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Summary

The objective of this research work is to develop an efficient methodology for chip-package
cosimulation. In the traditional design flow, the integrated circuit (IC) is first designed
followed by the package design. The disadvantage of the conventional sequential design
flow is that if there are problems with signal and power integrity after the integration of
the IC and the package, it is expensive and time consuming to go back and change the
IC layout for a different input/output (IO) pad assignment. To overcome this limitation,
a concurrent design flow, where both the IC and the package are designed together, has
been recommended by researchers to obtain a fast design closure. The techniques from this
research work will enable multiscale cosimulation of the chip and the package making the
concurrent design flow paradigm possible.

Traditional time-domain techniques, such as the finite-difference time-domain method,
are limited by the Courant condition and are not suitable for chip-package cosimulation. The
Courant condition gives an upper bound on the time step that can be used to obtain stable
simulation results. The smaller the mesh dimension the smaller is the Courant time step. In
the case of chip-package cosimulation the on-chip structures require a fine mesh, which can
make the time step prohibitively small. An unconditionally stable scheme using Laguerre
polynomials has been recommended for chip-package cosimulation. Prior limitations in
this method have been overcome in this research work. The enhanced transient simulation
scheme using Laguerre polynomials has been named SLeEC, which stands for simulation
using Laguerre equivalent circuit. A full-wave EM simulator has been developed using the
SLeEC methodology.

A scheme for efficient use of full-wave solver for chip-package cosimulation has been
proposed. Simulation of the entire chip-package structure using a full-wave solver could be
a memory and time-intensive operation. A more efficient way is to separate the chip-package
structure into the chip, the package signal-delivery network, and the package power-delivery
network; use a full-wave solver to simulate each of these smaller subblocks and integrate
them together in the following step, before a final simulation is done on the integrated

network. Examples have been presented that illustrate the technique.



1 Introduction

The consumer demand for electronics products with more functionality, better performance,
smaller size, less weight, and lower cost has given rise to numerous issues in signal integrity
and power integrity. As more functionality is integrated in a package, there is more commu-
nication between the chips, resulting in larger number of input/output (IO) pins and more
interconnects to be routed. With smaller spacing between the interconnects, there can be
significant crosstalk, causing the product to fail. The endless requirement for faster speed
has created smaller rise times and fall times on the order of picoseconds. This has pushed
the frequency spectrum into the GHz range. Faster signaling creates voltage fluctuations on
the power-distribution network that can cause false switching of logic circuits. The current
in interconnects and on its return path creates regions of small and large electromagnetic
(EM) fields. Chips placed at the locations of high EM field experience loss in signal quality
due to EM coupling. With every next generation integrated circuit (IC), the voltage levels
are scaled down to reduce power dissipation and transistor failure. As a result, the noise
tolerance is becoming smaller.

ICs making up a system, together with passive components and the power-distribution
network, are interconnected together in a package. A layout of a generic Intel PC system is
shown in Figure 1 [1]. The chip marked 82975X MCH, which is known as the Northbridge, is
connected to the graphics, the processor and the memory chips. The chip marked 82801GR
ICHT7R, which is known as the Southbridge, is connected to the slower 1O chips. The various
ICs making up the Intel system can be efficiently organized as a multichip module, similar
to the configuration shown in Figure 2. The IC and the package do not exist independently,
and therefore, in order to be able to evaluate the performance of the system, cosimulation
of the chip and the package is needed. For example, the noise generated on the package
affect the ICs and vice versa.

According to the International Technology Roadmap for Semiconductors (ITRS) 2005
[2], one of the challenges in future packages is to develop a chip-package cosimulation tool
to analyze signal integrity and power integrity. It is becoming difficult to predict failures

due to the lack of tools capable of chip-package cosimulation for accurate evaluation of
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Figure 1: A generic Intel PC system.

system performance. Signal and power-integrity problems have resulted in a longer design
cycle time. Failures that can be detected at the simulation level rather than at the product
prototype level can save cost and time. Accurate modeling methods and tools play a key
role in noise prediction. With tools that perform a system-level simulation, the number
of design iterations that are needed to successfully create a working prototype, can be

drastically reduced. Smaller design cycle time reduces cost, as well as decreasing the time

Chip-Package Cosimulation

Chip Simulation

Package Simulation

Figure 2: A multichip module.



required to deliver a product to the consumer. The objective of this research is to develop

an accurate, time-efficient, and memory-efficient technique for chip-package cosimulation.

1.1 Development of CAD Tools

CAD tools are indispensable in the development of any electronic system for today’s market.
The Intel microprocessor family from the years 1970 to 2005 is shown in Figure 3 [1]. What
is often neglected is the importance played by CAD tools in the progress. Initial processors
contained limited number of transistors and were hand crafted. With increasing number

of transistors and more integration of digital and analog, modern electronic design without

the aid of CAD tools is unthinkable.

transistors
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Figure 3: The Intel processor family and CAD tools.

CAD tools play different roles such as optimization of logic, automatic placement and
routing of transistors, time/frequency-domain simulation for noise prediction. They reduce
the product development time and help create better designs that work more efficiently.
Most of the CAD tools have a certain domain where they can be applied. Some tools
operate purely at the chip level, while others only at the package level. A drawback of this
approach is that there is no feedback between the two. The noise generated by the parasitics
of the package structures can cause the chip to fail. The objective of this thesis is to develop
simulation methodologies in the time and frequency domain to enable cosimulation at the

chip and the package levels.



A traditional sequential design flow of an IC and a package is shown in Figure 4 [3]. In
the sequential design flow, the chip is first designed followed by the package design based
on the 10 pad assignments of the IC. A disadvantage of this approach is that the problems
that occur due to the integrated chip and the package go undetected until the final stage.
The reason for using this type of design flow is because of the lack of CAD tools that are
available in order to be able to design both the chip and the package in parallel.

The recommended package-aware design flow is shown in Figure 5 [3]. In this paradigm,
both the package and the chip are planned concurrently to ensure signal and power-integrity
closure. The advantage of this approach is that potential signal and power-integrity issues
that can occur within the chip, the package, or as a result of the integrated chip and the
package, are detected early in the design stage. Making changes to the design in the early
stages is much easier, faster, and more cost effective. Package-aware integrated-circuit design
results in a faster product turnaround time. The simulation methodologies developed in
this thesis can be applied to perform chip-package cosimulation at the design stage, thereby
making the package-aware design-flow possible.

The multiscale feature of the chip-package structure makes it difficult to use conventional
tools for simulation. The on-chip structures require a very fine mesh, while a coarse mesh
can be used for the package structures. The large variation in the mesh dimensions, as
well as the fine mesh, make the simulation time and the memory requirement prohibitively
large. In this thesis, an efficient simulation methodology that uses Laguerre polynomials
for simulation has been developed. Several test cases have been simulated that show the
advantage of using the Laguerre polynomials based scheme for multiscale simulation over

the conventional methods.

1.2 Common Signal and Power-Integrity Problems Present in a

Chip and a Package

A list of some of the parasitics at the chip and the package levels is shown in Figure 6.

1. Non-ideal power-ground structures:

The transient current that is drawn by switching logic circuits from a power-ground
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plane produces simultaneous switching noise (SSN) due to the non-ideal planes in
the power-distribution network. A cross section of a power-ground plane is shown in
Figure 7. The transient current drawn from a chip is modeled by a current source. An
ideal voltage supply is also connected to the power-ground plane. A typical waveform
at some point on the power-ground plane marked probe is shown in the figure. Rather
than an ideal constant voltage, noise voltage on the order of hundreds of millivolts,
known as simultaneous switching noise (SSN), is typically present for chips operating
in the GHz range. Power-supply noise can cause problems such as false switching in
logic circuits [4]. Power grids on the chip are also non ideal and increase the noise
voltage [5]. On-chip and package decoupling capacitors are placed to minimize SSN [6].
Simulators should also be capable of including passive components such as capacitors,

inductors and resistors, which are almost always present.

