity of the metallization. At 100 MHz, for copper metallization, the

skin-depth is approximately 7 µm (and 2 µm at 1 GHz). In these test cases, the

copper used was 30 µm thick. Hence, field penetration will not play a major role over

the frequencies of interest.

However, from the insertion loss results shown in Figures 35 and 38, there is

significant coupling between ports. This is due to aperture coupling. Also, the results

from M-FDM correlate well with simulations from Sonnet and with measurements,

as can be seen from the insertion loss results mentioned above, and from the return

loss results shown in Figures 34 and 37.

M-FDM required 3 MB of memory and 113.7 ms of simulation time per frequency

point for Test vehicle 1, using 1 mm × 1 mm discretization. Using the same cell

size, Sonnet required 95s of simulation time per frequency point. This represents a

speedup of over 800X for comparable accuracy.
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Figure 34. S11 (dB) (return loss) for test vehicle 1 (Fig 33).
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Figure 35. S21 (dB) (insertion loss) for test vehicle 1 (Fig 33).
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Figure 36. Test vehicle 2 (a) Geometry (b) Stack cross-section.
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Figure 37. S11 (dB) (return loss) for test vehicle 2 (Fig 36).
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Figure 38. S21 (dB) (insertion loss) for test vehicle 2 (Fig 36).

Table 2. Simulation results for realistic package.
Layers Nodes Time/Freq Point (s)

2 38, 800 0.93
3 77, 600 1.78
4 116, 400 3.92
5 155, 200 6.8
6 194, 000 10.19
7 232, 800 16.33
8 271, 600 23.56
9 310, 400 32.99
10 349, 200 42.53

2.3.5 Results Demonstrating Scalability

The layout for two of the power distribution layers from a realistic package has been

shown in Figure 39(a). The layers were discretized using a unit cell size of 0.185 mm,

resulting in 38,800 nodes per layer. Table 2 shows the scalability of the simulation tool

as the number of layers, and hence, the number of nodes is increased. By employing

a sparse solver with nested dissection, it is possible to simulate a package with ten

layers with 349, 200 nodes. For this case, the simulation time/frequency point was 33

s. In comparison, even the simulation of the two layer example was intractable with

Sonnet due to insufficient memory available.

Further, consider the three layer case depicted by Figure 39. In this case, if the
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Figure 39. (a) Layouts for two package layers. Dimension is 34mm × 34mm. (b)
Cross-section for the three layer example.
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middle layer, Vdd1, were a solid plane, the two ports in the example would be isolated

from each other. However, due to the apertures present in these layers, significant

coupling can occur between the ports as shown in the insertion loss results shown

in Figure 40. In particular, there is significant coupling at 2.4 GHz and 5 GHz (-20

dB). Consider a scenario where Vdd1 and Vdd2 supply power to a digital and an

802.11 transceiver module respectively. In this situation, the designer would have

to incorporate decoupling techniques to isolate the ports in order to maintain the

performance of the WiFi module. While this problem can be solved with M-FDM, it

is intractable in commercial full-wave simulators.

2.4 Conclusions

In this chapter, the formulation for the multi-layer finite difference method (M-FDM)

was developed. The formulation was developed by first discussing the finite difference

method as applied to single plane-pair structures, using two different discretization

schemes (the T- and X- unit cells). The discussion was later confined to the use of

the T-unit cell which simplifies implementation without significant loss in accuracy.

The problem of extending this approach to multi-layer geometries was primarily

one of handling the boundaries between plane-pairs, which occur due to the presence

of apertures in multi-layer packages. This was solved by modeling each plane-pair

individually, and later shifting the ground reference nodes to the common system

ground, typically designated to be the bottom most layer in the package. This method

completes the formulation of M-FDM and allows the modeling of wrap-around cur-

rents. Using nested dissection reordering [13] the method requires a flop count to

O(N1.5) and memory of O(Nlog2

√
N).

M-FDM does have a couple of limitations. These arise primarily because of the

simplifying assumption ∂
∂z

= 0, and assuming that the electric field does not have any

components in the lateral direction. Physically, this implies that the fringing fields
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Figure 41. (a) Fringing fields due to narrowing of PDN (b)Fringing fields at edges in
multi-layer geoemtries.

are not modeled. These fields are not critical when the ratio of the plane width to

dielectric height is greater than 50. However, two situations where these fields cannot

be neglected are the following:

1. A plane has a narrow section or a neck. This is illustrated in Figure 43(a).

2. In a multiple plane-pair structure, fringing fields at the boundaries of the plane-

pairs can cause vertical coupling. This is illustrated in Figure 43(b). This

coupling mechanism is typically not as significant as the coupling through wrap-

around currents, which are modeled by M-FDM. However, in Figure 43(b), there

are no apertures, and hence no wrap-around currents either.

The other critical effect in the context of package and board PDNs is the coupling
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Figure 42. Gap coupling across slots in planes.

of energy across slots in metal planes. Slots are typically used to DC isolate two

different supply voltages.

Thus, noise can coupling horizontally across the slots separating power islands, as

shown in Figure 42.

The goal of forthcoming chapters is to use equivalent circuits to model the effect of

the fringe (Chapter 3) and gap coupling (Chapter 4) fields. These equivalent circuit

models are equivalent to updating the system admittance matrix with correction

terms.
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CHAPTER 3

MODELING OF FRINGING FIELDS IN M-FDM FOR
MULTI-LAYERED PACKAGES

3.1 Introduction

The modeling of PDN geometries using techniques that employ the planar-circuit

approximation (i.e., ∂
∂z

= 0, Ex = Ey = 0) is valid for large plane-pairs, where

the ratio of the lateral dimensions of the planes to the dielectric height exceeds 50.

However, in many PDNs, the presence of narrow lines (Figure 43(a)) implies that

simulation results will be inaccurate. Also, even in the case when metal planes are

wide compared to the substrate height, there can be significant coupling that can be

associated with the fringing fields from plane edges (Figure 43(b)). This is because,

in either case, the fringing fields contain Ex and Ey fields that are significant when

compared to Ez. Hence, the planar circuit approximation can lead to unacceptable

loss in accuracy.

3.1.1 Significance of the Fringing Fields

The error in ignoring the fringing fields can be illustrated by studying the resonance

frequencies of a square plane pair geometry by varying the ratio of plane width W

to substrate height h. The results from M-FDM, when compared with results from

full-wave solver, can be used to quantify the error introduced by neglecting fringe

fields.

In Figure 44, the relative percentage error in the first resonance frequency in S11

obtained from M-FDM (as compared to full-wave simulations[9]) are shown. Even for

significantly wide planes, W
h

= 10, the resonance frequency shift is large (∼ 5.5%).

Only for very wide planes, i.e. W
h

> 50, does the error reduce to below 1%. As pack-

ages shrink to chip scale dimensions, the fringe effect, therefore, cannot be neglected.

Another example that amplifies the effect of fringing fields is a microstrip meander
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Figure 43. (a) Fringing fields due to narrowing of PDN (b)Fringing fields at edges in
multi-layer geoemtries.

Figure 44. Relative percentage error in first resonance frequency (Return Loss, S11.)
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Figure 45. A microstrip meander line, (a) cross section (b) top view.

line, shown in Figure 45. The line width is 1mm and is placed over an FR-4 substrate

of thickness 100µm. The return loss of this line, obtained from M-FDM and the

full-wave solver Sonnet [9], is shown in Figure 46. Clearly, the M-FDM results show

deviations in the resonance frequencies.

3.1.2 Prior Work in Modeling Fringing Fields

This problem has been considered recently in [27], where an extended segmentation

approach was proposed. The segmentation approach is coupled with a 2D field solver,

such that the effect of discontinuities such as vias can be extracted and included

in the simulation. In this chapter, the M-FDM method is modified with a fringe

augmentation (FA) technique, where the fringe elements are obtained from a 2D

electrostatic solution, which is relatively inexpensive.

The addition of the capacitance and inductance elements associated with the fringe

fields in this method is equivalent to modifying the material properties associated with

the cells lying on metal edges, as developed in [28] for FDTD meshes. This technique

enables the method to accurately characterize irregular multi-layered packages. Thus,

the contribution of this work is the development of fringe corrections, for irregular
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Figure 46. Return Loss (dB) of structure in Figure 45.

and multi-layered packages modeled using M-FDM.

The rest of this chapter is organized as follows. The formulation for obtaining the

network model for the fringe augmentation elements is discussed in Section 3.2. In

this section, the formulation for the 2D electrostatic solver, and its use to obtain the

equivalent circuit model and matrix equations for single plane-pair and multiple plane-

pair structures is also developed. The formulation is applied to single and multiple

plane-pair geometries in 3.3, and the results from the FA method are compared with

full-wave simulations and measurements. Finally, conclusion are presented in Section

3.4.

3.2 Addition of Fringe Elements to M-FDM
3.2.1 Simulation Flow

The effect of the fringing fields can be modeled by the fringe augmentation (FA)

method coupled with the M-FDM formulation. The flowchart for the FA+M-FDM

method is shown in Figure 47. The process involves the following steps:

1. The package geometry is segmented into cross-sections along each row and col-

umn of unit-cells. The cross-sections which are identical are grouped together.
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Figure 47. Flowchart for the addition of fringe augmentation elements.

2. Each unique cross-section is analyzed using a 2D electrostatic solver to obtain

the per-unit-length (p.u.l) inductance and capacitance matrices, the values of

which are stored in a look up table, to be retrieved while building the admittance

matrix for the frequency sweep.

3. After pre-computing these p.u.l L and C matrices, M-FDM is applied to build

the initial admittance matrix Y.

4. Y is updated with the fringe correction elements that are calculated based on

the stored 2D L and C matrices.

5. Equation 46 is solved to obtain the port-to-port impedance parameters as be-

fore.

3.2.2 2D Electrostatic Solver

A typical electrostatic problem involves the solution of Laplace’s equation in a source

free region to obtain the electric potential in the problem domain, Ω.
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Laplace’s equation is given in differential form as:

∇ · (ε∇u) = 0 (69)

Here, u is the electric potential distribution in the dielectric domain where elec-

trostatic fields exist.

In Cartesian coordinates, and in a homogenous medium, the equation becomes

(
∂2

∂x2
+

∂2

∂y2

)
u = 0 (70)

It is not possible to obtain an analytical solution to the above equation, in general.

However a variety of numerical techniques are applicable, and a robust method-of-

moments based 2D-solver, CZ2D [30], is commercially available.

A simple finite-element scheme has been used in this thesis. This scheme provides

per-unit-length capacitance and high frequency inductance matrices of transmission

structures.

The finite-element scheme uses a triangular mesh with N nodes and pyramid basis

functions. The pyramid basis is described in Chapter 7.

We obtain and solve the system:

N∑
j=1

(∫

Ω

(ε∇Φj) · ∇Φi

)
Uj = 0, i, j = 1, 2...N (71)

where Φi is the pyramid basis and Ui is the unknown potential, defined at node i.

The capacitance matrix, C2D, can be obtained by applying Gauss’ law:

Ci,j =

∮

lj

ε
∂V

∂n
dlj (72)

where Ci,j is the (i, j)th entry in the capacitance matrix, found by integrating the

normal component of the potential gradient around a contour lj enclosing the jth

conductor with a 1V potential applied to the ith conductor.

The high frequency inductance matrix, L2D, can be found to be
√

µ0ε0C
−1

2D0, where

C
−1

2D0 is the capacitance matrix of the same structure in vacuum.
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Figure 48. A microstrip line.

For example, consider the microstrip line of width 0.13 mm shown in Figure

48. The 2D potential distribution for this structure has been obtained and plotted in

Figure 49. The characteristic impedance calculated from the obtained per-unit-length

capacitance and inductance values is 86 Ω which agrees well with calculations from

well know formulae [29].

3.2.3 Formulation

The cross-section of the geometry perpendicular to the edge under consideration is

analyzed using a 2D-electrostatic solver to obtain the p.u.l capacitance and inductance

matrices, C2D and L2D, respectively. The formulation for the 2D solver is provided

in Section 3.2.2.

While C2D and L2D represent the correct p.u.l capacitance and inductance of the

structure, due to the approximation ∂
∂z

= 0 used by the formulation, as described

earlier, the p.u.l inductance and capacitance of the M-FDM model represent only the

contributions from the parallel plate fields. We denote these capacitance matrices as

Cpp and Lpp.

Once C2D and inductance L2D are obtained, they can be used to derive the fringe

augmentation (FA) elements Cf and Lf . Cf represents the additional capacitive

elements to be added to Y to correctly model the fringe E-fields. Lf represents
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Figure 49. Potential distribution of microstrip in Figure 48.

additional inductive elements to be added between adjacent nodes that lie parallel to

the edge being considered, to correctly model the fringe H-fields.

Given that Cf and Lf are added symmetrically on the two sides of the cross-section

being considered, the following relations can be obtained.

C2D = Cpp + 2
Cf

w
, where w is the discretization width (73)

and

L
−1

2D = L
−1

pp + 2wL
−1

f (74)

From the above equations, the expressions for Cf and Lf are:

Cf =
1

2

(
C2D − Cpp

)
w (75)

and

Lf = 2
(
L
−1

2D − L
−1

pp

)−1

w (76)
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Figure 50. Two plane structure with two unique cross-sections.

3.2.4 Matrix Equation for Single Plane-Pair Geometries

Figure 50 shows the discretized top-view of an L-shaped two-layer structure. This

structure can be segmented into two cross-sections, indicated by the dotted cutting

planes a− a′ and b− b′, perpendicular to the axis indicated by the arrow. For these

two cross-sections, the scalar fringe capacitance and inductance, Cf1, Lf1, Cf2 and

Lf2, can be obtained. In general, assuming that a geometry requires the analysis

of k cross-sections, the fringe corrections will be (Cf1, Lf1; Cf2, Lf2; . . . ; Cfk, Lfk).

In Figure 50, each of the cross-sections result in fringe corrections to several nodes.

The formulation requires a list of nodes, SCi, be created for each of the capacitive

corrections Cfi, indicating that an additional admittance of jωCfi needs to be added

to each of the nodes in SCi. In the example shown in Figure 50, SC1 = (1, 2, 19, 20)

and SC2 = (3, 4, 15, 16).