. Reflections due to imperfect terminations:
Terminations in interconnects that are not matched to their charactersitic impedances
will result in problems such as ringing and reflections [4]. These reflections degrade

the performance of the driver and the receiver ICs that are attached to the net.

i. On-chip SSN, e. Accurate delay | d. Different interconnect
interconnect model in configurations
coupling long traces (microstrip, strip)

f. Solder bump/

wirebond

parasitics
a. Parasitics of
powet/ground
plane pairs

g. Large number of c. Via/Via coupling
interconnects parasitics

Figure 6: Common signal and power-integrity problems present in a package.
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3. Parasitics of via, solder-bump, package leads, wirebonds:
Solder bumps, leads, and wirebonds are interfaces between the chip and the package.
In addition to carrying signals between the chip and the package domains, their par-
asitics generate significant noise degrading the performance [7] [8]. Via parasitics are
also critical to accurately estimate the noise voltage levels. The parasitics may cause

reflections, which can introduce ringing in the waveform.

4. Interconnect parasitics:
Interconnects are modeled using cascaded lumped elements composed of inductors (L),
capacitors (C), resistors (R, G) and mutual inductance. Cascaded lumped element
model for transmission lines based on R,L,G,C per unit length matrices for multicon-
ductor transmission lines is given in [9]. The loss in the interconnects and substrate

attenuate the signal as it propagates in the channel.

1.3 Proposed Research

The objective of the proposed research is to develop a transient simulation methodology for
chip-package cosimulation. The solver should be capable of solving large practical problems;
it must be fast and accurate; the techniques should be robust to model structures of different
types of configurations. Based on the proposed research the following research work has been

completed:

1. Transient simulation using Laguerre polynomials
Transient simulation using Laguerre polynomials is unconditionally stable and there-

fore, has the advantage of not being limited by any time step. Laguerre FDTD has



shown to be 70 — 80x faster than the conventional FDTD scheme. For chip-package
cosimulation, the on-chip structures require a very small mesh making the time step
prohibitively small for simulation using the conventional finite-difference time-domain
scheme. Since Laguerre FDTD is unconditionally stable, it is ideally suited for chip-
package cosimulation. Since its introduction, several modifications have been made to
the algorithm. The new methodology has been named SLeEC and stands for simula-

tion using Laguerre equivalent circuit.

. Simulation for any length of time
The limited time duration for which Laguerre FDTD could be simulated has been

resolved, so that Laguerre FDTD can now be done for any length of time.

. Companion model of the FDTD grid
An equivalent circuit model of the FDTD grid has been developed, reducing the

number of unknowns to be solved without the use of long cumbersome equations.

. Transient circuit simulation using Laguerre polynomaials
Laguerre FDTD has been applied to circuit problems consisting of passive circuit

components such as inductors with mutual inductance, resistors, and capacitors.

. Choosing the correct number of basis coefficients
Transient simulation using Laguerre polynomials requires finding the correct number
of basis coefficients to accurately represent the time-domain waveform. A numerical

way by which the correct number of basis functions are chosen has been proposed.

. Full-wave EM simulator using the SLeEC methodology
A 3D time-domain EM simulator that uses Laguerre polynomials for transient simu-
lation has been developed. A variety of test cases have been simulated to demonstrate

the advantage of using this tool for chip-package cosimulation.

. Obtaining frequency-domain parameters through time-domain simulation
A way by which frequency-domain parameters can be obtained from time-domain
simulation has been proposed. Results show that time-domain windowing is necessary

before conversion to frequency-domain parameters to obtain the right results.



8. Efficient use of full-wave solvers for chip-package cosimulation

For chip-package cosimulation, rather than using a full-wave solver to simulate the

entire structure, the structure can be partitioned into different blocks and a full-

wave solver can be applied to each of these blocks separately. Results from each of

these blocks can be integrated together to model the complete structure. The on-

chip structures have been simplified to a great extent. The proposed technique has

been demonstrated for package power-ground planes and package interconnects. The

following tasks have been completed:

(a)

Modeling of microstrip lines referenced to a power-ground plane

A microstrip-line configuration is shown in Figure 8. Given two-port frequency-
domain parameters of a microstrip line, which has ports located at the near end
and the far end of the microstrip, as well as two-port frequency parameters of
the power plane, which has ports located at the near-end reference and the far-
end reference of the microstrip, an admittance matrix model to integrate the
interconnect and the power plane has been developed. The two-port admittance
matrix model has been generalized to an N-port model that can be used to model
N coupled microstrip lines referenced to a power-ground plane. To demonstrate

scalability, a 64-bit bus referenced to a power-ground plane has been simulated.

Modeling of a conductor-backed coplanar-wavegquide structure

It is common for interconnects to be routed on the same layer as the power or a
ground plane, by creating a slot on the plane and routing the interconnect in the
slot, as shown in Figure 8. The interconnect and the power-ground plane-pair
form a conductor-backed coplanar-waveguide structure. Given such a configu-
ration, the frequency parameters of the interconnect are obtained separate from
those of the power plane. The two sets of frequency parameters are integrated
together using multiconductor transmission line theory. A good correlation be-
tween Sonnet® and the proposed model has been obtained over a wide bandwidth

of 8GHz.
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(¢) DC Analysis with frequency-domain parameters
A method has been developed to include DC sources along with frequency-domain
parameters in transient cosimulation of package interconnects and package power-
ground planes. Augmenting the transient simulation method to include DC op-
erating point has been completed. A transmission line example, showing a good

match with ADS® has been accomplished.

(d) Memory optimization for linear transient simulation with current sources
Memory can be reduced significantly for linear transient simulation with transient
current sources. The memory complexity can be reduced from O(N?) to O(N),

where N is the number of ports in the frequency-domain parameter block.

1.4 Dissertation Outline

Conventional time-domain solvers are limited by an upper bound on the time step that can
be used to obtain stable and accurate simulation results. This limit in the time step, known
as Courant time step, is a major bottleneck for chip-package cosimulation. With small
mesh dimensions required for on-chip structures, the time step can become prohibitively
small. Transient simulation using Laguerre polynomials is unconditionally stable and is
not limited by the Courant time step. Prior limitations have been overcome and the en-
hanced methodology is called SLeEC and stands for simulation using Laguerre equivalent
circuit. SLeEC can be applied to both 3D EM simulation and linear transient circuit simu-
lation. Circuits composed of resistors, inductors (with mutual inductance), capacitors, and
linear voltage/current sources can be simulated using SLeEC. Transient simulation results

show excellent correlation between the proposed technique and the traditional EM/circuit

Case 1: Microstrip Configuration Case 2: Coplanar Wavequide

/.
_
Vdd /—i Vdd =

Figure 8: A microstrip and a conductor-backed coplanar-waveguide configuration.
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simulators.

For chip-package cosimulation, rather than using a full-wave solver to simulate the entire
structure, the structure can be partitioned into different blocks and full-wave solver can be
applied to each of these blocks separately. Results from each of these blocks can be integrated
together to model the complete structure. The on-chip structures have been simplified to
a great extent. The proposed technique has been demonstrated for package power-ground
planes and package interconnects. The methodology is memory efficient and scalable to large
problems. The technique can be used for frequency-domain and time-domain simulation of
package structures. Examples showing the scalability of this technique to realistic test
cases are given. The technique permits the use of complex non-linear driver models in the
simulation. A memory optimization technique for linear systems, which also results in faster
simulation, has been proposed.

The remainder of this thesis is organized as follows: The SLeEC methodology is given in
Chapters 2-6; 3D EM test cases showing good correlation between the conventional FDTD
scheme and the SLeEC methodology is presented in Chapter 7; transformation from time-
domain to frequency-domain parameters is given in Chapter 8, followed by efficient use of

full-wave solvers for chip-package cosimulation in Chapter 9.
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2 Transient Simulation Using Laguerre Polynomials

2.1 Introduction

The finite-difference time-domain (FDTD) scheme has been a ubiquitous method for tran-
sient electromagnetic (EM) analysis [10] and circuit simulation [11]. The main drawback
of FDTD is the Courant-Friedrich-Levy (CFL) condition, which will be referred to as the
Courant condition, that limits the time step that can be used to obtain stable and accu-
rate simulation results. In EM analysis, the smaller the mesh dimension, the smaller is the

Courant time step [10]. In mathematical form, the Courant condition for EM simulation is

v (@)@

where v,,,4, 18 the maximum phase velocity of the wave propagation, Az, Ay, and Az are the

smallest mesh dimensions in the x, y, and z directions [10]. The time-step limit for numerical
stability can be derived using dispersion analysis [10]. A summary of the derivation in [10]
is given in the appendix in Chapter 12.

In transient circuit simulation of passives such as resistors, inductors, and capacitors, the

maximum allowable time step is a function of the smallest inductor and capacitor values [12].

Courant-like condition for stability in the circuit domain is given in Equation 2, where L,,;,
and C,;, are the smallest inductor and capacitor values in the circuit.

The Courant condition is a major bottleneck in using FDTD for chip-package cosimula-
tion. Multiscale dimensions in a chip-package structure is shown in Figure 9. The on-chip
structures are in the nanometer scale, the solder pads typically have a diameter of 50um,
the package interconnects are in the 100um range, and the package structures, such as the
power-ground planes, are in the mm scale. The on-chip structures that are in the nm range
would require a fine mesh for simulation, making the time step prohibitively small.

An unconditionally stable implicit-FDTD scheme using Laguerre polynomials has been
proposed in [13]. The method presented in [13] will be referred to as the Laguerre-FDTD

scheme in the rest of this document. Laguerre FD'TD is unconditionally stable and therefore,
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Figure 9: Multiscale features in a chip-package structure.

the time step is not limited by the Courant condition. It has been shown in [13] that
Laguerre FDTD can be 80 — 100x faster than the conventional FDTD scheme. Since
transient simulation using Laguerre polynomials is unconditionally stable, it is ideally suited
for chip-package cosimulation.

The following modifications and additions to the original Laguerre-FDTD scheme in [13]

have been made in this research work:

1. The limited time duration for which Laguerre FDTD could be simulated has been

resolved, so that Laguerre FDTD can now be done for all time duration.

2. An equivalent circuit model, which is also known as a companion model, of the FDTD
grid has been developed, reducing the number of unknowns to be solved without the

use of long cumbersome equations.

3. Laguerre FDTD has also been applied in transient simulation of circuits consisting
of passive circuit components, such as inductors with mutual inductance, resistors,
and capacitors. The companion models for these components, which allow easier

implementation, have also been developed.

4. In Laguerre FDTD, the time-domain source waveforms are represented in the Laguerre
domain by a set of Laguerre coefficients. The source coefficients are used to solve for
the unknown values in the Laguerre domain. The output of interest is converted back

to the time domain from the Laguerre domain to obtain the transient waveform. To
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obtain maximum accuracy, the right number of coefficients has to be used to generate
the time-domain waveform. A numerical way by which the correct number of basis

coefficients are chosen has been proposed.

Each of these modifications are explained in detail after the algorithm has been presented.
The new and improved algorithm has been named SLeEC, which stands for simulation using

Laguerre equivalent circuit.

2.2 The SLeEC Alogrithm

SLeEC can be applied to linear transient circuit simulation, as well as time-domain elec-
tromagnetic simulation. In circuit simulation, SLeEC can be used in transient analysis of
linear passive components such as resistors, capacitors, inductors, mutual inductance, volt-
age sources, and current sources. In electromagnetic simulation, SLeEC can be used for
transient analysis instead of the traditional leap-frog scheme.

The flowchart of the SLeEC methodology is shown in Figure 10. A summary of the

Time-domain source Laguerre-domain
waveform representation

FDTD/circuit
companion model

2
©
=}
o
3
DC analysis
Time-domain output DC values of the
waveform output

Figure 10: The flowchart of the SLeEC methodology.

methodology is given in this paragraph, followed by a detailed explanation of each of the
steps. The first step is to convert the input source waveforms from time domain to Laguerre
domain. A time-domain waveform can be represented in the Laguerre domain by a set of co-

efficients. The next step is to replace the (1) capacitors, inductors, mutual inductance, in the
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case of circuit simulation and (2) the FDTD grid, in the case of electromagnetic simulation,
with their respective companion models. The companion models in the time domain for an
inductor and a capacitor is given in [14]. The companion models in the Laguerre domain for
the FDTD grid, resistors, capacitors, and mutual inductance are derived in this thesis. The
companion models in the Laguerre domain are made up of resistors, current sources, voltage
sources, and controlled sources. A DC analysis is done once for each of the basis coefficients
that represents the input waveforms. Although multiple input waveforms maybe present,
they can all be taken into account in a single DC analysis. At the end of each of the DC
analyses the companion models are updated before the next DC analysis. The DC solution
represent the Laguerre basis coefficients of its corresponding time-domain waveform. In the
companion model of the FDTD grid for EM simulation, the nodal voltages are mapped to
electric-field coefficients and the branch currents to magnetic-field coefficients. The final
step is to convert the DC values for the output of interest to the time domain. Detailed
explanation of each of these steps is given in the following subsections.

It is worth mentioning earlier that the DC values do not have to be saved at each
iteration. Once the companion models are updated at the end of each iteration, there is no
need to save the DC solution. Only the DC values for the output of interest needs to be

saved at the end of each iteration, making the algorithm memory efficient.

2.2.1 Transformation from time domain to Laguerre domain

Laguerre polynomials are defined recursively as follows [13]:

LO(t) =1, (3>
Li(t)=1-t, (4)
pL,(t)=2p—1—1t)L,_1(t) — (p — 1)Lp—a(t); for p>2. (5)

Laguerre polynomials satisfy the relationships

pul) = e 2Ly (8), (7)

f=s-t. 8)
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In Equations 6 - 7, t is the real time multiplied by a scaling factor s, as shown in Equation
8. The actual time scale for which the simulation is run is very small. To make the
basis function work, the real time is multiplied by s to scale the magnitude to the order
of seconds. (%) is Laguerre polynomial L weighted by the exponential function e~*/2, as
given in Equation 7. A Laguerre polynomial weighted by the exponential function satisfies
the orthonormal property of basis functions given in Equation 6. ¢,, in Equation 6 is the
Kronecker delta function. The weighted Laguerre polynomials for orders p = 0 to p = 4 are

shown in Figure 11 [13].
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Figure 11: Weighted Laguerre polynomials for orders p = 0 to p = 4.

A triangular waveform with a rise/fall time of 10 ps, and a delay of 10 ps is shown
in Figure 12. The triangular waveform, W (t), can be represented as a sum of weighted

Laguerre polynomials as
p=N
W(t) = Z Wpp(t). (9)
p=1

In Equation 9, W, represents the p' coefficient of the p™ basis function ¢,. W, can be

obtained using the orthonormal property of basis functions and is given in Equation 10.

W,= [ Woena (10)

The dotted curve in Figure 12 is the original triangular waveform and the solid curve is

the waveform reconstructed using 200 coefficients of the Laguerre basis functions. The two
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waveforms in Figure 12 are indistinguishable. The first 200 coefficients of the basis functions

are shown in Figure 13. The scaling factor used to construct the waveform is s = 3.0 x 10'2.

2.2.2 Companion Models

The second step is to replace the FDTD grid, or the passive components in the case of circuit
simulation, with their respective Laguerre companion models. SLeEC requires solving a
system of linear equations of the form Az = b to obtain the unknown p** Laguerre basis
coefficients. These equivalent circuit models enable the use of stamp rule in modified nodal
analysis to set up and solve the matrix, thereby making the implementation easier [14]. The
popular Spice simulator uses modified nodal analysis for simulation. Therefore SLeEC can
be seamlessly integrated with Spice to do transient circuit/EM simulation using Laguerre
polynomials. In addition, as explained in Chapter 5, the companion models help reduce the
dimension of the matrix to be solved without the use of long and cumbersome equations.
Companion models are composed of resistors, independent and dependent voltage/current
sources. Detailed derivation of the models for circuit/EM simulation are given in Chapter 4
and Chapter 5. As a preview, the companion model for a 1D FDTD grid is shown in Figure
14. Vertical bars in the grid represent £, fields and x represent H, fields. The grid is
terminated using the perfect electric conductor (PEC) boundary condition. Nodal voltages
represent the F, fields and branch currents represent the H, fields. The PEC boundary
condition can be represented in the companion model by a short circuit, as shown in the

figure.

2.2.3 DC Analysis

To obtain the p'* Laguerre basis coefficients of the unknown values, a DC analysis is done
once on the companion circuit model. The DC solution represent the Laguerre basis co-
efficients of their corresponding time-domain waveform. At the end of the DC analysis,
the solution is used to update the companion model before solving for the (p + 1) basis
coefficients. The two-step process of updating the companion model and solving the ma-
trix is repeated until enough coefficients have been obtained to accurately represent the

time-domain waveform for the output of interest.
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Figure 12: The original (dots) and reconstructed (solid) triangular waveform using Laguerre

basis functions.
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Figure 13: The coefficients of basis functions for the triangular waveform in Figure 12.
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Figure 14: The companion model for a unit cell in a 1D FDTD grid.