Similarly, another list is created containing (unordered) pairs of nodes SLi, where

the inductive element Lfi is added between each pair of nodes in SLi. One implemen-

tation detail in the addition of fringe inductances needing additional clarification is in

dealing with unit-cells lying at the boundary between two cross-sections, for example

Nodes 2 and 3. For example, the fringe inductance to be added between Nodes 2 and

3 can be Lf1, Lf2 or 1
2
(Lf1 + Lf2). In this thesis, the implementation is simplified
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by choosing the first option, while the last is more accurate. However, in practice,

there is no significant loss in accuracy. In the example, SL1 = {(1, 2); (2, 3); (19, 20)}
and SL2 = {(3, 4); (15, 16)}. Notice that Node 2 appears twice in SL1 and that the

maximum number of fringe inductances connected to any given node is 2.

The ith capacitive fringe correction can be expressed in terms of the following

equation:

Ycf,i = jωCfiPi (77)

where Pi is a diagonal matrix, whose diagonal entries are defined as

pi
m,m =





1, if m ∈ SCi

0, otherwise
(78)

Similarly, the ith inductive fringe correction can be expressed as

Ylf,i =
1

jωLfi

Qi (79)

where Qi is an incidence matrix whose elements are given by

qi
m,m =





2, if m is present in SLi twice

1, if m is present in SLi once

0, otherwise

(80)

qi
m,n = qi

n,m =




−1, if (m,n) is a pair in SLi

0, otherwise
(81)

Thus, the final admittance matrix including the fringe corrections can be written

as

YFA = Y +
k∑

i=1

(
Ycf,i + Ylf,i

)
(82)

where Y is the admittance matrix from M-FDM given in (46). Y in (46) is now

replaced with YFA. It can be seen from this procedure that the number of non-zeros

in and the structure of YFA is identical to that of Y.
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Figure 51. Addition of Fringe elements for single plane-pair structures. Equivalent
circuit (a) from uncorrected M-FDM (b) upon addition of fringe capacitance (c) upon
further addition of fringe inductance.
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Figure 52. Three layer structure showing location of fringe nodes.

3.2.5 Equivalent Circuit for a Single Plane-Pair

The resultant equivalent circuit from the M-FDM + FA method when applied to

two metal layer geometries is shown in Figure 51. Figure 51(a) shows the basic

equivalent circuit from M-FDM. Upon updating the admittance matrix with the fringe

capacitance, the equivalent circuit is modified as shown in Figure 51(b). Finally, the

result of updating the admittance matrix with the fringe inductance elements is shown

in Figure 51(c).

3.2.6 Matrix Equation for Multiple Plane-Pair Geometries

The FA method for multiple plane-pair geometries can be explained using Figure 52.

The additional complexity posed by multiple plane-pairs is the reason for the choice

of the simple example containing just one unique cross-section.

For this example, the 2 × 2 fringe capacitance and inductance matrices Cf and

Lf can be obtained. In general, assuming that a geometry requires the analysis

of k cross-sections, the fringe corrections will be (Cf1, Lf1; Cf2, Lf2; . . . ; Cfk, Lfk)

Also, assuming that the geometry contains L + 1 layers, the fringe capacitance and

inductance matrices will be L× L.

The derivation of the matrix equation requires an understanding of the node

numbering used in M-FDM. Assume also, that the geometry contains M rows and N
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columns. The cell in row i, column j and layer l, (where numbering begins from the

top left and from top to bottom) has the node number, ni,j,l, given by

ni,j,l = (j − 1)×M + (i− 1)× L + l (83)

In the example, the node number for cell (2,1,2) calculated using the above formula

is n2,1,2 = (1− 1)× 2 + (2− 1)× 2 + 2 = 4.

It can be seen that if a cell (i, j, l) in the top layer is marked as a cell to which

fringe augmentation elements must be added, then so are (i, j, l + 1), (i, j, l + 2), . . .,

(i, j, L). Therefore, for convenience, only the number of a multi-layer unit cell needs

to be considered. The formula for the multi-layer unit cell, nuc
i,j is

nuc
i,j = (j − 1)×M + i (84)

The four multi-layer unit cells in the example have multi-layer unit cell numbers 1,2,

11 and 12.

As before, a list of nodes, SCi, is created for each of the capacitive corrections

Cfi. However, this list is populated with the unit cell number and not the actual

node numbers assigned to the unknowns in the system. In the example, there is only

one list, SC1, containing the aforementioned multi-layer unit cell numbers, (1,2,11,12).

The unordered list SLi also contains the numbers of the multi-layer unit cells

between which Lfi must be added. In the example, SL1 = {(1, 2); (11, 12)}.
The ith capacitive fringe correction can be expressed in terms of the following

equation:

Ycf,i = jωPi ⊗ Cfi (85)

where ⊗ represents the Kronecker matrix product. If A is an m× n matrix and B is

a p× q matrix, then A⊗ B is a mp× nq block matrix given by

A⊗ B =




a11B . . . a1nB

...
. . .

...

am1B . . . amnB




(86)
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The elements of Pi can be obtained using (78). Pi is an MN ×MN matrix, and

Cfi is L× L. Therefore, Ycf,i is an MNL×MNL matrix, which is the same size as

Y. Also, the ith row in Ycf,i corresponds to the ith unknown in Y.

Similarly, the ith inductive fringe correction can be expressed as

Ylf,i =
1

jω
Qi ⊗

(
Lfi

)−1

(87)

where Qi is the incidence matrix whose elements are defined in (80) and (81).

For the example in Figure 52,

Ycf,1 = jω




1 0 . . . . . . 0

0 1
...

... 0
. . .

0
...

... 1 0

0 . . . . . . 0 1




⊗ Cf (88)

which can be expanded to

Ycf,1 = jω




Cf 0 . . . . . . 0

0 Cf
...

... 0
. . .

0
...

... Cf 0

0 . . . . . . 0 Cf




(89)

In the above equation, Ycf,1 is written in terms of 2×2 sub-matrices. Also, it is exactly

the same matrix that will be obtained by explicitly adding the fringe capacitance Cf

on a cell by cell basis.
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Similarly,

Ylf,1 =
1

jω




1 −1 0 . . . . . . 0

−1 1
...

... 0
. . .

...

0 0
... 1 −1

0 . . . . . . 0 −1 1




⊗
(
Lf

)−1

(90)

i.e,

Ylf,1 =
1

jω




(
Lf

)−1

−
(
Lf

)−1

0 . . . . . . 0

−
(
Lf

)−1 (
Lf

)−1 ...
... 0

. . .
...

0 0
...

(
Lf

)−1

−
(
Lf

)−1

0 . . . . . . 0 −
(
Lf

)−1 (
Lf

)−1




(91)

The above matrix, Ylf,1, can also be obtained by adding the fringe inductances on a

cell by cell basis.

The use of the Kronecker product simplifies the formulation, provided that the

node numbering discussed is used. For other node numbering schemes, Ycf,i and Ylf,i

may have to be permuted to obtain the correct augmentation matrices.

The final system matrix including the fringe augmentation elements for multiple

plane-pair geometries is obtained as before, using (82).

3.2.7 Equivalent Circuit for Multiple Plane-Pairs

The FA method leads to more complicated equivalent circuits when applied to multi-

ple plane-pair geometries. As an illustration, consider a three metal layer geometry,

the top view of which is shown in Figure 53(a). To provide a simple explanation

of the FA method, only three nodes (A, B and C) in the finite difference mesh are

considered. To include the matrix entries associated with the fringe field, the cross
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Figure 53. Addition of Fringe elements. (a) Top view of top and middle layers (b)
Cross section (c) M-FDM circuit model between Nodes A and B (d) Circuit model as
a result of fringe augmentation (FA).
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section of the structure, as shown in Figure 53(b) is considered. In Figure 53(c), the

circuit elements between Nodes A and B are shown, as derived from the M-FDM

formulation. The correction of the system matrix, Y, with the elements from the FA

matrix Cf and Lf results in the addition of new circuit elements as shown in Figure

53(d).

3.2.8 Computational Complexity

The fringe augmentation procedure requires the calculation of fringe elements for

every non-unique cross-section in the geometry. However, once the metal strip is

wide enough such that the edges do not significantly interact (w
h

> 10), the fringe

elements can be expected to remain unchanged, significantly reducing computational

cost [28].

It can be noted that since no new non-zeros are being added to the admittance

matrix, Y, the matrix structure remains identical to the form shown in (61). Hence,

the factorization and solve time remain unchanged.

3.3 Results

The M-FDM technique with fringe augmentations was used to analyze three test

structures. All simulations were carried out on an Intel dual-Xeon workstation with

3 GB of RAM. An Agilent four port, 40 GHz VNA was used for measurements. The

full-wave method-of-moments based tools, EMSurf, which is part of the IBM EIP

suite [30], and Sonnet, have also been used for correlation.

3.3.1 Microstrip Meander

The M-FDM + FA method was used to simulate the microstrip meander structure

in Figure 45. The first step is to obtain the fringe augmentation elements from the

2D solver.
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3.3.1.1 Results from 2D Simulation

The cross-section of the problem solved using the 2D solver is shown in Figure 45(a).

Since this problem contains two layers, the fringe elements are scalars. The results

from the 2D simulation are

C2D = 435.13 pF/m (92)

L2D = 101.97 nH/m (93)

The per-unit-length parallel-plate parameters are

CPP = ε0εr
1 mm

0.1mm
= 389.58 pF/m (94)

LPP = µ
0.1 mm

1mm
= 125.66 nH/m (95)

From the above equations, and using a cell discretization, w, of 0.1 mm, the fringe

augmentation elements can be calculated as:

Cf =
1

2
(C2D − CPP ) w = 2.2775 pF p.u.c (96)

Lf = 2
(
L−1

2D − L−1
PP

)−1
w = 108.1769 nH p.u.c (97)

3.3.1.2 Comparisons with Full-wave Simulation

The microstrip meander line of Figure 45 was simulated using M-FDM with the fringe

augmentations. The return loss results are shown in Figure 54. Clearly, the accuracy

has improved significantly. Interestingly, in Figure 46, without the FA elements,

the resonance frequencies obtained from M-FDM are consistently lower than the

resonance frequencies from full-wave. The addition of the FA capacitance increases

the per-unit-length capacitance, and so lowers the resonance frequencies further still.

However, the FA inductance compensates for this by lowering the overall per-unit-

length inductance, causing the results from M-FDM+FA to match with full-wave.

3.3.2 Three Layer Problem

The second test structure contains three metal layers with 30 mm wide planes in the

top and middle layers. The top view of this structure is shown in Figure 55(a), with
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Figure 54. Return loss (dB) for structure in Figure 45 with fringe models.

Figure 55. Geometry of multilayer test structure I. (a) Top view of top and middle
layers (b) Cross section (c) Insertion Loss.
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Figure 56. Geometry of electrostatic problem with cross-section from Figure 55(b).

the cross section in Figure 55(b). The dielectric was FR-4 with 200 µm thickness

and tan δ of 0.015. Port locations are indicated by the circles shown in Figure 55(a).

Also, as can be seen by the arrows in Figure 55(b), the terminals of Port 1 are con-

nected between the top and middle layers, while the terminals of Port 2 are connected

between the middle and bottom layers.

3.3.2.1 Results from 2D Simulation

The cross-section of the structure, shown in Figure 55(b) was used as input to the 2D

solver. The geometry of the problem analyzed with the 2D solver is shown in Figure

56. The potential distributions in the problem domain created due to excitations on

the top and middle conductors are shown in Figure 57 and Figure 58 respectively.

The per-unit-length capacitance and inductance obtained from 2D simulations are

C2D =

(
5.915 −5.8537

−5.8537 11.727

)
nF/m (98)

L2D =

(
15.594 7.7825

7.7825 8.0521

)
nH/m (99)
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Figure 57. Potential distribution due to 1V excitation on top conductor.

Figure 58. Potential distribution due to 1V excitation on middle conductor.
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The per-unit-length parallel-plate parameters are

CPP = ε0εr
30 mm

0.2 mm

(
1 −1

−1 2

)
=

(
5.84364 5.84364

5.84364 11.68728

)
nF/m (100)

LPP = µ
0.2 mm

30 mm

(
2 1

1 1

)
=

(
16.7551 8.37758

8.37758 8.37758

)
nH/m (101)

Using a unit-cell discretization of 0.5 mm, the FA elements are

Cf =

(
0.01784 −0.002515

−0.002515 0.00993

)
pF p.u.c (102)

Lf =

(
0.22717 0.07073

0.07073 0.86593

)
nH p.u.c (103)

From the above results, it can be seen that the additional fringing elements that are

added between the top conductor and reference are the source of the coupling between

the plane-pairs.

3.3.2.2 Comparisons with Full-wave Simulation

The insertion loss results are provided in Figure 55(c). When the fringe augmenta-

tions are not included, M-FDM [23] simulations indicate that the ports are uncoupled.

Hence, the insertion loss between the ports is negligible. When the fringe augmenta-

tions are included, there is good agreement with the full-wave EM solution. Also, a

significantly high S21 of -8dB at 2.4 GHz has been captured.

3.3.3 Model to Hardware Correlation

The third test case contains a cavity as shown in Figure 59. An application where

such a structure is used is in the packaging of embedded active components. A chip is

placed in the cavity, after the package has been completely fabricated. This approach

to embedding actives inside a package is called the “chip last” approach, and is a

means of reducing the stress placed on the IC during the fabrication process [31].

However, fringing fields occur along the edges of the apertures that are created in the

power planes, and cause vertical electromagnetic coupling.
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Figure 59. Model of package with embedded die in cavity (a)Stack-up (b)3D View.

The top view and cross section for the three layer test vehicle is shown in Figure

60(a) and 60(b), respectively. The dielectric layers are 50 µm thick with a relative

permittivity of 3.4 and tan δ of 0.06, with 20 µm thick metal layers. Port locations are

indicated by the circles shown in Figure 60(a), and as in the previous case, the termi-

nals of Port 1 are connected between the top and middle layers, while the terminals

of Port 2 are connected between the middle and bottom layers.

As before, when the fringe augmentations are not included, M-FDM simulations

indicate that the ports are uncoupled. As seen from the insertion loss results shown

in Figure 60(c), there is a good agreement between the M-FDM technique with fringe

augmentations, the full-wave EM solution and measurement.