Two important points to be noted are (1) There is no need to save the entire DC solution
at every iteration. Once the companion model is updated, there is no need to store the DC
solution for the next iteration. Only the coefficients for the output of interest need to be
saved. (2) The A matrix when solving Ax = b stays constant throughout the iterations.
Only the b matrix is updated at every iteration. Therefore, LU decomposition for solving

Ax = b needs to be done only once.

2.2.4 Transformation from Laguerre domain to time domain

The final step is to convert the Laguerre-domain coefficients to time domain for the output
of interest. This is done using Equation 9. In order to maximize the accuracy, the right
number of basis coefficients must be used to generate the time-domain waveform. The

methodology for choosing the correct number of basis coefficients is given in Chapter 6.

2.3 Advantages of Laguerre Polynomials

There are several reasons why Laguerre polynomials is attractive over other orthogonal

polynomials:

1. Transient simulation using Laguerre polynomials is unconditionally stable.

2. Laguerre polynomials allows a simple method for choosing the correct number of basis
coefficients to obtain maximum accuracy when generating its corresponding time-

domain waveform.
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3. When solving for N Laguerre basis coefficients {Wy, W1, ..., Wx_1}, the dimension

of the matrix to be solved is independent of N.

4. Although a matrix of the form Az = b is solved to obtain the p'* Laguerre basis
coefficients, the A matrix is independent of p and LU-decomposition has to be done

only once when solving for the N coefficients {Wy, Wy, ..., W,, ..., Wy_1}.

5. There is no need to save the DC solution at every iteration. Once the companion
model is updated, there is no need to store the DC solution for the next iteration.
Only the coefficients for the output of interest need to be saved. In this respect,

Laguerre polynomials makes the algorithm memory efficient.

6. And most important of all, it works well. A good correlation has been obtained with

FDTD for all of the test cases that have been simulated.

2.4 Summary

Transient simulation using Laguerre polynomials is unconditionally stable. The Laguerre-
FDTD scheme was proposed in [13]. Several modifications to the Laguerre-FDTD scheme
have been made in this research work. The improved simulation methodology has been

named SLeEC, which stands for simulation using Laguerre equivalent circuit.
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3 Simulation For Any Length of Time

3.1 Introduction

A major drawback of the Laguerre-FDTD methodology in [13] is that the transient simu-
lation can be performed only for a limited time duration and cannot be done for all time.
There are two reasons for this limitation: the first reason is the nature of the Laguerre basis
functions and the second reason is the finite precision of the computer making it impossi-
ble to represent very large numbers or very small numbers. Elaborate explanations of the
reasons for the limitation will be followed by a solution that allows simulation for all time
duration.

The first reason for the limitation is due to the nature of the basis functions. The
Laguerre basis functions for order p = 0 —4 are plotted in Figure 11. As shown in the figure,
the basis functions approach 0 as t tends to co. Therefore, any time-domain waveform that
is spanned by these set of basis functions also goes to 0 as t tends to co. Structures that are
lossless or have a low loss cannot be simulated accurately because the fields can be nonzero
for a long period of time.

The second reason for the limitation is the finite precision of the computer. A Laguerre
basis function of order p is an exponentially decaying function multiplied by the p** Laguerre
polynomial. The exponential function quickly decays to 0 and beyond a certain time the
exponential function is treated exactly as 0. Laguerre polynomials become very large with
increasing time. Beyond a certain time, the numbers become very large to be represented
with the limitation of finite precision and is represented as Inf in the IEEE 754 floating-
point standard. Consequently, beyond a certain time point, the basis function is represented

as 0 x Inf or NaN, not a number.

3.2 An Example to Demonstrate the Limitation

An example where Laguerre FDTD is unable to capture the transient response beyond
some time is presented in this paragraph. A lossless resonant cavity containing the fields

E,, E,, and H, that is terminated with PEC boundary is shown in Figure 15. A modulated
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Gaussian source waveform with the same parameters as [13] is used as the J, current source
and is placed along the vertical dashed line in Figure 15. The number of cells used to mesh
the structure is 10 x 10. The £, field at the location marked probe between 15ns and 21ns
is plotted in Figure 16. Theoretically, since the cavity is lossless, the fields must never
decay to 0. The solid waveform has been obtained using the Laguerre-FDTD scheme and
the dots by the conventional FDTD scheme. Since the basis functions go to 0 as ¢ tends to
00, the solid waveform starts to decay to 0, as shown in the figure. The abrupt termination
of the solid waveform, which is indicated by the box, occurs due to the limitation of finite

precision, as explained in the previous paragraph.
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Figure 15: A 2D box with PEC boundary.

3.3 A Solution to Overcome the Limitation

The solution to overcome this limitation is to divide the total simulation time into different
intervals. Let Interval [ span from time ¢t = ¢y to t = t1, Interval II span from time t = t;
to t = 19, and so on, as shown in Figure 17. The length of each interval is chosen such
that simulation can be accurately performed in that time duration. The final values at
the end of Interval i are used as initial conditions to simulate in Interval (i 4+ 1). This
process is repeated until the time duration for which the simulation needs to be done is
completed. The companion models for circuit simulation and EM FDTD simulation, which

will be presented in Chapters 4 and 5, include initial conditions to enable restarting a
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Figure 17: The total simulation time is divided into different intervals.

simulation. The differential equations that describe the transient behavior of a system have
been modified to explicitly include initial conditions that will permit simulation for all time
duration. The SLeEC algorithm that is presented in Chapter 2.2 is applied in each of the
time intervals.

It must be noted that Laguerre-MNA does not require storing all nodal voltages and all
branch currents from the series of DC analysis that has been performed. At the end of each
DC analysis, once the companion models have been updated, there is no need for saving
the solution. The only solution that needs to be stored at the end of each DC analysis is

the solution of the output for which the transient waveform is to be observed, which is a

constant amount of memory.
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3.4 Computing the Final Values at the End of an Interval

The final values at the end of an interval, e.g. Interval ¢, must be computed in order to use
these values as the initial conditions in the next time interval, Interval (i 4 1). For example,
the initial condition for a capacitor is the initial voltage across the capacitor and the initial
condition for an inductor is the initial current through the inductor. Not all the coefficients,
i.e. the DC solution for the voltage across a capacitor and the current through an inductor
need to be saved to compute the final value at the end of a time interval. At the end of each
DC analysis, the contribution of p* Laguerre basis coefficient (W) to the final value of the
transient waveform at the end of a time-interval (t7) can be computed by using Equation

11.
value(ty) = value(ty) + Wypp(sty) (11)

value(ty) is first initialized to 0, before using Equation 11. By using Equation 11, the
coefficients of the DC solution need not be saved in order to compute the final value of a

quantity at the end of a time-interval.

3.5 Examples of Simulation Using Initial Conditions

An LC circuit is shown in Figure 18. The values for L and C are 1nH and 1pF, respectively.

InH Vi)
—
1(t)

== IpF

Figure 18: The circuit for transient simulation with initial conditions.

The initial conditions are the voltage across a capacitor and the current through an inductor
at time ¢t = 0. The initial current through the inductor, i(0), is -8.12 mA and the initial
voltage across the capacitor, V(0), is 0.18 V. The transient simulation waveforms of V'(¥)

generated using 200 Laguerre basis coefficients and 400 coefficients are shown in Figure 19
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and Figure 20, respectively. Note the abrupt termination of the waveform around 0.5ns in
Figure 20. Simulation beyond this time requires restarting the simulation again with the
new initial conditions.

As a second example, for the structure shown in Figure 15, the simulation time of 7.5ns
is divided into two intervals, 5ns and 1.5ns. E,(t) at the location marked probe in Figure
15 for Interval I is shown in Figure 21. The solid line has been obtained using SLeEC and
the dots is from the conventional FDTD scheme. The time-scale factor used in Interval I
is s = 7.0 x 10'%. The final values of the fields at the end of Interval I are used as initial
conditions for simulation in Interval II. The transient waveform for Interval II is plotted in
Figure 22. The value of the time-scale factor used for the smaller Interval Il is s = 7.56 x 10*1.

The number of basis coefficients used is 400 for Intervals I and II.