For this case, there are two non-unique cross sections to be considered for 2D

analysis to obtain the fringe inductance and capacitance matrices. These simulations

required about 10s each. The M-FDM simulations contained 14,400 cells and required

0.44s per frequency point.
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Figure 60. Geometry of multilayer test structure II. (a) Top view of top and middle
layers (b) Cross section (c) Insertion Loss.

3.4 Conclusions

Fringing fields are significant at metal edges in a multi-layer power/ground network.

In single plane-pair cases where the lateral dimensions of the plane exceed 50 times the

height of the substrate, these fields can be neglected, without affecting the accuracy of

the simulated response. However, for structures where the plane width is comparable

to the height of the substrate, or where the edges of planes in a multi-layer package

coincide, these fringing fields can be a significant source of coupling. In this chapter,

a formulation has been developed to obtain a frequency independent network model

for the fringing fields in multi-layer packages. This model is based on obtaining the

per-unit-length capacitance and inductance of the structure being analyzed, using a

2D electrostatic solver whose formulation has also been developed. The FA elements

do not increase the number of non-zeros in the system matrix. Thus the FA method

does not cause an increase in the computational time required to factorize and solve

the system. The additional increase in time is only due to the calculation of the 2D

solutions of the cross-sections in the structure. These calculations are relatively cheap,

and are only performed once for the entire frequency sweep. The FA method has been

86



employed to simulate single and multiple-plane pair structures and the results have

been compared against full-wave simulations and measurements.
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CHAPTER 4

MODELING OF GAPS IN M-FDM FOR
MULTI-LAYERED PACKAGES

4.1 Introduction

In Chapter 3, the problem of fringing fields was considered. Fringing fields are ignored

by the M-FDM formulation (or any other formulation that employs the planar-circuit

approximation). This is because, according to this approximation, ∂
∂z

= 0.

This approximation can once again lead to errors in particular cases of power/ground

planes containing slots. To support multiple DC levels, a PDN can be segmented into

multiple galvanically unconnected planes. These are called split planes or power

islands, depending on the layout geometry.

Electromagnetic fields in close proximity to the edges of the planes contain sig-

nificant Ex and Ey fields, and these fields couple energy between power circuits that

are not DC connected. Figure 61(a) and (b) shows split planes in two typical types

of cases, which have been labeled microstrip type and stripline type, respectively.

The reason for labeling these types of structures based on types of transmission

line configurations is this: the methodology that has been developed in this thesis

Figure 61. Gaps in Power Planes (a)Microstrip type gap (b)Stripline type gap.

88



relies on analyzing the cross-section of the structure, in a direction perpendicular

to the slot axis, using the 2D-electrostatic solver developed in Section 3.2.2. These

cross-sections are often analogous to low impedance transmission line configurations.

However, the formulation is general and is not limited to these configurations alone.

As with the fringe augmentation (FA) procedure developed in Chapter 3, the

2D-electrostatic solution provides a per-unit-length (p.u.l) capacitance and induc-

tance matrix, which is used to calculate additional circuit elements that enable the

modeling of the EM-coupling between the galvanically unconnected metal patches.

The proposed method for modeling the EM coupling across gaps in shapes is called

the plane-gap augmentation (PGA) method. The contribution of this work is a for-

mulation by which the M-FDM model can be corrected with a minimal number of

additional circuit elements that couple nodes on either side of the slot.

The rest of this chapter is organized as follows. To motivate the need for including

gap corrections, the results of M-FDM when applied to structures with prominent

fringing fields are presented in Section 4.1.1. The modeling and inclusion of gap fields

using the FA technique is discussed in Section 4.2. The accuracy of the technique is

shown through model to hardware correlation in Section 4.3, followed by conclusions

in Section 4.4.

4.1.1 Significance of Gap Effect

Split planes and power islands are increasingly being used to support multiple mod-

ules, with each module requiring a different power supply.

An example of this is that of a mixed signal board with split planes separating

the digital module with an FPGA and an RF transceiver module. The board layout

is shown in Figure 62. The dielectric thickness is 200 µm. Ports 1 and 2 are placed

at the location of the FPGA and the RF transceiver respectively. Noise generated by

the FPGA can couple through the PDN and cause degradation in the performance of

the RF module. M-FDM without the gap models will not show any coupling between
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Figure 62. Mixed signal board.

Figure 63. Top view of a power bus (20mm×1mm) with 100µm separation.

Ports 1 and 2.

Such PDN designs are only becoming more common as the integration of digital

and analog/RF devices becomes more common. A simple split power bus is shown

in Figure 63, using the same stack up shown in the previous example (Figure 45(a)).

The insertion loss between the ports as obtained from M-FDM and from a schematic

simulation of coupled lines in ADS are shown in Figure 64. Since M-FDM models

the metal edges as PMC, there is no coupling between the two ports. Also, M-FDM

with the fringe augmentations will not change the insertion loss behavior, since M-

FDM+FA only models the effect of the fringing fields to layers above and below the

metal edges.

Another instance where both the fringe and gap effects are critical is in the mod-

eling of electromagnetic band gap (EBG) structures. An EBG is a periodic structure,

that can be employed as a band-stop filter applied for noise suppression in modern

packages and boards. An example Alternating Impedance-EBG (AI-EBG) [32][33]

containing four 14mm×14mm patches connected together with 1mm×1mm branches
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Figure 64. Insertion loss results for structure shown in Figure 63.

is shown in Figure 65(a), with the same stack up as in the previous examples. The

fringe effect has a pronounced effect in the narrow-width metal patches, while the

coupling across the slot between patches also has an effect in the bandwidth of the

EBG. The insertion loss results shown in Figure 65(b) clearly show that the M-FDM

approximation results in poor estimation of the bandwidth and isolation levels of the

stop-band region.

It is possible to include the effects of gap coupling fields in the M-FDM model by

using multi-port connection networks, the development of which is discussed next.

4.2 Inclusion of the Gap Effect using the Plane-Gap Aug-
mentation Method

4.2.1 Simulation Flow

The flowchart of the M-FDM+PGA method has been illustrated in Figure 66. The

process involves the following steps:

1. The package geometry is segmented into cross-sections along each row and col-

umn of unit-cells. The cross-sections containing gaps, and which are identical,

are grouped together.

2. Each unique cross-section is analyzed using a 2D electrostatic solver to obtain

the per-unit-length (p.u.l) inductance and capacitance matrices, the values of
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Figure 65. (a) Top view of the AI-EBG (b) Insertion loss of the AI-EBG.

Figure 66. Flowchart for the addition of plane-gap augmentation elements.
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which are stored in a look up table, to be retrieved while building the admittance

matrix for the frequency sweep.

3. After pre-computing these p.u.l L and C matrices, M-FDM is applied to build

the initial admittance matrix Y.

4. Y is updated with the gap correction elements that are calculated based on the

stored 2D L and C matrices.

5. Equation 46 is solved to obtain the port-to-port impedance parameters as be-

fore.

4.2.2 Formulation for Single Plane-Pair Structures

The cross-section of the geometry perpendicular to the gap under consideration is

analyzed using a 2D-electrostatic solver to obtain the p.u.l capacitance and inductance

matrices, C2D and L2D, respectively. The formulation for the 2D solver is provided

in Section 3.2.2.

C2D =

(
C2D

11 C2D
12

C2D
12 C2D

11

)
(104)

L2D =

(
L2D

11 L2D
12

L2D
12 L2D

11

)
(105)

For the two layer case, the only gap configuration that needs consideration is the

microstrip type. The analysis of the microstrip type provides an intuitive understand-

ing of the mechanism of the gap models being applied. The formulation for multiple

plane pair gap models is an extension.

Consider the microstrip-type gap shown in Figure 61(a). The two planes on either

side of the slot are considered to be symmetric, of width W . The substrate height is

h with dielectric constant εr.

The top-view of a part of this structure with the FDM mesh is shown in Figure

67. The dotted rectangle picks out a row of unit cells. The M-FDM model can be
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Figure 67. FDM mesh for the microstrip type slot shown in Figure 61(a).

considered to include an effective p.u.l inductance and capacitance for the structure.

The equivalent per-unit-length inductance capacitance and inductance matrices are

Cpp and Lpp, respectively.

It can be seen that the p.u.l capacitance and inductance matrices, Cpp and Lpp

are:

Cpp =

(
ε0εr

W
h

0

0 ε0εr
W
h

)
(106)

Lpp =

(
µ0

h
W

0

0 µ0
h
W

)
(107)

(106) and (107) have zeros in the off-diagonal entries because there are no coupling

elements connecting the gap-separated conductors. By comparing (106) and (107)

with (104) and (105), it is possible to derive the matrices for the circuit elements that

form the gap model.

The gap capacitance matrix, Cg is given by:

Cg = C2D − Cpp (108)
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Figure 68. Equivalent circuit - M-FDM with PGA models for a microstrip case.

Therefore,

Cg =

(
C2D

11 − ε0εr
W
h

C2D
12

C2D
12 C2D

11 − ε0εr
W
h

)
(109)

The gap inductance matrix, Lg is given by:

Lg =
[
L
−1

2D − L
−1

pp

]−1

(110)

Simplifying, the elements of the gap inductance matrix are:

Lg
11 = −Lpp

11

−L2D
11 Lpp

11 + L2D
11

2 − L2D
12

2

L2D
11 − 2L2D

11 Lpp
11 + Lpp

11 − L2D
12

2 (111)

Lg
12 = (Lpp

11)
2 L2D

12

L2D
11 − 2L2D

11 Lpp
11 + Lpp

11 − L2D
12

2 (112)

These equations are identical to those derived in [34], for the modeling of coupled

microstrip lines using resonators.

The addition of the gap models results in an equivalent circuit of the form shown

in Figure 68. In this figure, Cm and Lf represent the per-unit-cell self terms obtained

from the gap matrices, and k represents the coupling coefficient of mutual inductance.

Cm = Cg
12w (113)

Lf = Lg
11w (114)

k =
Lg

12

Lg
11

(115)

where, w is the unit cell width.
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Figure 69. Two plane structure with a slot.

4.2.3 Matrix Equation for a Single Plane-Pair

Figure 69 shows the discretized top-view of a two-layer structure containing a slot.

This structure can cross sectioned along the cutting plane a− a′.

In general, assuming that a geometry requires the analysis of k cross-sections,

the gap corrections will be (Cg1, Lg1; Cg2, Lg2; . . . ; Cgk, Lgk). In Figure 69, each

of the cross-sections result in gap corrections to several nodes. The formulation

requires an ordered list of nodes, SCi, be created for each of the capacitive corrections

Cgi, indicating that an additional admittance matrix of jωCgi needs to be added

to each of the pairs of nodes in SCi. In the example shown in Figure 69, SC1 =

{(7, 13); (8, 14); (9, 15)}. In this case, Cgi
11 and Cgi

22 can be thought of as modified

fringing field capacitances added to each of the nodes in the list, while Cgi
12 is the

mutual coupling capacitance added in shunt to the pairs of nodes in the list.

For a single plane-pair geometry discretized with M rows and N columns, and if

SCi contains ri pairs of nodes, the ith capacitive gap correction can be expressed in

terms of the following equation:

Ycg,i = PiY
P

cg,iP
T

i (116)

where Y
P

cg,i is an MN ×MN block-diagonal matrix whose first 2× ri elements are

given by:
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ω




Cgi

. . .

Cgi


 (117)

with zeros elsewhere.

Pi is a MN ×MN permutation matrix. The entries of the permutation matrix

are determined by the node numbers in SCi. The row corresponding to the node

SCi(m,n) is given by e(m−1)+n, where e(m−1)+n is the (m−1)+nth row of the identity

matrix. The purpose of Pi is to permute the rows and columns of Y
P

cg,i such that Ycg,i

results in the correct connection of the capacitve gap correction. The other rows of

Pi are irrelevant since they will be multiplied with zeros.

Similarly, another list SLi is created, with four ordered node numbers per row of

the list. These four node numbers correspond to the node numbers of the cells on

parallel to and on either side of the slot. In the example, SLi contains 2 rows which

are:

SL1 =

(
7 13 8 14

8 14 9 15

)
(118)

The four nodes in each row of SLi are the nodes to which the inductive gap

correction elements are to be connected. For the same discretization of M rows and

N columns, with ti rows in SLi, the ith inductive gap correction can be expressed by

the following equation:

Ylg,i = QiY
P

lg,iQ
T

i (119)

Here, the first 2ti rows of Y
P

lg,i are block tri-diagonal and are given by:

1

jω




L
−1

gi −L
−1

gi

−L
−1

gi 2 ∗ L
−1

gi −L
−1

gi

. . . . . . . . .

−L
−1

gi L
−1

gi




(120)

with zeros elsewhere.
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Figure 70. Multilayer geometry with multiple slots.

Qi is a MN ×MN permutation matrix, the entries of which are determined by

the node numbers in SLi. The row corresponding to the node SLi(m, n) is given by

e(m−1)+n, which has been defined earlier.

Thus, the final admittance matrix including the gap corrections can be written as

YPGA = Y +
k∑

i=1

(
Ycg,i + Ylg,i

)
(121)

where Y is the admittance matrix from M-FDM given in (46). Y in (46) is now

replaced with YPGA.

4.2.4 Formulation for Multiple Plane-Pairs

The cross-section of a multiple plane-pair geometry containing several arbitrary slots

is shown in Figure 70. The formulation to obtain the circuit elements for modeling

the gap involves the following steps. For each cross-section, the locations of all the

slots are found. Each of these slots can be locally analyzed, thus reducing the size of

the problem that needs to be considered. This is illustrated in Figure 70, where the
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three slots are shown with their local references, each of which is a problem domain

for a 2D-electrostatic simulation.

The width of the domain for each of these sub-problems is made large enough such

that the electric fields between the planes, far away from the slot is z− dominant.

This allows for the problem domain to be terminated in the lateral (x) directions

using an open circuit (PMC) boundary.

The 2D capacitance and inductance matrices, C2D and L2D, for each of these

domains can be obtained as before. However, the parallel plate capacitance and

inductance matrices, are obtained with respect to the local sub-problem, and are

denoted as C ′
pp and L′

pp, respectively.

The equations for the gap augmentation elements are:

C ′
g = C2D − C ′

pp (122)

L′
g =

[
L
−1

2D − L′−1

pp

]−1

(123)

The elements represented by C ′
g and L′

g are obtained with reference to a local

ground. While adding these elements to the admittance matrix, this local ground

node is shifted to the system ground, using the procedure described in Section 1.6.

4.2.5 Computational Complexity

There are two overheads involved in the use of the PGA method. First, the calculation

of the PGA elements requires electrostatic simulations. Second, the inclusion of the

PGA elements increases the number of non-zeros of the system admittance matrix.

The first overhead is addressed by the fact that the PGA elements are frequency

independant, and involve a relatively low cost 2D simulation. The second overhead

needs to be considered in more detail. The bandwidth of the admittance matrix of a

two layer problem discretized with N cells, without the addition of the PGA elements,

is
√

N . In the natural ordering scheme that is employed in M-FDM, cell (i, j) has
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the node number
√

N(j − 1) + i. Circuit elements are added that couple cell (i, j)

with cells (i± 1, j) and (i, j ± 1). Thus, the maximum bandwidth in the admittance

matrix is
√

N .

However, with the addition of the PGA elements, cell (i, j) can be coupled, in the

worst case, to cell (i, mj) where m is the number of cells required to discretize the

slot. If S is the width of the slot, and w is the discretization width,

m =
S

w
(124)

Thus, the computational complexity with the addition of the PGA models in-

creases from O(N2) to O(m2N2), using a banded matrix solver, which is essentially

the worst case. A mitigating factor is that m is likely to be small, given that PGA

models need not be included for wide slots (slot width > 10× substrate height). In

typical cases, m lies between 1 and 5. Recalling that with the nested dissection re-

ordering algorithm, the computational complexity is O(N1.5) for unaugmented case.

This provides a lower bound.

4.3 Test Cases and Results
4.3.1 EBG Structure

The insertion loss results for the AI-EBG of Figure 65(a) are shown in Figure 71.

The results from M-FDM are compared with results from a commectially available

2.5D Method-of-Moments (MoM) based solver and from measurements. Again, the

application of the fringe and gap corrections clearly improves accuracy. In terms of

simulation time, M-FDM was about 2700X faster than the commercial tool.

4.3.2 RF Type Examples

The PGA method uses significant insight from transmission line theory. One impor-

tant step in the validation of the PGA method is to check the results obtained for

structures which are commonly seen in RF circuits, such as coupled lines. The first

example of this type that is being considered is a pair of coupled lines intersecting in
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Figure 71. Insertion loss (dB) for structure in Figure 65(a) with fringe and gap models.

Figure 72. Geometry of coupled lines with a bend.

101



0 2 4 6 8 10
−25

−20

−15

−10

−5

0

Frequency (GHz)

S 11
 (

dB
)

 

 

M−FDM+PGA
Commercial 2.5D MoM

Figure 73. Return loss of structure in Figure 72.

a 90 degree bend, along wih a change in width of the lines, as shown in Figure 72.

The return loss and insertion loss results obtained from the M-FDM + PGA method

are plotted in Figures 73 and 74, and show good correlation to EM simulations. A

critical difference between the PGA method and comparable equivalent circuit-based

methods used in popular RF-oriented circuit simulators, such as ADS is that there is

no requirement to to use a model for the bend.

The second RF-type example is a pair of coupled tapered lines. The reason for

this choice is that the gap models need to be applicable over a wide range of gap

separations. In this example, shown in Figure 75, the gap spacing varies from 0.3

mm (equal to the height of the substrate) all the way upto 5.4 mm (18 times the

height of the substrate). The return loss and insertion loss are plotted in Figures 76

and 77. The M-FDM + PGA method shows good correlation to the results from the

commercial MoM simulator.

4.3.3 Mixed Signal Board

Another test case is that of a mixed signal board with split planes separating the

digital module with an FPGA and an RF transceiver module. The board layout is
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Figure 74. Insertion loss of structure in Figure 72.

Figure 75. Geometry of coupled tapered lines.
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Figure 76. Return loss of structure in Figure 75.
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Figure 77. Insertion loss of structure in Figure 75.
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Figure 78. Insertion loss of structure in Figure 62.

shown in Figure 78(a). The dielectric thickness is 200 µm. Ports 1 and 2 are placed

at the location of the FPGA and the RF transceiver respectively. Noise generated by

the FPGA can couple through the PDN and cause degradation in the performance of

the RF module. From the insertion loss result shown in Figure 78(b), it can be seen

that significant coupling occurs at 2.1, 2.8, 3.5 and 5 GHz. Also, it can be seen from

Figure 78(b) that the results from M-FDM and the commercial MoM tool are well

correlated. The time per frequency sample for M-FDM was 3s as compared to 340s

for the commercial tool, which represents a speed up of 113X.

4.3.4 Multilayered Examples

Three variations of a slot running through a 20mm× 20mm multilayer package have

been considered in Figure 79. Figures 79(a) - 79(c) show the cross-sections of the

examples, also showing the location of the slot. The layout of the layer containing

the slot is shown in Figure 79(d), along with the location of the ports.

In the first case, shown in Figure 79(a), the slot runs on the top layer, and is

treated as a microstrip-type slot. The insertion loss of between the ports is shown

in Figure 80, and has been compared with a commercially available FEM-based tool,
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Figure 79. Cross-section (a)Microstrip type (b)Symmetric stripline (c)Asymmetric
stripline, and (d)Layout.

and shows good correlation.

The slot is next placed on the middle layer, sandwiched symmetrically between

two solid planes, as shown in Figure 79(b). The second port is now relocated between

layers Power2 and Ground, and the insertion loss between the ports has been plotted

in Figure 81. The results from M-FDM + PGA compare well with the results from

the commercial tool.

An important test of the proposed M-FDM + PGA scheme is for the hypothetical

case where the dielectric height between layers Power2 and Ground is made large (say

1m), and filled with air. For this case, shown in Figure 79(c), the insertion loss should

approximate the results shown in Figure 80. This is what is observed, as shown in

Figure 84.

The final multilayer test case contains overlapping slots on the top two layers. The

cross-section and layout of the structure are shown in Figures 83. The magnitude of

the insertion loss is shown in Figure 84, and shows good correlation as compared to

the commercially available tool.
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Figure 80. Insertion loss of structure in Figure 79(a).
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Figure 81. Insertion loss of structure in Figure 79(b).
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Figure 82. Insertion loss of structure in Figure 79(c).

Figure 83. Test case containing overlapping slots (a) Cross-section (b)Layout.
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Figure 84. Insertion loss of structure in Figure 83.

4.3.5 Comparisons with Measurments

Test vehicles to validate the PGA method were manufactured by Panasonic. These

test vehicles contained two metal layers with a solid ground plane, and a split plane

on the top layer. The two types of test vehicles are shown in Figures 85(a) and 85(b),

labeled Type 1 and Type 2, respectively.

The Type 1 structures had a slot that separated the top layer into two identical,

rectangular, regions; The Type 2 structure, contained x− and y− directed slots.

Three different slot widths were also fabricated in each type; these widths were 100

um, 200 um and 300 um.

The model to hardware correlation for the insertion loss for the resulting 3 varia-

tions of the Type 1 and Type 2 test vehicles are shown in Figures 86. As can be seen

from the results, there is good model to hardware correlation.

4.4 Conclusions

As more and more devices are made multifunctional, it is necessary to design power

distribution networks that can support multiple voltage levels. The most common
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Figure 85. Manufactured test vehicles with variable slot widths (a)Type 1 and (b)Type
2.

method of isolating these multiple voltage domains is by the use of slots. These

slots, while providing DC isolation, may not be able to isolate the voltage domains

from high frequency noise coupling. To model this effect using M-FDM, the PGA

method has been proposed. The method only couples unit cells adjacent to the slot.

The resultant model provides a sufficient level of accuracy, as demonstrated by the

various simulation and measurement results.
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Figure 86. Insertion loss of structure in Figure 85; Type 1 with slot width (a)100 µm
(b)200 µm (c)300 µm; and Type 2 with slot width (a)100 µm (b)200 µm (c)300 µm.
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CHAPTER 5

MODELING TRANSMISSION LINES WITH NON-IDEAL
POWER/GROUND PLANES USING M-FDM

5.1 Introduction

Transmission structures on package are electrically long. Hence distributed effects

such as delay need to be accounted for. Also, the return paths for the traces on package

are the power and ground planes. It is incorrect to simply obtain the frequency

response of the transmission line under the assumption that all of these return paths

are at the same potential. For example, for a stripline sandwiched between a power

and ground pair, the two return paths are not DC connected. Hence, it is essential

to analyze the transmission line in the context of its non-ideal return paths.

5.1.1 Non-ideality of Return Paths

In Figure 87, a stripline is shown between two reference planes. While in general it is

assumed that the reference planes are at the same potential, this may not necessarily

be the case. In this figure, the potentials of the two reference planes are the same

because of the via wall shorting the two references together. Thus, this is just a two

conductor problem, and only one TEM mode of propagation exists. This stripline

mode is visualized in the figure.

Shorting the two references is viable only if the planes are assigned the same DC

potential. For example, the two planes both need to be assigned ground or VDD. If

Figure 87. Ideal stripline mode.
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Figure 88. Parallel plate mode of propagation in stripline with non-ideal references.

one is VDD and the other is ground, the situation results in a three conductor problem,

as shown in Figure 88. In this case, in addition to the aforementioned stripline mode,

another TEM mode called the parallel plate mode, visualized in Figure 88 may also

propagate.

In general, for an m+1 conductor system, m TEM or quasi-TEM modes can exist.

This can lead to significant signal integrity problems in high speed digital systems.

This is because any actual wave propagating in the system can be expressed as a sum

of the possible propagating modes. For the stripline in Figure 88, the returns currents

of the stripline are distributed between the top and bottom planes. Since these planes

are not forced to be at the same potential, this can excite a parallel-plate mode. This

is called mode conversion, and in this case, mode conversion leads to ground bounce.

Vice-versa, SSN in the system causes ground bounce, and this ground-bounce can be

coupled to the stripline, corrupting the integrity of the signals in the system. Thus,

simple transmission line models which do not model the effect of the non-ideality

of the return paths will lead to incorrect simulation results, and are inadequate for

performing a system level simulation.

The general method for solving this problem involves the theory of modal de-

composition, which was discussed earlier, in Section 1.7. The contribution of this

work is the extension of prior work [35][17][36][37][38][39] to allow the integration of

transmission lines with M-FDM.
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Figure 89. Four port transmission line model.

5.1.2 Prior Work with Transmission Line Referencing

The following transmission line configurations are the most common, on board, pack-

age and chip:

1. Microstrip

2. Stripline

3. Coplanar waveguide

In the past, an intuitive understanding of the return currents have been used to

obtain equivalent circuit models [17]. These circuit models rely on a 4-port model of

the transmission line. The input and output ports of the line are extended with two

more ports, the input and output references as shown in Figure 89.

Models for the signal line referenced to the non-ideal power/ground planes are

shown in Figure 90. The simplest case is that of the microstrip, shown in Figure

90(a). All of the return currents of the microstrip flow on the plane immediately

below it. Thus, the reference ports of the transmission line model of the microstrip

are connected to the nodes on the plane underneath the line, as shown in the figure.

However, for the stripline (Figure 90(b)), some of the return currents flow on

the top reference, while the rest flows on the bottom. Thus the equivalent circuit

representation is constructed by modeling the stripline by two transmission lines,

whose input and output signal ports are shorted. The reference nodes of one of

the transmission lines are connected to nodes on the top plane, while the reference

nodes of the other are connected to nodes on the bottom plane (which in this case is
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Figure 90. Transmission line models for (a) Microstrip (b) Stripline (c) Conductor-
backed CPW with shorted side-grounds.
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Figure 91. Transmission line models conductor backed CPW-line with shorted side
grounds.

assumed to be an ideal ground). For the stripline, it is possible to analytically obtain

the characteristic impedance of the two transmission lines in the model simply based

on the ratio of the dielectric heights in the cross-section.

A conductor backed CPW line with shorted side grounds is shown in Figure 90(c).

As in the stripline case, this configuration also consists of a signal conductor and two

reference conductors, constituting a three conductor system. The two side grounds

are grouped together and considered to be one conductor because they are shorted.

Therefore, it is intuitive to consider that the return currents would divide between the

bottom conductor and the side grounds. Hence, it should be possible to construct a

model for this case which is identical in form to the model for the stripline. However,

there are no analytical approaches available to obtain the characteristics of the two

transmission lines in the model. The work in [40] requires a 2D-simulation to obtain

a model equivalent to that shown in the figure.

If the side-grounds of the CPW line are not shorted, as is shown in Figure 91,

then the resulting system contains four conductors, with three possible propagating

modes. It may be possible, therefore, to obtain an equivalent circuit representation
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consisting of three transmission lines, each referenced to one of the three grounds.

The derivation of this model is one of the goals of this chapter. The contributions of

this chapter are the following:

1. Derivation of the equivalent circuit representation of the four conductor CPW-

line with unconnected side-grounds.

2. Formulation for obtaining a model for different transmission line configurations

and their non-ideal references, where the reference planes are modeled with

M-FDM.

The rest of this chapter is organized as follows. A brief overview of the SI-PI

co-simulation flow is discussed in Section 5.2. The equivalent network models for

microstrip, stripline and CPW transmission line structures obtained using modal

decomposition are described in Section 5.3. The integration of these equivalent circuit

models and M-FDM is detailed in Section 5.5. This integrated method is applied

to several test cases, the results of which are presented in Section 5.6, followed by

conclusion in Section 5.7.

5.2 Simulation Flow

The methodology proposed in this thesis for the integration of the signal distribution

network (SDN) and the PDN (shown in Figure 92) provides an efficient and reliable

way of analyzing SiP structures by using novel modeling and simulation techniques.

The initial steps in the methodology (shown using shaded boxes) are the same as those

shown in Figure 16 and use existing techniques for layout extraction and interconnect

modeling. However, the proposed methodology uses M-FDM for modeling the PDN.

Modal decomposition is used for the integration of transmission line response with the

PDN response from M-FDM. This ensures that all the coupling between the SDN and

the PDN is accurately captured in the simulation. The integrated system response
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Figure 92. Proposed methodology for system level SI-PI analysis.
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can then be transformed to obtain a reduced-order model of the system. This reduced

order model captures all the system parasitics and can be efficient simulated in the

time domain using signal flow graphs. The signal flow graph formulation includes a

delay extraction technique that enables the enforcement of causality on the transient

simulation [41][42][43].