3.6 Summary

The Laguerre-FDTD scheme proposed in [13] has the bottleneck of being able to simulate
only for a limited time duration. This limitation has been overcome in SLeEC. The total
simulation time is divided into different intervals. At the end of an interval, the simulation

is restarted using the final values in the previous interval as initial conditions.
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Figure 19: The voltage across the capacitor V(t) with initial conditions (200 basis coeffi-
cients). Dots: WinSpice and Solid: SLeEC
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Figure 20: The voltage across the capacitor V(t) with initial conditions (400 basis coeffi-
cients). Dots: WinSpice and Solid: SLeEC
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4 Companion Models for Circuit Simulation

4.1 Introduction

SLeEC can be used for linear transient simulation of circuits made up of inductors with
mutual inductance, capacitors, and resistors. The advantage of SLeEC is the unconditional
stability by which significant speed up can be obtained over the conventional time-domain
schemes that are limited by the Courant condition. In the second step of the SLeEC
algorithm, shown in Figure 10, the circuit components are replaced by their respective
Laguerre-domain companion models. Companion models for an inductor, capacitor, and

mutual inductance are derived in Chapters 4.2, 4.3, and 4.5.

4.2 The Companion Model of an Inductor

The Thevenin and Norton forms of the companion model for an inductor of value L is shown
in Figure 23. The structure of the companion models are the same for both an inductor as

well as a capacitor. The current through the inductor at time t is i(¢). The initial current

L &
A B A /B
Y m VB v ’ v
+ — - - + | | -
i, 1(0) VAR vAR(0)
Thevenin

A R:nd-wp.T ind/cap, T \.'II.\.ll.’L;I[‘.:l Vp

L e S e T
s
Ip
Norton
Rind!cap.N
lg,indicap,h
V‘g _,_ _|;.~.-c.|:'. W B
b e Vp
- I"\.___
Ip Iind.fcap.N in
S

Figure 23: The Thevenin and Norton forms of the companion model for an inductor or a

capacitor.
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through the inductor is i(0) and the direction of the current flow is marked by the arrows
shown in the figure. The voltages at Node A and Node B are VA(t) and VB(t), respectively.
V4 and VP represent the p™ basis coefficients of the voltages VA (t) and V5(t), respectively.
The p™ basis coefficient of the branch current i is marked as i,.

In the Thevenin form, an inductor is replaced by a resistor in series with two voltage
sources. The voltage source marked V,, jnd/cap,r i a function of the initial current through

the inductor and represents the initial condition. The value of the series resistor is
Rind,T = 0.5LS, (12)

where s is the time-scale factor and the subscript 7' stands for Thevenin. The value of the
first voltage source is a function of the previous DC results of the branch currents. The

value of the first voltage source is

p—1

Vinar =Ls > iy (13)

k=0,p>1
In the first DC analysis that is done for p = 0, Vj,q1 is set to 0. The value of the second

voltage source is
V;),ind,T == LSZ(O) (14)
The rest of the chapter presents the mathematical derivation of the companion model.
The voltage across the inductor is given by

VA _ VB L% — Li(0)8(t). (15)

The time varying current and voltages, i, V4, and V2, can be written as a sum of Laguerre

basis functions as

=) igpg(D) (16)

VA= VA0, (0) (17)
VE =3 "V, (D) (18)
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The variables i, V:JA, and V;]B are the ¢' basis coefficients of the current and voltages. ¢,
is the ¢! basis function defined in Equation 7 and £ is the scaled time defined in Equation

8. The time derivative of U can be written in the Laguerre domain as [13]

dU d (&
il @(ZUQ‘%@)
q=0

= si(O.E)Uq—I— qi Uk)%(f). (19)

q=0 k=0,q>1
Substituting Equations 16-18 in Equation 15 and using the time-derivative relationship in

Equation 19, Equation 20 can be obtained.
o) oS o) q—1
St - L vPa0 = 1sY (05,4 X i )ad - L0 (@)
q=0 q=0 q=0 k=0,q>1

Multiplying Equation 20 by ¢,(t), integrating over time [0, cc], and using the orthonormal

property of basis functions given in Equation 6, Equation 21 can be obtained.
p—1
VA-VE=Ls (0.5z'p + Y zk) — Lsi(0) (21)
k=0,p>1

In deriving Equation 21, Equation 22 is used when integrating the delta function term.

| 0 = 55,000 =5 (22)

Equation 21 can be represented in the Thevenin form by a resistor in series with two voltage
sources with the values given in Equations 12-14.
Equation 21 can be rearranged to obtain a Norton representation. Solving for ¢, in

Equation 21, Equation 23 can be obtained.

1 L
= 2i(0 vA_VBy_9 ' 23
=20+ G0 =2 3 b (23)

The Norton representation of the companion model for an inductor is a resistor and two
current sources, all in parallel configuration. The Norton representation is shown in Figure

23. The value of the resistor term is

Rz‘nd,N =0.5Ls. (24)
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The value of the current source that represents the initial condition is
Ly inan = 21(0). (25)

The value of the second current source that is placed in parallel with the other components
is
p—1
lingn =2 Z ik (26)
k=0,p>1
Using KCL and KVL equations it can be verified that the companion models satisfy
Equations 21 and 23.

4.3 The Companion Model of a Capacitor

The companion model of a capacitor in the Thevenin and Norton forms are also shown in
Figure 23. The voltage across the capacitor at time ¢ is V45, The initial voltage across the
capacitor of value C is V45(0) and the polarity of the voltage is shown in the figure. V!
and V;,B represent the p'* basis coefficients of the voltages V4(t) and V2(t), respectively.
The p™ basis coefficient of the branch current i is marked as i,.

The Norton form of the companion model for a capacitor is two current sources and a
resistor placed in parallel, as shown in Figure 23. The current source marked I, jnq/cap,n 18 a
function of the initial voltage across the capacitor and represents the initial condition. The

value of the parallel resistor is

1

Regp N = ———, 27
PN 0 55C (27)

where s is the time-scale factor. The value of the first independent current source is a
function of the previously solved DC nodal voltages across the capacitor. The value of the

current source is

p—1 p—1
Imp,N:—s(J( PR V,f). (28)

k=0,p>1 k=0,p=>1

The value of the current source that represents the initial condition is given by
Ly capy = —sCVA5(0). (29)
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The derivation of the companion model of a capacitor is similar to an inductor. The current
through a capacitor is given by

dvAB

.
! dt

— CVAB(0)8(t). (30)

The time-domain current and voltages can be written in terms of the Laguerre basis func-
tions that are given in Equations 16-18. Substituting these into Equation 30, using the
time-derivative relation in Equation 19, multiplying both sides by ¢, (), integrating over
time [0, oo], and using the orthonormal property of Laguerre basis functions given in Equa-

tion 6, Equation 31 can be obtained.

p—1
ip = 0.55C(VA = VP) +sc( Z vi- Y v,f) — sCVAB(0) (31)
k=0,p>1 k=0,p>1

In deriving Equation 31, Equation 22 is used when integrating the delta function term.
Equation 31 can be represented in a Norton form by a resistor and two current sources, all
in parallel, as shown in Figure 23.

Equation 31 can be rearranged to obtain a Thevenin representation of the companion

model. Solving for VpA — V;,B in Equation 31, Equation 32 can be obtained.

1 i
) ( SRS v,f) (32)
: k=0,p>1 k=0,p>1

The Thevenin represention for the companion model of a capacitor is a resistor in series

with two voltage sources. The value of the resistor is given by

1
Rewpr = ——. 33
P 0.55C (33)
The value of the voltage source that represents the initial condition is given by
Voeap = —2VA2(0). (34)

The value of the second voltage source is given by

Veapir = (Z S ). (35)

k=0,p>1 k=0,p>1
Using KCL and KVL equations it can be verified that the companion models satisfy
Equations 31 and 32.
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4.4 Transient Simulation of Inductor and Capacitor (LC) Circuits

The series LC circuit, which is shown in Figure 24, was simulated using the SLeEC method-
ology given in Figure 10. The companion model for the circuit in Figure 24 is shown in
Figure 25. The input to the circuit is a triangular waveform with a 10ps rise/fall time

and a delay of 10ps, as shown in Figure 12. The value used for the time-scale factor is

InH IpF

Transient
Source 5

Figure 24: A series LC circuit.

p-1

Is Zik 0.5sC
iy 0.5Ls e
_ AR
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DC [ )
ianpk somre M — Vc -1
V;’? i3 () ¥ o pEch

Jomll i1

Figure 25: The companion model for the circuit in Figure 24.

s = 3.0 x 10*2. The transient voltage across the capacitor, using 200 basis coefficients, is
plotted in Figure 26. The solid line has been obtained using SLeEC and the dotted curve
is the result from a commercially available circuit-simulator tool called WinSpice®. The
simulation results show a good match up to 0.22ns. By increasing the number of basis
functions to 400, a good match is obtained up to 0.5ns, as shown in Figure 27. The solid
curve abruptly terminates around 0.5ns. As mentioned earlier in Chapter 3, simulation will
have to be restarted using initial conditions for longer simulation.