Since separate analyses of the SDN and the PDN fails to account for the coupling

between the two modules, the two responses need to be integrated to perform an ac-

curate system level analysis. This integration can be performed using the admittance

matrices of the two modules along with the stamp rule [44]. The process involves

conversion of the SDN response into its equivalent model which is then stamped onto

the admittance matrix of the PDN.

5.3 Modal Decomposition

All three types of configurations have similar modal representations. For a three

conductor system consisting of two parallel plates (power/ground) and a signal con-

ductor, there are two possible (quasi) TEM modes. Intuitively, one of these TEM

modes is the parallel-plate mode. The other mode is the mode that propagates when

the signal conductor sees ideal returns. For example, for the stripline case, the two

TEM modes are the parallel plate mode and the stripline mode.

The first mode, the parallel-plate mode, is defined by no current in the signal line.

All the current flows on one of the planes and returns on the other. In the second

mode, the signal line sees ideal references. This implies that the planes are at the

same potential. Setting the bottom plane to be the reference, it can be seen that

I(z) =

(
Ip(z)

Is(z)

)
= TIIm(z) =

(
1 a

0 b

)(
Ipar(z)

Isig(z)

)
(125)

V(z) =

(
Vp(z)

Vs(z)

)
= TVVm(z) =

(
c 0

d 1

)(
Vpar(z)

Vsig(z)

)
(126)

where the subscripts p and s represent the line parameters of the top plane and the
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signal line, respectively. The subscripts par and sig represent the modal parameters

of the top plane and the signal line.

Using the formulation from ([1]), it can be shown that to diagonalize the per unit

length inductance and capacitance matrices, the following relations hold:

a = −Lsp

Lpp

b (127)

d =
Lsp

Lpp

c (128)

These terms are obtained from the per-unit-length inductance matrix, L.

L =

(
Lpp Lsp

Lsp Lss

)
(129)

Lpp is the self-inductance of the top plane, while Lsp is the mutual-inductance

between the signal line and the top plane. Defining

k = −Lsp

Lpp

(130)

, and scaling the modal transformation matrices,

TV(z) =

(
1 0

−k 1

)
(131)

TI(z) =

(
1 k

0 1

)
(132)

The equivalent 4-port model of the signal line can be obtained as shown in Figure

93. Zc
par and Zc

sig are the characteristic impedances obtained from the modal per-unit-

length impedance and admittance matrices Zm and Ym, respectively. This electrical

model can be derived in terms of the indefinite admittance matrix.

I =




I i
p

Io
p

I i
s

Io
s


 =




1 0 k 0

0 1 0 k

0 0 1 0

0 0 0 1







I i
par

Io
par

I i
sig

Io
sig


 (133)
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Figure 93. 4-port electrical model of signal line.




I i
par

Io
par

I i
sig

Io
sig


 =

(
Ypar 0

0 Ysig

)



1 0 0 0

0 1 0 0

k 0 1 0

0 k 0 1







V i
p

V o
p

V i
s

V o
s


 (134)

Substituting (134) in (133),




I i
p

Io
p

I i
s

Io
s


 =

(
k2Ysig + Ypar kYsig

kYsig Ysig

)



V i
p

V o
p

V i
s

V o
s


 (135)

To summarize the formulation leading to the above equation, the response of the

plane Ypar is obtained using M-FDM. Ysig is obtained from the modal per-unit-

length matrices Zm and Ym. The transformation matrices TV and TI are obtained

from the actual per-unit-length inductance matrix L, which is in turn obtained from

the 2D electrostatic solver described in Section 3.2.2.

5.3.1 Microstrip

The microstrip line configuration is the simplest to analyze because the power plane

acts as a shield between the fields associated with the microstrip line and between

the parallel plate conductors. The resultant inductance matrix satisfies the following

relationship:

Lsp ' Lpp (136)
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Figure 94. (a) Two-port model of microstrip over PDN (b) Equivalent four-port model
with common ground reference.

where Lsp and Lpp are defined in (129). Thus, from (130), k = −1.

Hence, the indefinite admittance matrix representation for the microstrip config-

uration is given by:




I i
p

Io
p

I i
s

Io
s


 =

(
Ysig + Ypar −Ysig

−Ysig Ysig

)



V i
p

V o
p

V i
s

V o
s


 (137)

Interestingly, (137) can also be obtained by changing the reference plane of the

microstrip line from the top-plane to the the bottom plane, as described in Section

1.6. In Figure 94(a), the two-port model of the microstrip line over a PDN is shown,

with the combined four-port illustrated in Figure 94(b). The admittance matrix for

the four-port is identical to admittance matrix derived using modal decomposition in

(137).

5.3.2 Stripline

In the case of a stripline, the current on the signal line excites both the transmission

line and parallel-plate modes. k can be obtained from the per-unit-length inductance

matrix; However [35] has shown that the ratio Lsp

Lpp
can be obtained simply from

geometrical parameters.

Lsp

Lpp

=
h1

h1 + h2
(138)

where h1 and h2 are the substrate heights, as shown in Figure 95(a). This is true,

however, only when the metal thickness is negligible when compared to the substrate
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Figure 95. (a) 3D schematic of a stripline (b) Equivalent model.

Figure 96. Conductor backed co-planar waveguide cross section.

heights h1 and h2.

Substituting (138) in (135) leads to an admittance matrix which can be exactly

represented in terms of the equivalent circuit model shown in Figure 95(b)[35].

5.3.3 Conductor Backed Co-planar Waveguide

The co-planar waveguide (CPW) structure is often used to reduce the coupling of

noise in high speed bus structures. Also, due to high wiring density, it often becomes

essential to route signal lines on power or ground layers. The cross-section of the

CPW line is shown in Figure 96.

The starting point for the derivation of the equivalent circuit model for the CPW
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Figure 97. Four port equivalent circuit model for CPW line with shorted co-planar
references.

line is (135). The work done in [40] assumes that the co-planar reference conductors

(i.e. Power) are DC connected and are bridged at either end of the CPW line to

ensure that there is no AC potential difference between them. However, this may not

be the case. In such a case, it appears that the three conductor MTL equations that

have been dealt with thus far may be insufficient, and the problem must be treated

as a four conductor MTL. However, given the symmetry of the problem, a six-port

model can be obtained.

The admittance matrix in (135) can be exactly represented in terms of the equiv-

alent circuit shown in Figure 97. This model assumes that the co-planar references

for the CPW line are at the same AC potential. From symmetry, the six-port model

for the case of non-ideal co-planar returns can be constructed as shown in Figure 98.

5.3.4 Summary of Modal Decoposition Techniques

The equivalent circuit representation for the various transmission line configurations

are controlled by the value of the coupling factor k. Figure 99 summarizes the results

obtained thus far. The simplest cases are for the microstrip and stripline, where

the value of k can be obtained analytically. For cases where the substrate may
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Figure 98. Six port equivalent circuit model for CPW line.
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Figure 99. Summary of modal decomposition methods applied to different transmission-
line configurations.
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be inhomogeneous, however, the per-unit-length parameters of the line have to be

calculated using a 2D electrostatic solver, like the formulation discussed in Section

3.2.2.

5.4 Port Reduction

Once the integration is complete, the line terminations and the other lumped com-

ponents in the system can be added to the overall system matrix using the stamp

rule. Since the transient response is often required only at particular locations in

the system, the overall system matrix can be reduced to include ports only at those

locations where the system is being excited or probed.

For a m-port overall system matrix that needs to be reduced to n (external) ports,

the m-port Y-matrix is reordered such that the desired n-port locations appear in the

top left corner of the matrix. This is shown in Equation 139 where Yee and Yii refer

to the internal and external (required) ports respectively.




Y11 . . . Ym1

...
. . .

...

Y1m . . . Ymm


 →

(
[Yee]n×n [Yei]n×(m−n)

[Yie](m−n)×n [Yii](m−n)×(m−n)

)
(139)

From this reordered Y-matrix, the reduced n-port representation of the system is

obtained using the equation:

[Y ]n×n = Yee + Yei

(−Y −1
ii Yie

)
(140)

5.5 Implementation Using M-FDM

The flowchart for the integration of transmission lines with M-FDM is shown in Figure

100. The initial steps are simply to mesh the geometry of the power/ground planes,

and build the admittance matrix using M-FDM.

Next each transmission line in the geometry is broken up into segments which can

be considered ideal, that is, the cross-section of the of the stack-up perpendicular to
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Figure 100. Flowchart for integrating transmission lines with M-FDM.

Figure 101. Stripline to embedded microstrip transition.

the direction of propagation must be the same within any given segment. This is

required, for example, if one physical interconnect is routed as a stripline, as shown

in Figure 101, but has a slot that removes a portion of the top plane.

The section of the line that is underneath the slot will have the characteristics

of an embedded microstrip, and the location of the slot in the top plane is called a

return path discontinuity or RPD. This RPD is important because the return currents

for the stripline segments in the top plane will need to find another path across the

discontinuity.
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After obtaining the N ×N admittance matrix Y from M-FDM, and if the inter-

connects in the structure can be segmented into q segments requiring P additional

nodes, Y is expanded to be (N + P ) × (N + P ), where the nodes from 1 − P are

allocated for the transmission line segments, and the nodes (P +1)− (P +N) contain

the original N ×N admittance matrix of the PDN.

Element stamps are created for each of the transmission line segments. Each

segment has two nodes representing the input and output nodes, and can have r

nodes for the references. For microstrip, stripline, CPW with shorted side-grounds,

and CPW with unconnected side-grounds, r can be 2, 4, 4 and 6, respectively.

The r + 2-port admittance stamp for each transmission line segment is added to

the overall system matrix by inspection. For the example of a microstrip segment

connected to the nodes n1 and n2 with reference nodes n3 and n4, the element stamp

is given by the matrix in (137) after removal of Ypar term from the second row and

second column. Thus, using the stamp rule discussed in Section 1.6, the combined

admittance matrix is given by


...
In1
...

In2
...

In3
...

In4
...




=




Y sig
1,1 Y sig

1,2 −Y sig
1,1 −Y sig

1,1

Y sig
2,1 Y sig

2,2 −Y sig
2,1 −Y sig

2,2

−Y sig
1,1 −Y sig

1,2 Y sig
1,1 + Y par

n1,n1 Y sig
1,2 + Y par

n1,n2

−Y sig
2,1 −Y sig

2,2 Y sig
2,1 + Y par

n2,n1 Y sig
2,2 + Y par

n2,n2







...
Vn1
...

Vn2
...

Vn3
...

Vn4
...




(141)

5.6 Test Cases and Results
5.6.1 Mixed Signal Board

The methodology described in prior sections has been implemented in a CAD tool.

Simulations were performed to compare the methodology against full-wave simula-

tions and measurements, and to demonstrate the scalability of the method. All sim-

ulations were performed on an Intel Xeon workstation with a 3.2 GHz processor and
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Figure 102. (a) Mixed signal board with transmission line traversing a slot (b) Return
loss results - Ideal Microstrip (c) Insertion loss results - Ideal Microstrip (d) Return
loss results (e) Insertion loss results.
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3.5 GB of RAM. Full-wave simulations were performed with the method-of-moments

based solver, Sonnet.

A mixed signal board of size 60mm × 34.8 mm is shown in Figure 102(a). A mi-

crostrip transmission line originates from an FPGA located near port 1, and connects

to a low noise amplifier (LNA) at port 2. The microstrip, which is of length 34 mm,

traverses over the slot separating the power islands of the two modules. The dielectric

height between the power/ground planes was 300 µm, and between the signal and

power planes is 200 µm. The dielectric was FR-4 with εr = 4.4.

This example was simulated in Sonnet as well as M-FDM using a cell size of 0.3mm.

In M-FDM, the PDN was simulated first. The transmission line was broken into three

segments, with the first and last segment represented by a microstrip referenced to

the power layer. The middle segment represents the section of the microstrip that

is present above the slot and is hence reference to the ground layer. The results

obtained from simulation are shown in Figures 102(b) - (e). Figures 102(b) and (c)

show the case when the microstrip is assumed to be ideal. In this case, there are

no discontinuities, and since the characteristic impedance is ∼ 54Ω, the dB(S12) is

very close to zero. However, when the microstrip is routed over the slot, the obtained

return and insertion loss results are shown in Figures 102(d) and (e). In this case,

the insertion loss is significantly higher.

As can be seen from the return loss and the insertion loss results, we are able to get

good correlation between Sonnet and M-FDM. The Sonnet simulations required 800s

per frequency point analyzed, while in M-FDM required 3.2s per frequency point.

This represents a speedup of about 200X.

5.6.2 Microstrip Line Traversing a Slot

A 0.4 mm wide microstrip line traversing a 2.5 mm slot in the power plane is shown

in Figure 103. The transmission line in this case is assumed to be an interconnect

driven by a 533 MHz DDR II driver. In this case each power island is of size 125 mm
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Figure 103. Top view of test case. Microstrip interconnects ports 1 and 2.

× 100 mm. The dielectric height between the microstrip line and the power plane

is 0.2 mm. The dielectric height between the power and ground planes is 1 mm. A

simple rectangular geometry is chosen since it is possible to analytically compute the

resonant frequencies using the formula

fcm,n =
1

2π
√

µε

√(mπ

a

)2

+
(nπ

b

)2

(142)

where a and b represent the length and width of the rectangular geometry. Given a

dielectric constant, εr, of 4.4, the first resonance occurs at 570 MHz. Figure 104 shows

the insertion loss of the transmission line. It can clearly be seen that the resonance

of the planes gives rise to significant insertion loss (-8dB). A method that can be

used to suppress this resonance is by using decoupling capacitors with a self resonant

frequency of around 570 MHz. Two such capacitors are placed at locations close to
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Figure 104. Insertion loss results for structure in Figure 103.

the gap as shown in Figure 103. The parasitic series resistance of the capacitor was

10 mΩ, and its series inductance was around 0.8 nH. It can be seen from Figure 104

that after placement of the decaps, the insertion loss is significantly improved. The

simulation time per frequency point using M-FDM was 100 ms, demonstrating how

the method can be employed to efficiently co-simulate SI/PI problems.

5.6.3 Microprocessor Package

Another example is considered to demonstrate the importance of capturing the inter-

action between signal nets and the PDN. In this example, two uncoupled microstrip

lines are routed over a patterned PDN layer. The central power island is assigned

a DC voltage of Vdd, while the outer plane is connected to the lower Vss layer by

means of 588 vias. The geometry and cross section of this example is shown in Figure

105. The 100 µm wide signal lines are designed to be close to 50 Ω. However, due to

the transition over the slot separating the power islands, there is a return path dis-

continuity which causes the insertion loss of the the nets to deteriorate significantly,

as shown in Figure 106.