The second example is an LC network with 102 nodes that is shown in Figure 28. The

values of the capacitors and inductors are 1nF and 1nH, except for the capacitors connected
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Figure 26: Voltage V¢ in the circuit shown in Figure 24 using 200 basis coefficients. Solid:

SLeEC and Dots: WinSpice
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at Nodes 101 and 102 and the inductor connected between Nodes 101 and 102, which are 1 fF'
and 1fH. The presence of the small valued capacitors and inductors considerably reduces
the time step resulting from the Courant condition. SLeEC, which is unconditionally stable,
has a significant advantage over FDTD. Simulation of this circuit using FDTD for 100ns
requires over 1.0 x 10® iterations, but simulation using SLeEC needs only 400 iterations.
The simulation results are plotted in Figure 29. The dotted curve has been obtained
using WinSpice® and the solid curve is by using SLeEC. The input waveform is a triangular
input with a rise/fall time of 4ns and a delay of 1ns. The time-scale factor used is s =

3.0 x 10°.

4.5 The Companion model for Mutual Inductance

In this section, the companion model for inductors with mutual coupling is derived. Two
inductors, L1 and L2 with coupling M, is shown in Figure 30. The voltages across the
inductors are V; and V5 whose polarities are as shown in Figure 30. The direction of the
current through the inductors is given in Figure 30. Using the dot convention, the voltages

across the inductors including initial conditions are given by

diy diy

Vi= Lizt + M2 — Ly (0)3(t) — Mia(0)3(t) (36)
din  dis .
Vo= M=t + Ly — Mi(0)3(t) — Liz(0)3(2). (37)

In Equations 36 and 37, i1(0) and i2(0) are the initial current through the inductors at
time t = 0. The Laguerre-domain equations, Equations 38 and 39, corresponding to the
time-domain differential equations, Equations 36 and 37, can be obtained using a procedure

similar to Chapters 4.2 and 4.3.

p—1 p—1
VP = 5L, (0.5#{ + ) z”f) — sLyi1(0) + Ms <0.5¢g + ) z’§> — Msiy(0)  (38)

k=0,p>0 k=0,p>0

p—1 p—1
VP = sL, (o.5z’g+ > z§> — 5Lyiy(0) + Ms <0.5¢§’+ > z”f) — Msip(0)  (39)

k=0,p>0 k=0,p>0

Equations 38-39 can be represented using the Thevenin model shown in Figure 31. The
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Figure 31: The companion model for mutual inductance in the Thevenin form.

values of the resistors are given by

RA = 0.5L18

Rp = 0.5L5s.
The current-controlled voltage sources are

V{eVS = 0.5M sib

VECVS = 0.5M si¥.
The independent voltage sources, which represent the initial conditions, are

Vit = —Lysii(0) — Msiy(0)

Vémt = —LQS’iQ(O) — MS?;l (O)

The independent voltage sources, which represent the history terms, are

p—1 p—1
VE =5, Z i+ Ms Z iy
k=0,p>0 k=0,p>0
p—1 p—1
Vi =sLy Y i+ Ms Y il
k=0,p>0 k=0,p>0
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The companion model in the Norton form can also be obtained. Solving for i} and # in

Equations 38 and 39

p— p—1
oM M oM
—Vp—2 E i 201 (0) + Z—iy(0) — —ih — =— § i¥

p
(51

2
Lys ! k=0 p>0 L L Ry
| IM M 2M ! )
Zg:L_ﬁvp_z Z % 4+ 2i5(0 +L—“(0) Lﬁ_L—Q Z i
k=0,p>0 #=0.p>0

Equations 48 and 49 can be represented in the Norton form as shown in Figure 32.
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Figure 32: The companion model for mutual inductance in the Norton form.

values of the conductances are given by

2
Ga= s
2
Gp = Tos’
The current-controlled current sources are
]CCCS ﬂip
L, ?
e

The independent current sources that represent the initial conditions are

o 2M
]Amt = 221(0) + —ZQ(O)
Ly
y 2M
T — 24,(0) + =—1i,(0).
Ly

39

The

(50)

(51)

(52)

(53)

(54)

(55)



The independent current sources that represent the history terms are

p—1 Wi p—1
f=-2 > #-=" > i (56)

Ly
k=0,p>0 k=0,p>0
p—1 p—1
2M
k=0,p>0 2 §=0,p>0

Using KCL and KVL equations it can be verified that the circuit models in Figure 31 and
32 satisfy Equations 38-39 and Equations 48-49.

4.6 Summary

The Laguerre-domain companion models for an inductor, mutual inductance, and a capaci-
tor have been derived in this chapter. These models can be used to do transient simulation

using Laguerre polynomials using the Spice simulator.
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5 Companion Models of the FDTD grid for EM Sim-

ulation

5.1 Introduction

The companion models of the FDTD grid in 1D, 2D, and 3D are derived in this section. By
using the companion models, the number of unknowns in the matrix to be solved can be
reduced without the use of long and cumbersome equations. The companion models enable
the use of Spice to do transient EM and circuit simulation using Laguerre polynomials. The
1D, 2D, and 3D companion models for the FDTD grid are derived in Chapters 5.2, 5.3, and
5.4.

The Maxwell’s equations in the differential form consists of the following set [10] and

are summarized here for convenience:

agx _ i(aﬁi _3af;z> (58)
% _ i (aa% _8;;1) (59)
a;z _ %(8;;1 _%) (60)
% _ xa;;rx B 68% B y) (62)
- ) "

These set of equations can be conveniently represented using the equivalent circuit model
developed in Chapter 5.4.

A note on the accuracy of transient EM simulation using Laguerre polynomials compared
to the conventional time-domain scheme. FDTD is second-order accurate in both the spatial
and the time domain [10]. The spatial discretization is the same in both SLeEC and FDTD.
Therefore SLeEC is also second-order accurate in the spatial domain. In the time domain,
however, in an ideal situation when an infinite number of basis coefficients are used, Laguerre

FDTD and SLeEC are exact solution without any approximations. Since a finite number
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of basis coefficients are used in the simulation, the exact solution is approximated. It will
be shown in Chapter 6 that a time-domain response is very sensitive to the number of
coefficients that are used to generate it. It will be demonstrated later through test cases
that more number of coefficients does not mean results with better match with the FDTD
scheme. There is no range for the number of coefficients that would give a good agreement
with the FDTD results. To obtain an optimal match with the FDTD scheme, the number
of basis coefficients that must be used should be a specific number and the methodology
to determine this number is explained in detail in Chapter 6. The optimal number of
coefficients to generate the time-domain response varies with every test case, as well as
between different probe locations within any particular test case. Numerous test cases
have been simulated to verify the proposed algorithm for choosing the optimal number of

coeflicients.

5.2 1D FDTD

A 1D FDTD grid is shown in Figure 33. The only fields present are H, and E,. The
positions of the electric fields are marked by | and those of the magnetic fields are shown by
x. The boundary conditions on either side of the grid are perfect electric conductor (PEC)
boundary conditions.

The companion model of the FDTD grid is described before the derivation. The circuit
model of a unit cell in an FDTD grid in terms of resistors, independent voltage sources, and
independent current sources are given by the second subfigure in Figure 33. At the end of
the ¢'* DC analysis, the nodal voltages and branch currents represent the ¢* Laguerre basis
coefficients of the electric fields and the magnetic fields, respectively. The value of the ¢*
Laguerre basis coefficient of the electric field E,|{ is represented by the nodal voltage marked
V;" and the magnetic fields on either side of E.[j, Hy[{ ,, and H{|i11/2, are given by the

branch currents I7 | /2 and I

i1/20 respectively. The circuit model of the unit cell is cascaded

to represent as many unit cells as needed. The model is terminated by a short circuit on
both the sides to represent the PEC boundary conditions. More elaborate discussion on the
implementation of different types of boundary conditions is given in Chapter 5.5. The nodal

voltages represent electric-field coefficients and the short circuit forces the nodal voltage to
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Figure 33: The companion model for a unit cell in an FDTD grid.

be zero, therefore modeling a PEC boundary. The values of the components are

q
];ahifl/Q

q __
VTH_

A
Ry =T (64)
2
qg—1
= 2H;nlt‘i,1/2 — 2( Z H5‘11/2) (65)
k=0,g>0
Rppy = — (66)
TH ™= seAx
—2.J4|; a1
zli 9 Ek . QE””tZ 67
Lo X B) +om (7

k=0,g>0

1, € represent the material properties of the medium, Ax is the unit-cell dimension, HZ”“

and E" are the initial conditions of the electric and magnetic fields at the location marked

by their subscripts, and s is the time-scale factor given in Equation 8. The remaining section

presents the derivation of the circuit model.