Further, switching activity along the signal lines can cause SSN to couple to the

PDN at several critical frequencies. In the following plots, a 1A A.C. noise source is
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Figure 105. (a) Top view of example showing locations of ports (b) Cross section.

placed at the location of the ports in the example to determine a 2D voltage distri-

bution. This provides a spatial distribution of noise“hot spots”. Figure 107(a) and

(b) show the voltage distribution at 2.4 GHz and 5.0 GHz respectively. These are

the 802.11 a/b/g frequencies. Switching noise sources with harmonics containing en-

ergy at these frequencies could critically affect performance of a mixed-signal system.

The locations of high noise voltage can be identified from the voltage distribution.

Further, decoupling capacitors can be placed at these locations to reduce SSN.

5.6.4 Microstrip Via Transition

To verify the accuracy of the proposed SI/PI co-simulation technique, a structure

containing a microstrip to microstrip via-transition was fabricated. The stack up of

the structure and its layout are shown in Figures 108(a) and 108(b). The line is
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Figure 106. Insertion loss (dB).

Figure 107. 2D voltage distribution plots. (a) 2.4 GHz (b) 5 GHz.

0.17mm wide and has a characteristic impedance of 50Ω, and has a total length of

30 mm. The two via transitions cause return path discontinuities (RPDs), the effects

of which can be seen in the insertion loss and the return loss of the line, shown in

Figures 109 and 110 respectively. The coupling between the line and the planes is

shown in Figure 111. As can be seen from all three figures, there is good correlation

between the simulated results and the measured data.

5.6.5 Stripline

The cross-section and layout of a test case containing a 0.2mm wide and 18mm long

trace sandwiched between a power/ground pair is shown in Figure s112(a) and (b),

respectively. This stripline in this case is symmetrically placed between the two
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Figure 108. (a) Cross-section and (b) layout of microstrip transition.

Figure 109. Return loss of microstrip transition shown in Figure 108.
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Figure 110. Insertion loss of microstrip transition shown in Figure 108.

Figure 111. Coupling to PDN for microstrip transition shown in Figure 108.
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Figure 112. (a) Cross-section and (b) layout of stripline.

planes; however, the reference planes are not AC shorted with decoupling capacitors,

which can cause parallel plate modes to be excited. This is clearly seen in Figure 113,

in which the return loss of the stripline with an asymmetric excitation (with reference

to power) are shown. The spikes at 3.6 GHz and 7.2 GHz clearly show the impact of

the parallel plate modes. The benchmark simulation was performed on a commercial

3D finite integration technique (FIT) - based simulator, and shows good agreement

with the M-FDM simulation.

5.6.6 CPW line

A 19 mm long, 0.36 mm wide conductor backed CPW line is shown in Figure 114.

This line has two unconnected side grounds. The substrate used was FR-4 with a

height of 0.4mm. Based on these dimensions, the line has a characteristic impedance

of approximately 50 Ω. From 2D simulations, the calculated value of k was -0.72289.

Simulations were performed in M-FDM using this value, and the return and insertion

loss results as compared to a commercial power integrity tool are shown in Figures
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Figure 114. (a) Layout and (b)Cross-section of CPW line.
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Figure 115. Return loss of structure in Figure 114.

115 and 116, showing good correlation.

5.7 Conclusion

The current in the signal lines return on the power and ground planes of the package.

In configurations such as the stripline or CPW, this can lead to excitation of cavity

modes in the power planes due to mode-conversion. These cavity modes appear as

plane bounce in addition to SSN. Also, plane bounce caused by SSN can couple to

the signal lines leading to signal integrity violations.

In this Chapter, modal decomposition based approaches have been used to in-

tegrate the response of signal lines in microstrip, stripline and CPW configurations

with the admittance matrix obtained from M-FDM.

The approach has been validated by comparing the simulation results from M-

FDM with commercial tools.
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CHAPTER 6

GENETIC ALGORITHM BASED OPTIMIZATION OF
DECOUPLING CAPACITOR PLACEMENT

6.1 Introduction

In the design of complex power distribution networks (PDN) with multiple power

islands, it is required that the PDN represents a low impedance as seen by the digital

modules. This is to reduce the simultaneous switching noise (SSN), generated due to

the switching activity of digital drivers. Typically this reduction in impedance is ac-

complished by placing decoupling capacitors between the power and ground planes of

a package or board. However, achieving wide-band decoupling requires the placement

of thousands of decoupling capacitors. This process requires a capacitor selection and

placement methodology.

6.1.1 Role of Decoupling Capacitors

A typical decoupling capacitor or a decap can be represented in terms of its capac-

itance value in series with its parasitic inductance and capacitance. The frequency

response of a capacitor resembles a V-shaped curve, which is a characteristic of a

series resonant circuit. At the frequency where the capacitive impedance cancels out

the inductive impedance, the resonant reaches its minimum impedance equal to its

parasitic effective series resistance.

This frequency is called the self resonant frequency, fsrf , given by (143). For

frequencies greater than the SRF, the decoupling capacitor behaves like an inductor.

fsrf =
1

2π
√

LC
(143)

where, L is the inductance of ESL and C is the capacitance of the capacitor. The

role of a decap is to provide a source of charge that can respond rapidly to the needs

of switching circuits on the chip.
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A switching system draws current from the power supply at multiple discrete

frequencies which are harmonics of the clock frequency. If the impedance seen by

the power supply terminals of drivers on chip is high at these frequencies, significant

amount of SSN will be generated.

The role of decoupling capacitors is to reduce the power supply impedance to below

a threshold, called the target impedance. Since decoupling capacitors are effective at

performing this role around their SRF, multiple decoupling capacitors, with various

SRFs may need to be placed.

6.1.2 Target Impedance

The number of capacitors required depends on the impedance level that must be

reached, and this impedance level is called the target impedance.

The target impedance can be calculated as [3]:

Ztar =
V dd× AllowedRipple

Current
(144)

In practice, the maximum allowed ripple is assumed to 5% of the power supply voltage

(V dd). The current term in the denominator is 1
2

the switching current in a clock

cycle, which is assumed to be the current in each clock edge. Thus Equation 144 can

be re-written as:

Ztar =
V dd× 5%

Id× 50%
(145)

The target impedance trend as semiconductor manufacturing progresses from one

technology node to the next has been shown in Table 3.

Table 3. Target impedance through technology nodes.
Year Feature Power Vdd Current Target

size(nm) (W) (V) (A) Impedance (mΩ)

2004 90 84 1.2 70 1.7

2007 65 103.6 0.9 115.11 0.7

2010 45 119 0.6 198.33 0.302
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With reduction in rise time, the power supply impedance must be suppressed

below the target impedance over an increased bandwidth. This implies that several

different capacitors must be used to cover the frequency range. Bulk capacitors are

used at low frequencies (1 kHz - 1 MHz), while ceramic surface mount and embedded

capacitors are used upto 1 GHz. At frequencies higher than 1 GHz, the package power

planes are used to provide decoupling. The frequency range over which a component

can be employed for the suppression of power supply noise is shown in Figure 117.

Figure 117. Typical PDN impedance profile due to interaction between various com-
ponents of PDN (Courtesy [1])

6.1.3 Placement of Decoupling Capacitors

A PDN consisting of multiple decoupling capacitors and power/ground planes tailored

to meet the target impedance requirements is challenging to design because of the

following reasons:

1. Parallel Resonances: The power/ground planes have multiple resonance

and anti-resonance points as discussed earlier. To reduce the impedance at one

of the anti-resonance points, a designer can place a decoupling capacitor with its

SRF close to this anti-resonance point. This can create additional impedance

maximums, however, due to parallel resonances created between the planes and
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the decap. Each decap can also interact with the others, leading to multiple

impedance maximums due to parallel resonances between decaps.

2. Proximity: A decap creates an impedance null at its SRF as seen by the

observation port only if it is placed close to the observation port. The radius of

the circle within which the noise voltage is damped 50% or more is defined as

Reff . This Reff is inversely proportional to frequency of operation [45].

3. Signal Integrity: Decaps may have to be placed to provide a path for the

return current of a transmission line at a return path discontinuity (RPD).

These include slots, via transitions, etc.

4. Number: A typical design may require thousands of decaps.

The solution space containing the values and locations of decoupling capacitors

is extremely large, and manual placement based on an exhaustive search of this so-

lution space is tedious. As a result, a stochastic search of design space is needed to

determine optimal placement of decoupling capacitors in a power delivery network.

This choice and placement of decoupling capacitors can be accomplished [18] using

an optimization engine based on a genetic algorithm (GA)[46]. The GA is applied to

search for the optimal locations of decoupling capacitors so as to minimize the input

and transfer impedances over a desired range of frequencies.

However, the work in [18] relies on a cavity model for obtaining the PDN response.

This is sufficient for simple rectangular two-layer geometries. However, for multilayer

irregular geometries, the cavity model is inefficient. An in-depth discussion of the

cavity method and its limitations can be found in Section 1.4.3.2.

6.2 Inclusion of Decoupling Capacitors in M-FDM

Decoupling capacitor are typically added to a system by populating the bare board

or package with surface mount discrete components, as shown in Figure 118. These
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Figure 118. Surface mount decoupling capacitor mounted on power/ground pair.

components can be added to the M-FDM model for the PDN as follows:

The following quantities are assumed to be known:

Zcap = ESR + jωL +
1

jωC
(146)

Zvia = Rvia + jωLvia (147)

where, ESR is the effective series resistance of the capacitor, and L, C are defined

in (143).

Lvia and Rvia are the self partial inductance of the via and its parasitic resistance,

respectively.

If the decap is added between the unit-cell nodes n1 and n2 (corresponding to the

pads) and the vias are connected between nodes n1 and ground, and nodes n2 and n3

on the power plane, Zcap and Zvia are added to the system matrix Y as follows:




...
In1
...

In2
...

In3
...




=




yn1,n1 + Z−1
via + Z−1

cap yn1,n2 − Z−1
cap

yn2,n1 − Z−1
cap yn2,n2 + Z−1

via + Z−1
cap yn2,n3 − Z−1

via

yn3,n2 − Z−1
via yn3,n3 + Z−via1







...
Vn1
...

Vn2
...

Vn3
...




(148)

6.3 Optimization using the Genetic Algorithm
6.3.1 Formulation

The first step in the GA-based engine is the representation of the data as a set of

‘genes’ that make up a ‘chromosome’. In this case, it is sufficient if the chromosome

represents a particular choice of decaps and its placement (x- and y-locations, as well
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as layer connectivity), with cost being an optional parameter. Hence, all the available

decaps can be arranged and indexed in order of their resonance frequency. It is critical

that the capacitors be arranged in order of their self resonance frequencies, as will

be explained later in this chapter. Hence, a chromosome representing a particular

decoupling solution is only dependant on the number of capacitors being placed.

The general flowchart of the optimization process is shown in Figure 119. The

inputs to the algorithm are 1. The package or board layout, 2. The target impedance

and the bandwidth, 3. The number of decaps to place, and 4. A library of SMD- and

embedded-decaps. Other algorithm specific inputs include the size of the population

(N), the probability that crossover (pc) and mutations (pm) occur and the maximum

number of optimization iterations. Given these inputs, the engine generates a ran-

dom initial population, with decoupling capacitors chosen from the library, and with

random locations on the board or package.

Each of the potential solutions are evaluated using the M-FDM engine for their

Z-parameters at multiple noise source locations. The fitness of the ith solution has

been defined as

fi =

Nport∑
j=1

Nfreq∑

k=1

(w1[Ztar,j − Zj,j(k)] + w2[Ztar,j > Zj,j(k)]) (149)

where w1 and w2 are weights chosen based on application, Nport is the total number

of noise sources at which the target impedance criterion must be met and Nfreq is

the total number of frequency points in the simulation. Typically Nfreq is chosen

to adequately cover the frequency range. Ztar,j is the target impedance spec at the

jth port, and Zm,n(k) is the (m,n) entry of the Z-matrix at the kth frequency point.

Also, the logical operation in Equation 149 returns 1 if the condition is met, and 0

otherwise. An additional input to the fitness function may be cost of the capacitors

used.

At this stage, the population is sorted in order of their fitness, and the best solution
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is checked to see if it satisfies the target impedance at all ports and at all frequencies,

in which case the algorithm terminates successfully. Otherwise, the crossover and

mutation steps are carried out.

A pair of individuals, parents, in the population are chosen. The key idea here

is that the fitness of a solution is directly related to the probability that it will be

selected as a parent. This selection pressure leads to cumulative improvement in the

fitness of solutions over generations.

In the crossover phase, the chromosomes of the parent solutions are mixed together

at a rate determined by the crossover rate, pc. Essentially, a new solution is created

by copying a portion of the solution from each parent, as shown in Figure 120. This

is performed iteratively until a new population is generated.

This new population is now subjected to mutation. By mutation, small random

changes are made to each solution at the mutation rate, pm. It is critical that these

changes be small, as the probability of the solution improving reduces with the magni-

tude of the mutation. Hence, a mutation to a particular decap will result in choosing

a new decap which resonates at a slightly higher or lower frequency. Hence, the li-

brary of decaps is indexed according to its SRF. At this step, a new generation has

been created and the algorithm goes back to the selection phase.

A few of the best solutions are preserved intact (elitism,[46]) over all iterations to

prevent the solutions from becoming worse over generations.

Termination occurs when the GA converges to a solution that satisfies the target

impedance requirements. However, in some cases, there may be no improvement in

fitness, whereupon the algorithm is terminated, and may have to be run again with

different input parameters.

6.3.2 Convergence

The GA is not guaranteed to converge to the best or most optimal solution. However,

it is guaranteed to find solutions which are atleast as good (in terms of fitness) as the
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Figure 119. The flow of the GA based optimizer.
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Figure 120. Schematic Illustration of Crossover and Mutation.
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best solution in the current population.

The rapid convergence of the optimizer is strongly dependant on the choice of

parameters such as the crossover and mutation rates, the population size, and the

fitness function.

In this thesis, these parameters have been fixed to empirically determined val-

ues. However, the work in [47] has improved on the methods here by analyzing the

impact of different fitness functions and initial non-random design driven capacitor

placements.

6.3.3 Decoupling Capacitor Library

The decoupling capacitors used by the GA are listed in Table 4.

6.4 Test Cases and Results

All simulations were performed on a Intel dual-processor, 3GHz Xeon Workstation

with 3 GB of RAM. The crossover rate was chosen to be 0.5 (i.e., 50% of the solutions

that form the next generation will be created by crossover). The mutation rate

was 0.1. This implies that each character in the chromosome has a 10% chance of

undergoing a mutation. The maximum number of iterations was 100.

6.4.1 Test Case 1

The first example is a simple three layer package showing a transmission line traversing

a slot in the power plane. The slot introduces a return path discontinuity as well as

an impedance discontinuity. The stack up and the geometry are shown in Figure 103.

The insertion loss of the transmission line is shown in Figure 121(a). Also, assuming

that transmission line is terminated in digital modules, there will be a need to reduce

the impedance looking into the PDN. The impedance profile at the two ports between

the power and ground plane (identical, due to symmetry) is shown in Figure 121(b).

The optimizer was required to meet a target impedance of 500 mΩ, using fewer than
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Table 4. Library of decoupling capacitors (Courtesy [1]).

Cap ESR ESL SRF

mΩ nH (GHz)

27 pF 850 0.4 1.5315

33 700 0.4 1.3853

130 373.4 0.458 0.6523

174.4 313.1 0.509 0.5342

207.1 243.1 0.468 0.5112

304.7 148.6 0.413 0.4487

511.4 139.8 0.4 0.3519

598.5 120.0 0.432 0.3137

1.0 nF 75.0 0.370 0.2616

2.2 62.1 0.426 0.1644

2.9 203.8 0.533 0.1280

4.2 141.1 0.523 0.1074

8.2 88.9 0.519 0.0771

19.8 44.3 0.572 0.0473

41.1 25.7 0.435 0.0376

83 19.9 0.416 0.0271

179 15.9 0.548 0.0161

379 14.1 0.543 0.0111

0.81 uF 9.8 0.485 0.0080

1.93 6.7 0.686 0.0044

3.86 4.8 0.704 0.0031

7.87 5.5 0.876 0.0019

21.2 2.7 1.628 0.0009

81.2 2.5 2.834 0.0003

10 SMD capacitors, chosen from a library of 40 capacitors with an SRF ranging from

50 MHz upto 1 GHz. The parasitics of the SMD capacitors were included in the

library. The optimizer converged in 16 iterations and with 9 decaps. The simulation

required 8000 nodes, and the simulation time per frequency point in M-FDM was 140

ms (total time was 18 minutes). The top view of the placement is shown in Figure

122.

The optimized impedance profile is shown in Figure 123(b). The capacitor place-

ment is asymmetric as seen by the ports, leading to differing impedance responses at
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Figure 121. (a) Insertion loss of transmission line, and (b) Impedance looking into PDN
at port locations in Figure 103.

Figure 122. Top View of Optimized Capacitor Placement.

153



Figure 123. (a) Insertion loss of transmission line, and (b) Impedance looking into PDN
at port locations in Figure 122.

the two ports. The impedance has been reduced from a maximum of 120 Ω to under

500 mΩ. The optimized design, while meeting the target impedance requirement,

may also improve the effect of the return path discontinuity. This can indeed be

observed in the optimized insertion loss of the transmission line, as shown in Figure

123(a).

6.4.2 Test Case 2

The second test case is a realistic three layer server backplane. While the top and the

bottom layers are continuous, the middle layer is not. The geometry of the middle

layer and the cross section of the structure is shown in Figure 124. The location

of the ports has also been shown. The board dimensions are 112 mm × 97 mm.

The impedance of the PDN looking into the planes is shown in Figure 125(a). Due

to the discontinuous middle layer, although ports 1 and 2 are separated, they will

still be coupled [48], as can be seen from the insertion loss, shown in Figure 125(b).

The optimizer was required to place 200 decaps to achieve a target impedance of 200

mΩ, over a frequency range of 100 MHz - 1 GHz. The optimizer converged in 90

iterations, and the optimized impedance profile is shown in Figure 126(a). Also, by

providing the decoupling, the vertical coupling between ports has also been reduced,
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Figure 124. (a) Geometry of middle layer (b) Cross section (c) 3D view.

Figure 125. (a) Impedance looking into PDN at port locations and, (b) Insertion loss
between ports (S12) of structure in Figure 124.
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Figure 126. (a) Optimized impedance looking into PDN at port locations and, (b)
Optimized insertion loss between ports (S12).

as shown in Figure 126(b). The M-FDM model consisted of 89,000 nodes and required

a simulation time of 2.5 sec/frequency point. The total time for convergence was 26

hours. This can be accelerated by seeding the initial population with reasonably good

solutions rather than those generated at random.

6.4.3 Test Case 3

The final test case is an example to illustrate various trade-offs that can be made

at an early stage in design, such as the impact of the choice of a substrate on the

number of decoupling capacitors. Figure 127 shows a simple two-layer power/ground

geometry of size 19.2 cm × 19.2 cm. The substrate used is an advanced thin-film

planar capacitor laminate called InterraTM HK-04 from Dupont [49]. This material is

offered in three different substrate thicknesses - 50, 25 and 18 µm. The GA-optimizer

was used to place decaps and optimize the impedance at Port 1 for a target impedance

of 250 mΩ over the frequency range 500 MHz - 1GHz. The optimized self-impedance is

shown in Figure 128. The benefit of using a thinner substrate is that it is now possible

to reduce the number of decoupling capacitors required, as much of the decoupling

comes from the capacitance between the parallel plates. This is shown in Figure
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Figure 127. Structure of test case 3 (a) Top-view (b) Cross-section.

Figure 128. Self impedance at Port 1 after optimization.
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Figure 129. Locations of Decoupling Capacitors.

129, where the locations of the placed decaps are shown. The number of capacitors

required for the 50, 25 and 18 µm substrates was 170, 120 and 40, respectively. Thus,

it may be more cost effective to use a more expensive, but thinner, substrate as this

results in the reduction of about 130 decaps.

6.4.4 Summary of Results for Test Cases 1 and 2

The simulation setup, runtime and convergence data are summarized in Table 6.4.4.

Table 5. Summary of results for automatic decap placement using GA.
Structure No. of Decaps Ztar CPU Time Iterations

mΩ

Test case 1 9 500 18 mins 16

Test case 2 200 200 26 hours 90

6.5 Conclusions

The signal and power integrity of high speed digital systems relies on the ability of

PDN to provide charge instantaneously to switching circuits on chip. This is typically

accomplished by placing decoupling capacitors on the package. This problem is hard

to solve because thousands of capacitors may have to be placed to decouple a PDN

from low frequencies (MHz) to high frequencies (GHz). These capacitors interact with

each other and with the system, and the response of these capacitors is a function of
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its placement. This problem cannot be solved deterministically. Thus, in this chapter

a GA based approach was suggested to perform a stochastic search of the design

space. The approach has been tested on two test cases.
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CHAPTER 7

FUTURE WORK: INITIAL STUDY USING THE
MULTI-LAYER FINITE ELEMENT METHOD (M-FEM)

7.1 Introduction

As explained earlier, this method creates a sparse and banded admittance matrix and

provides an efficient computational complexity of O(N1.5).

7.1.1 Limitations of M-FDM

The methodology developed in this thesis, M-FDM, is a finite difference-based tech-

nique that can solve power plane problems using square-meshes. The limitation of the

method is that it uses a rigid, square, grid. Typically, package PDNs are electrically

large. Thus, for a large solid plane, like the one shown in Figure 130(a), the square

mesh used by MFEM can use a cell size that is dependant on the maximum frequency

of simulation. A good rule of thumb is to use a discretization width of λ/20. However,

these PDNs also contain geometrically small features such as split planes and aper-

tures. To capture very fine structures, the regular mesh becomes dense locally and

globally, resulting in a large number of unknowns. This is demonstrated in Figure

130(b).

Figure 130. (a) Mesh generated based on maximum frequency (b) Mesh generated due
to geometry.
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In typical package geometries, the minimum feature size can easily be less that

100µm or 4 mils. Thus for a 50 mm × 50 mm package, the total number of cells

required to model one solid plane-pair using a 100µm cell size is 250,000. Although

M-FDM has been demonstrated in its current implementation for a maximum of 1

million unknowns, this only allows for the modeling of four plane-pairs. Given that

the feature size on package and board are shrinking to allow for greater wiring density,

the mesh is a serious limitation of M-FDM.

This problem can be solved by using a non-uniform rectangular mesh, which is

also not optimal in the modeling of arbitrary geometries, such as circular voids and

via-holes. Hence, techniques using non-uniform triangular meshes have been proposed

in literature for two layer geometries with circuit extraction for SPICE compatibility

[50]. However, FEM applied to multilayer geometries has typically used hexahedral

or tetrahedral meshes [51].

Despite the limitations of M-FDM, there are some significant advantages as well.

These advantages include the ease of implementation of a method that is capable of

modeling a multi-layer power/ground network using a mesh that is applied only to

the conductors. The formulation for M-FDM results in an admittance matrix that

can be easily represented by an equivalent circuit.

The goal of this chapter is to obtain a formulation that can retain the advantages

of M-FDM while overcoming its limitations. The proposed method is called the

multilayer finite element method (MFEM), and initial results are promising.

In the method proposed, the multilayer finite element method (MFEM)[52], a

Delaunay triangular mesh is applied to each metal layer. The potential distribution

on each plane-pair is expanded in terms of pyramid basis functions. On simplification,

the obtained matrix equation can be shown to represent an electrical network. This

development of a triangular mesh based finite element technique can be applied to

multi-layer geometries. As only a surface mesh is required, this approach requires far
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fewer unknowns than a general 3D FEM-based solution.

The rest of this chapter is organized as follows. The formulation for MFEM has

been developed in detail in Section 7.2. A four-layer test case has been simulated and

compared with existing techniques and these results have been discussed in Section

III, with conclusions in Section IV.

7.2 Formulation for Single Plane-Pair Geometries

An efficient approximation that can be employed for package power planes is that of

a planar circuit [11]. A planar circuit is a microwave structure in which one of the

three dimensions, say z, is much smaller than the wavelength. Under this condition,

it can be assumed that the field is invariant along the z-direction. Hence, δ
δz

= 0 and

the governing equation reduces to the scalar 2D-Helmholtz wave equation:

(∇2 + k2
)
u = jωµdJz, ∇2 =

(
δ2

δx2
+

δ2

δy2

)
(150)

where ∇2 is the transverse Laplace operator parallel to the planar structures, u is

the voltage, d is the distance between the planes, k is the wave number, and Jz is

the current density injected normally to the planes [22]. The open circuit at the

boundary can be represented by a magnetic wall or Neumann boundary condition,

which completes the problem formulation.

7.2.1 Basis Function

Using a standard finite-element approximation with a triangular mesh elements and

linear pyramid or “hat”-basis functions [53], the weak form of the PDE in Equation

(150) is:

N∑
j=1

∫ ∫

Ω

[∇φj · ∇φi + ω2µεφjφi + jωµdJzφi

]
dxdy = 0 (151)

where Ω is the problem domain. The triangular mesh and the hat function, φ are

shown in Figure 131(a). The formulation of the matrix equation for 2D geometries is
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well known, and is reproduced here from [54]. For convenience, simplex coordinates

{L1, L2, L3} have been used, which can be related to the Cartesian coordinates:

x = L1x1 + L2x2 + L3x3 (152)

y = L1y1 + L2y2 + L3y3 (153)

L1 + L2 + L3 = 1 (154)

The equations above can be solved to obtain:

Li =
1

24 (ai + bix + ciy) (155)

ai = xi+1yi+2 − xi+2yi+1

bi = yi+1 − yi−1

ci = xi−1 − yi+1

and the subscripts are evaluated (modulo 3) + 1. 4 is the area of the triangle with

vertices at points (P1, P2, P3). Within the cell, the pyramid basis functions are

identical to the simplex coordinates themselves.

Hence, Equation (151) can be rewritten in matrix form as follows:

(
K + M

)
U = F (156)

where, K and M represent the stiffness and mass matrices, respectively, U is the un-

known potential, and F contains the contributions from the current source excitation.

The entries of K, M and F are:

ki,j =

∫ ∫

Ω

j

ωµd
∇φi · ∇φjdxdy (157)

mi,j =

∫ ∫

Ω

−jωε

d
φiφjdxdy (158)

fi =

∫ ∫

Ω

Jzφidxdy (159)

The linear pyramid basis functions are equal to the simplex coordinates within

the cell, i.e.

φi(L1, L2, L3) = Li (160)
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Figure 131. (a) Triangular mesh and pyramid basis function (b) Cartesian and Simplex
coordinates.
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Therefore,

∇φi = ∇Li =
1

24 (x̂bi + ŷci) (161)

Substituting Equation 161 in Equation 157,

ki,j =
bibj + cicj

44
j

ωµd
(162)

The evaluation of the integral to obtain mi,j (Equation 158) and fi (Equation 159)

can be performed by transforming the coordinates from Cartesian to simplex using

the Jacobian,

dxdy = dL1dL2
δ(x, y)

δ(L1, L2)
= 24dL1dL2 (163)

The integrals in Equations 158 - 159 are a special case of the general formula

I =

∫ ∫

Ω

La
1L

b
2L

c
3dL1dL2 =

a!b!c!

(a + b + c + 2)!
(164)

where a, b and c are integer powers. Therefore, substituting a = 2, b = 0, c = 0 when

i = j and a = 1, b = 1, c = 0 when i 6= j,

mi,j =
−jωε

d

4
12

(1 + δi,j) , where δi,j is the Kronecker delta function. (165)

Using a = 1, b = 0, c = 0,

fi = Jz
4
3

(166)

7.2.2 Equivalent Circuit

K and M represent the admittance matrices of frequency-independant inductive and

capacitive components, respectively. Specifically, K represents inductors connected

between triangle vertices (i.e., along the triangle edges), and M represents capacitors

connected between triangle vertices and to ground, as shown in Figure 132.

This can be shown by evaluating one row of the 3× 3 local matrix corresponding

to one triangle For example, the sum of the first row of this matrix is:

S =
3∑

j=1

b1bj + c1cj

44
j

ωµd
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Figure 132. Topology of equivalent circuit for single plane-pair structures.