Maxwell’s equations with initial conditions in 1D can be written as

OH, L 10E,
= H 080 = 5 (69
B0 = 1| e 1 (69
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H,(7,0) and E,(7,0) are the initial values of the magnetic and electric fields at position 7.
d(t) is the Dirac delta function. H,(7,t), E,(7,t), and J,(7,t) can be written as the sum of

N Laguerre basis coefficients given by

H (1) = 3 HI (7)o () (70)
Bt = 3 EX()ea(P) (71)
L) = 3 T )ea(P) (72)

Substituting Equations 70-72 into Equations 68-69, using the time-derivative relationship
given in Equation 19, and by applying the orthonormal property of the Laguerre basis
functions given in Equation 6, the following equations can be obtained:

q—1

N 2
Hilivya = —2( 2 Hi/) +2H s + —A(Ezml —Ezn) (73)
spAT
k=0,g>0
. 2 2
_ k init
Bl = —2< Z Ez|z) + 28" + A |:H5|i+1/2 — Hg\im} - ng\i- (74)

k=0,g>0

In deriving Equation 73-74, Equation 75 is used when integrating the delta function term.

/0 " 5(0) o (DE = 510, 0) = s (75)

The circuit model of the FDTD grid in Figure 33 satisfies Equations 73-74. The PEC
boundary condition dictates that the electric field be zero for all the Laguerre coefficients.
This is taken care of by a short circuit, forcing the electric-field Laguerre coefficients to be
0.

The matrix to be solved can be set up using the stamp rule [14]. The unknowns to be
solved are the nodal voltages V;? and the currents through the independent voltage sources
Vi, One possible way of reducing the matrix dimension that needs to be solved is by
substituting Equation 73 into Equation 74, so that the only unknowns that needs to be
solved are the coefficients of the electric fields. However, this procedure is very cumbersome

due to the length of the equations that needs to be manipulated. An easier approach is to
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convert the Thevenin representation of the circuit, looking into the circuit marked by the

double arrow, into a Norton form as given by the third subfigure in Figure 33.

RN = RTH (76)
Vq

If, = - 77

N RTH ( )

In the Norton representation, the only unknowns are the nodal voltages, which map to the
electric-field coefficients. The branch currents that represent the magnetic-field Laguerre
coefficients can be obtained from the solved nodal voltages in O(1) time using KCL and KVL
equations. The companion model is updated using the ¢** DC solution before performing

the (¢ + 1) DC analysis.

5.3 2D FDTD

A 2D FDTD grid with H,, E,, and E, fields is shown in Figure 34(a). As mentioned earlier

II}—N_N_@_E\/\AH‘ I'J-f—l 2.4+l
N i
1 Vig lic12 50 Rz
T2 \I‘?_j Fat 2 - m iz, Tz 212
Vi — 3 i+1,j+1/2
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w L) OER®.
' '\-/I‘.m‘:l B Ly haag
Ex 3 I‘.'d.S
A ) '
Ey, ;_jl Vg |ije12
L Vi lis1212
ij L <
Vrg ez 2
(a) A 2D FDTD Grid. (b) The circuit model for the 2D FDTD grid.

Figure 34: The companion model for the 2D FDTD grid.

in Chapter 3, transient simulation using Laguerre polynomials must be restarted at the end
of a time interval. Initial conditions must be included in the differential equations to enable

restarting the simulation. Time-domain Maxwell’s differential equations without including
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the initial conditions are given in [13]. Including initial conditions, similar to the 1D case,

the Laguerre representation of Maxwell’s equations for the 2D case, consists of the following

set:
q . init _ _rE q o q
Ey‘i,jJr% 2B, |z',j+% = —C iy (Hz|z'+;,j+; Hz|z';,j+;>
q—1
2
g9, — ki
S€Jy‘m+% 2 Z Ey‘mnt%
k=0,g>0
q _ init _ E) q o q
Ex‘iJr%,j 2B, ‘i+%,j_cy li.g (Hz|i+%,j+% Hz|i+%,j%)
q—1
k
-2 E Ez|i+%,j
k=0,g>0
q o init _ _H q . q
Hz|i+%,j+% 2H; |¢+%,j+% =—C; iy (Ey|z‘+1,j+% Ey|z‘,j+%>
q—1
H| q _ 14 _ k
+Cy' i (Ex‘zur;,jﬂ Ez|z'+;,j> 2 E Hlivsjpn
k=0,g>0
where
Crlij = _Z_
Sgi,jij
Crli; = -
SEiyjAl'Z‘
Clliy = -
S,uiJ'Al'i
CH|;: = 2
y Il T o Ay
Sl‘l”l,j y]

(79)

(81)
(82)
(83)

(84)

The two subfigures in Figure 34(b) represent the circuit model of the unit-cell shown in

Figure 34(a). The nodal voltages V;;i1/2 and Vi1 412, in the first subfigure in Figure

34(b), represent the ¢ Laguerre electric field basis coefficients, Ellijri72 and Elfi1 1172,

respectively. The nodal voltages Vii1/2; and Vii12 41, in the second subfigure in Figure

34(b), are the ¢'" Laguerre electric field coefficients F4|; 4 /2, and Ef|;11/2 541, respectively.

The branch current marked I; 1/ 11/ are the same values in both the subfigures and

represent the ¢ Laguerre magnetic field coefficient H 9541 /2,j+1/2- The values of R; and
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Vrulijie are

Ry =CF (85)
2 it

Vrulijiie = QE;nlt|i,j+% - ;‘]g|i,j+% —2 Z Eglj|z‘,j+% (86)

k=0,g>0

The values of Ry and Vg |ip1/0,; are
Ry=C7 (87)
q—1
Vrslivi2,; = 2E§nlt|z’+%,j —2 Z E§|z’+%,j- (88)
k=0,g>0

Equations 85-86 model Equation 78; Equations 87-88 model Equation 79. The values of

Ival,la Ival,27 Ival,?n R3, and R4 are

q—1
Loarn = 2H2mt|i+%,j+% —2 Z H§|i+%,j+% (89)
k=0,g>0
Ival,2 = 035[ (‘/i+1/2,j+1 - ‘/;-1-1/2,]') (90)
Tyarz = Cf (Vi,j+1/2 — Vi+1,j+1/2) (91)
1
Ry = C'—f (92)
Ry = — (93)
4 — C:IJI’_I‘

Equations 89-93 model Equation 80. I,42 and I,q 3 in Figure 34(b) are shown by dotted
circles and are voltage-controlled current sources that couple the two circuits together. It
can be verified from KCL and KVL equations that Equations 85-93 represent Equations
78-80.

The number of unknowns that needs to be solved using MNA can be reduced by con-
verting the Thevenin representations into the Norton equivalents. Looking into the circuit
marked by the double arrow shown in Figure 34(b), the Thevenin circuit can be converted
into the Norton model using Equations 76-77 in Chapter 5.2. The number of unknowns
can also be reduced by substituting Equation 80 into Equations 78-79, such that only the
electric-field Laguerre coefficients need to be solved [13]. However, this is a lot more cum-

bersome than converting from the Thevenin to the Norton equivalent circuit form. It should
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be noted that both of these methods to reduce the number of unknowns result in the same
matrix dimension. However, reducing the unknowns by the Thevenin-Norton conversion is

much simpler.

5.4 3D FDTD

The standard FDTD Yee cell is shown in Figure 35 [28]. The cross sections of the FDTD

Figure 35: The standard Yee cell.

cell at the locations marked by the dotted lines in Figure 35 are shown in Figure 36. These
represent the cross sections as viewed by standing on the +oo of y, x, and z axes and
facing the Yee cell. In the circuit model, as before, the nodal voltages represent the basis
coefficients of the electric fields and the branch currents represent the magnetic fields.