Consider the b1bj term for j = 1, 2, 3.

b2
1 = (y2 − y3)

2 for i = j = 1

b1b2 = (y2 − y3)(y3 − y1) for i = 1, j = 2

b1b3 = (y2 − y3)(y1 − y2) for i = 1, j = 3

∴ b2
1 + b1b2 + b1b3 = 0 (167)

Similarly, c2
1 + c1c2 + c1c3 = 0 (168)

It can be shown that the other rows of the 3 × 3 local matrix also sum to zero.

This implies that the rows (and by symmetry, the columns) of K sum to zero. This

corresponds to circuit elements (in this case, inductances) connected between the

triangle vertices, with no element to system ground. On the contrary, the row and

column sums of M do not vanish, indicating capacitances to ground in addition to

capacitive elements along edges.

Hence, the equivalent circuit for the single plane-pair case can be represented by

the admittance matrix Y, where Y = K+M. This matrix is sparse and the solution

to Equation (156) can be obtained using standard linear equation solvers. The ability
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Figure 133. (a)Geometry of split-plane structure (b) Mesh (c) Cross-section.

to obtain an equivalent circuit enables the extension of the method to multiple plane

pair geometries, without the need for using 3D-mesh elements (i.e. tetrahedral or

hexahedral).

7.2.3 Results

The critical problem with finite difference methods such as MFDM is that in the

presence of small features, the mesh becomes dense, as a result of which the number

of unknowns in the system can be large. An example to illustrate this is a single

plane-pair test case. The lower metal layer is a solid ground plane, while the top

layer, of dimensions 100mm × 100mm contains a 0.2mm slot, dividing it into two

100mm×49.9mm islands. The geometry of the structure, the mesh, and the cross-

section are shown in Figures 133(a), 133(b) and 133(c) respectively. The only port

in the structure is placed on one of the power islands. The slot width (0.2 mm) is

large enough when compared to the dielectric height (1 mil) that gap coupling can

be ignored. As a consequence of the Delaunay mesh generation algorithm that has

been used, the mesh is denser around small features and coarse elsewhere.
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Figure 134. Self Impedance Z11

Table 6. Summary of results for structure in Figure 134.
Method Unknowns Time / Freq Pt. Code MFEM

Speed-up

MFEM 1,439 0.250 s MATLAB -

MFDM 250,000 10 s C++ 40X

The structure was simulated with MFEM, as well as MFDM. All simulations

were performed on an Intel Core2 Duo 2.2 GHz workstation with 2.0 GB RAM. The

impedance at Port 1, Z11 is shown in Figure 134, and there is good agreement between

MFEM and MFDM. A summary of the computational requirements are listed in Table

6.

7.3 Formulation for Multiple Plane-Pairs
7.3.1 Meshing

As in the single plane-pair case, a triangular mesh is applied to each metal layer. As

will be explained, the multi-layer formulation requires that the location of the mesh

nodes be the same on every layer. This is done by flattening or collapsing the features

on each metal layer on to one layer, on which triangulation is performed to obtain the

mesh. The mesh thus obtained is used to discretize all layers. This is best explained
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Figure 135. Four-plane test structure: cross section, location of ports, and top view of
each plane.

using an example.

A four-layer structure containing apertures in each layer is shown in Figure 135.

When all the features on the multiple layers is flattened onto one layer, the resulting

2D shape contains the outlines of the planes and all apertures. In Figure 136, this

2D shape with a triangular mesh is shown. This mesh can describe the geometrical

features (polygon vertices and edges) in any of the layers. The method to obtain the

admittance matrix for multiple plane-pair structures is described next.

7.3.2 Solid Planes without Apertures

In Section 7.2, the procedure to obtain an equivalent circuit for two-layer geometries

with a common ground reference node has been described. For a multiple plane-pair

structure containing more than two layers, it is possible to construct an equivalent

circuit for each plane-pair. However, the equivalent circuit of different plane pairs
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Figure 136. Top view of the meshed planes.

assign their respective ground reference node to different layers. Therefore, to obtain

the model for the multi-layered plane requires shifting the different reference nodes

to one common ground.

This shifting of ground reference nodes can be done using indefinite admittance

matrices [20]. This is illustrated, without loss of generality, by using two-port net-

works with separate ground references, as shown in Figure 137(a). The four-port

admittance matrix for the system with the common reference node can be derived as

follows:

Y A
11V1l + Y A

12V1r = I1 (169)

Y B
11V2l + Y B

12V2r = I2 (170)

By noticing that

Ibl = I2 − I1, Ial = I1,

V1l = Val − Vbl, V1r = Var − Vbr,

V2l = Vbl and V2r = Vbr,
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Figure 137. (a) Two-port networks with separate references (b) Combined four-port
network with common reference.

it is possible to write one row of the admittance matrix of the combined four-port.

Y A
11(Val − Vbl) + Y A

12(Var − Vbr) = Ial (171)

A similar approach can be used to obtain the complete system in the following

form:




Y A −Y A

−Y A Y A + Y B







Val

Var

Vbl

Vbr




=




Ial

Iar

Ibl

Ibr




(172)

For an M + 1-layer (M plane-pair) package with solid power/ground planes on

each layer, the system matrix, Y, is obtained as a simple extension of Equation 172.

Y =




Y1 −Y1

−Y1 Y1 + Y2 −Y2

. . . . . . . . .

−YM−1

−YM−1 YM−1 + YM




(173)
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where Yi, i = 1, 2, . . . , M are admittance matrices obtained for the ith plane-pair

counting from the top of the stack.

7.3.3 Inclusion of Apertures

Without apertures, the problem domain is simply a rectangle. In a more complex case

with apertures, the flattened problem domain can be decomposed into a number of

sub-domains, containing the solid metal planes and the apertures. To further explain

this concept, an M + 1-layer package with an arbitrary number of apertures on each

layer can be flattened into a rectangular problem domain containing N sub-domains.

Each of these sub-domains represents one aperture or many overlapping apertures.

Thus, while adding the contributions of each layer i, i = 1, 2, . . . ,M , to the

admittance matrix, the following cases are considered. As before, i = 1 is the top-

most layer.

1. Sub-domains j1, j2, . . . , jP correspond to no apertures on layers i and

i + 1: This case is handled as in the previous sub-section. The contributions of

the sub-domains j1, j2, . . . , jP are added to Yi without alteration.

2. Sub-domains k1, k2, . . . , kQ correspond to apertures on layer i: The con-

tributions of sub-domains k1, k2, . . . , kP are removed from Yi.

3. Sub-domains l1, l2, . . . , lR correspond to apertures on layers i + 1, i +

2, . . . , i + X: The contributions of sub-domains l1, l2, . . . , lR are removed from

Yi. Create admittance matrix M containing the contributions of the excluded

sub-domains, with reference to corresponding nodes in layer X + 1.
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Figure 138. Insertion loss for structure in Figure 33.

7.3.4 Results

To validate MFEM, two test cases have been considered. The following test cases were

designed to demonstrate the capability to model vertical coupling through apertures

in the metal planes.

The geometry of the first test case is shown in Figure 33, along with the port

locations.

However, from the insertion loss results shown in Figures 138, there is significant

coupling between ports. This is due to aperture coupling. Also, the results from

MFEM correlate well with measurements.

The second test case is the four-layer structure that was previously used to explain

the meshing scheme, with plane dimensions of 100mm × 100mm. The differences

in dimensions of each aperture was maximized to emphasize the meshing scheme

employed by MFEM. Hence, the largest aperture size was 40×40 mm and the smallest

was 3×3 mm. The minimum aperture size was chosen such that it still influenced the

response of the structure at the maximum simulation frequency of 1GHz. Two ports
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Figure 139. Magnitude of Self Impedance (Z11).

Table 7. Summary of results for structure in Figure 135
Method Unknowns Time / Freq Pt. Code MFEM

Speed-up

MFEM 3,594 0.350 s MATLAB -

MFDM 122,411 5.6 s C++ 16X

Comm. tool 71,204 2 s Unknown 5.5X

are placed between the bottom plane (ground) and the second plane, and between the

third plane and the top plane, respectively, as shown in Figure 135. The dielectric is

FR-4 with εr = 4.4.

The structure was simulated with MFEM, which has been implemented using

MATLAB, and the results were compared with MFDM [55] and a commercial power

integrity simulator. The commercial tool performs 2.5-D simulation using FEM. The

self and transfer impedance results have been plotted in Figures 139 and 140. As can

be seen from the results, there is good correlation between MFEM and the others

methods. A summary of the results with timing information and implementation

details has been provided in Table 7.
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Figure 140. Magnitude of the transfer impedance (Z12).

7.4 Summary

In this chapter, a novel modeling method to obtain the frequency response of multi-

layer package power/ground planes has been proposed. This method, MFEM pre-

serves several advantages of M-FDM. This includes a system that is sparse and a mesh

that is applied only to the metal surfaces. Initial simulation results have demonstrated

that MFEM requires significantly fewer unknowns while still providing accuracy com-

parable with other simulation methods. In the examples simulated in this chapter,

the MFEM problem size is roughly in the thousands of unknowns, whereas the num-

ber of unknowns in M-FDM was in the hundred of thousands. This represents a

reduction of around two orders of magnitude. Although this comparison must be

treated cautiously, since the matrix structure of MFEM and M-FDM are not iden-

tical, MFEM has the potential to solve extremely large problems. Assuming that a

maximum problem size of 500,000 unknowns (1/2 of M-FDM) can be solved using

MFEM implemented with a direct solver, MFEM is capable of solving 50 - 500 layers.

This is based on the assumption that each layer requires between 1,000 and 10,000
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unknowns to discretize. A promising application of MFEM is in the simulation of

multi-scale geometries or in the combined simulation of package and board.
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CHAPTER 8

CONCLUSIONS

Typically, the power to ICs is supplied through a package power distribution network

consisting of multiple stacked, electrically-large, metal planes which are assigned to

different DC potentials. The management and mitigation of simultaneous switching

noise (SSN) is the key design parameter goal intended to maintain a clean power

supply on chip. To enable rapid design of these packages, modeling methods must be

able to model arbitrarily shaped packages containing apertures in the metal planes,

vias, decoupling capacitors, etc. Also, the signal lines are routed in between the

stacked power/ground layers. These signal lines use the power/ground planes of the

PDN as reference planes, and poor designs can cause coupling of energy between the

PDN and the signal transmission lines, through mode conversion.

The objective of this research is the development of a signal and power integrity

(SI/PI) modeling and co-simulation tool for package and board applications. The

proposed method, which forms the main focus of this thesis, is called the multi-layer

finite difference method (M-FDM).

M-FDM is a hybrid modeling approach that combines EM and network theory.

The approach was developed by first applying a finite difference formulation to pack-

ages with two metal-layer or single plane-pair geometries. An equivalent circuit was

extracted based on the finite difference equations. Using transformations of the indef-

inite admittance matrix, this method was extended to multiple plane-pair structures.

This approach was capable of modeling the vertical coupling of SSN by means of a

wrap-around current.

Also, the modal decomposition technique was used to integrate the response of

transmission lines in microstrip, stripline and conductor backed CPW configurations

with the model for the PDN from M-FDM.
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The key advantages of M-FDM are the following:

1. Mesh is applied only to the metal layers. Dielectrics are not meshed.

2. The model from M-FDM can be integrated with models for transmission lines

based on modal decomposition.

3. The computational complexity of M-FDM is O(N1.5) and the memory complex-

ity is O(N log2

√
N).

4. The model generated using M-FDM is a SPICE compatible equivalent circuit

The limitations of M-FDM are the following:

1. The modeling method is based on an assumption that only vertically directed

electric field components exist in the package. Hence, fringing fields at metal

edges and due to slots in the metal planes are neglected

2. The mesh applied to M-FDM consists of square unit-cells, the dimensions of

which are determined by the minimum feature size in the geometry. Thus,

the maximum number of layers that can be modeled for a practical package is

limited.

This thesis addresses the limitations of M-FDM as well. To model the fringing

fields at metal edges and near slots, methods called the fringe augmentation (FA) and

the plane gap augmentation (PGA) were developed. These approaches are based on

obtaining a multiport circuit model for a coupling network that can be represented

as corrections to the admittance matrix obtained from M-FDM. These corrections

are obtained by performing a 2D electrostatic simulation of the cross-section at the

location of the discontinuity. In the case of the FA method, there is no increase

in computational complexity required to solve the system containing the updated

admittance matrix. For the PGA method, there is an increase in the number of
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unknowns and the bandwidth of the system matrix, but the increase in computational

complexity, which has been quantified, is small.

The second limitation, resulting from the use of the square mesh, has been solved

based on initial results from a promising novel approach called the multi-layer finite

element method (MFEM). An adaptive triangular mesh was applied to the geometry.

The dimensions of the edge elements in this mesh are based on the wavelength at

the maximum frequency of simulation. The mesh becomes dense only in the vicinity

of small features. This enables MFEM to model realistic structures containing such

small features with far fewer unknowns than M-FDM. Also, the model generated

using MFEM is also SPICE compatible, and the resultant system matrix is sparse.

Thus MFEM preserves the advantages of M-FDM, while overcoming the mesh density

limitation.

However, the first limitation of M-FDM which was addressed with the FA and

PGA techniques applies to MFEM as well. Since the model from MFEM can be

expressed as an equivalent circuit, it is possible to conceptualize an approach similar

to the FA and PGA methods that can be applied to MFEM. This has been left as

future work.

The methods described in this thesis have been implemented in a tool called

MSDT 1. These tools are currently in use by the commercial sponsors of this work,

Panasonic, EPCOS, Infineon, NXP and Sameer. These tools are also made available

to students of ECE 4460.
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APPENDIX A

NETWORK DATA CONVERSIONS

The characteristic of an n−port network are typically represented in terms of 50 Ω

S-parameters. This thesis primarily discusses methods which provide Z-parameters.

The relations between S- and Z-parameters are given by:

Z =
√

Z0 (I − S)−1 (I + S)−1
√

Z0 (174)

S = (Z − Z0) (Z + Z0)
−1 (175)

where I is an n×n identity matrix and Z0 is an n×n diagonal matrix and Z0(i, i)

contains the characteristic impedance of the ith port.

The conversions between Z and Y are given by,

Z = (Y )−1 (176)
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