Two of the six Maxwell’s differential equations are given in Equations 94 and 95.

aHZ init _ l aEx o %
OE, . 1/0H, OH
-y Emzt5 ) == z Tz
ot v o) e( 0z Ox Jy) (95)

The initial conditions are explicitly included in the differential equations before converting
them to the Laguerre domain, to enable restarting the simulation beyond a certain time

duration, as explained in Chapter 3. Using a procedure similar to Chapter 5.2, Equations
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94-95 can be converted to the Laguerre domain as given in Equations 96- 97.

q init _ H| q o q
Hz‘iJr%,jJr%,k —2H; ‘i+%,j+%,k =-C, ‘m,k (Ey|z'+1,j+;,k Ey‘i,jJr;,k) +
q—1
H\| q _ 9 _ k
Cy lijik (Em|i+§,j+1,k Ez|z‘+%,j,k) 2 ) Hliit ik (96)
k=0,g>0

q o init _ B q . q
Ey|i,j+%,k 2Ey |i,j+%,k_ Cm |Z,],/€<Hz|i+%,j+%,k Hz|z‘—%,j+%,k)

-1
2 q
+Cf|i,j,k (Hg|z’,j+;,k+; - H;g‘i,ﬁ;,k;) - ;qu‘i,ﬁ%,k —2 Z Eg]j‘i,jJr%,k (97)
k=0,q>0

Equations 96-97 can be represented in a circuit form as shown in Figure 37. Figure 37
represents the circuit model for the magnetic field HY|;11/2+1/2% and the electric field
Eili ji1/2,k, at the location marked by the solid edges and their intersection in Figure 36.
Only the partial 3D model for a unit cell is given in Figure 37. The complete model can be
derived in a similar fashion.

The branch currents represent the ¢'* Laguerre basis coefficients of the magnetic fields

and are given by

Hilivsjoin = Liv1 jr1s (98)
Hg‘if%,jJr%,k = [z'—%,jJr%,k (99)
Hg‘i,jJr%,kJr% - [z’,jJr%,kJr% (100)
Hg|i,j+%,k—% = Iz‘,j-i—%,k—%' (101)

The nodal voltages represent the ¢'* basis coefficients of the Electric fields.
Eg(/]|z‘,j+%,k; = ‘/z‘,j—i-%,k; (102)

The branch-current circuit represents Equation 96 and the circuit connected to the node

with voltage V; j11/2 1 represents Equation 97. The values of the branch-current circuit are

q—1
Ty = 2H i1 5i0e =2 ) HElipaits (103)
k=0,g>0
L2 = Cyf (Vi+§:j+1,k - V;-i‘%,j:k) (104)
1
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The circuit connected to the node with the voltage marked V; ;112 have the values

Toar 3 = [i7j+%,k+% - [i,j+%,kf% (106)

Toaa = Liog gt = Lt it (107)

Ry =CF (108)

Ry =CF (109)

2 a1
ini k
V:erc‘i,jJr%,k =2E, t‘i,jJr%,k - ;J5|i,j+%,k -2 Z Ey|z',j+§,k- (110)
k=0,g>0

The number of unknowns that needs to be solved in DC analysis can be reduced by using
the Norton equivalent form looking into the circuit marked by the double arrow in Figure

37. The values of the Norton equivalent circuit are given by

_[val 3R2 + V:erc - [val 4R3
Iy = : : 111
N Ry + Rs (111)

Ry = Ro+R3 (112)

In has terms involving I, 3 and I,4 4 and is therefore a current-controlled current source.
In MNA analysis, the current-controlled current sources introduce additional unknowns,
besides the unknown nodal voltages [14]. However, Iy can be implemented as voltage-
controlled current sources and independent current sources by stamping the current in a
branch. A voltage-controlled current source does not introduce additional unknowns besides
the unknown nodal voltages [14]. The unknowns to be solved are only the electric-field
coefficients, which are the nodal voltages, and the matrix dimension to be solved is in its
optimal form.

With the values given by Equations 103-112, it can be verified using using KCL and
KVL equations that these satisfy Equations 96-97. The partial model in Figure 37 can
be completed in a similar fashion to satisfy the complete set of 3D Maxwell’s differential

equations in the Laguerre domain.

5.5 Boundary Conditions

Different types of boundary conditions can be easily represented in the companion model.

The companion models, besides making the implementation easier, offer a very elegant way
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Figure 36: The xSections of the Yee cell, which are marked by the dotted lines in Figure
35, parallel to the xz, yz and xy planes, respectively. The dots indicate the direction of the
fields pointing out of the page.
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Figure 37: The companion model of the 3D FDTD grid in the Laguerre domain.
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to implement the algorithm. The models for the perfect electric conductor (PEC), perfect
magnetic conductor (PMC), and the absorbing boundaries are presented in Chapters 5.5.1,
5.5.2, and 5.5.3.

5.5.1 Perfect Electric Conductor (PEC) Boundary

In the PEC boundary, the tangential electric fields to the boundary are set to zero. As
shown in Figure 38, the PEC boundary is implemented by setting a node to ideal ground.

In Figure 38, the vertical bars represent the positions of the electric fields on the grid and the

Short

Figure 38: The PEC boundary condition.

symbol X represent the locations of the magnetic fields. The last node, which represents the
electric field that is tangential to the boundary, has been set to zero. In SLeEC, the nodal
voltages represent electric field coefficients. By setting the nodal voltages, which correspond
to the tangential electric fields to the boundary, to zero, the PEC boundary condition can

be implemented.

5.5.2 Perfect Magnetic Conductor (PMC) Boundary

In the PMC boundary, the tangential magnetic fields to the boundary are set to zero. As
shown in Figure 39, the PMC boundary is implemented by leaving a branch, whose current
corresponds to the magnetic field that is tangential to the boundary, open circuit. In Figure
39, the vertical bars represent the positions of the electric fields on the grid and the symbols
x represent the locations of the magnetic fields. The current in the last branch, which
represents the magnetic-field coefficient that is tangential to the boundary, is set to zero.
By leaving the branch open circuit, the current through the branch is forced to be zero,

thereby implementing the PMC boundary condition.

52



Figure 39: The PMC boundary condition.

5.5.3 Absorbing Boundary Condition (ABC)

An absorbing boundary condition of the type given in [13] can be implemented by a voltage-
controlled voltage source in series with an independent voltage source, as shown in Figure
40. The nodes that correspond to the F, fields that are tangential to the boundary are

terminated in the manner shown in Figure 40.

A L

E,| °

Figure 40: The absorbing boundary condition.

5.6 Summary

The companion model of the 3D FDTD grid was derived. The companion model permits
a very elegant implementation and transforms solving a system of linear equations into
DC analysis. The equations can be setup using the stamp rule in modified nodal analysis.
The number of unknowns to be solved can be reduced without the use of long cumbersome
equations. The circuit representation of the PEC, PMC, and the ABC boundary conditions

were presented.



6 Choosing the Correct Number of Laguerre Basis Co-

efficients

6.1 Introduction

The final step in the SLeEC methodology is generating the time-domain waveform using
the Laguerre basis coefficients that is calculated from the DC analyses. The time-domain
waveform is extremely sensitive to the number of coefficients that is used to obtain the
waveform and the correct number of coefficients must be used for maximum accuracy. An-
alytical formulae for determining the correct number of coefficients, such as [13], have been
proposed. In this thesis, however, a numerical way to choose the optimal number of basis
coefficients has been suggested. Based on the test cases that have been simulated, it has
been determined that the numerical approach to finding the correct number of coefficients
is the best method.

The time-domain waveforms obtained using the correct number and the incorrect number
of Laguerre basis coefficients are illustrated with results from a test case that is shown in

Figure 41. The structure to be simulated is two parallel planes sandwiched between dielectric

Ax =10pm Probe
== I

L]

J, '
L] L]
T i o
Py o
3
3
J,
immx w3
| 1mm
=100 mm

Figure 41: A 2D power-ground plane structure.

material of relative permittivity 3.4. The fields are approximated with only F., H,, and H,,.
The metal planes are 100mm x 50mm. The source waveform is a Gaussian pulse placed at
the center of the cells marked J, in the figure. The cells are 1mm x 1mm, with a fine mesh

of size Imm x 10um at the center of the plane. The time-domain waveform of the electric
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field at the location marked probe is computed.

The time-domain electric-field waveform using an incorrect number of basis functions is
shown in Figure 42. The dotted waveform has been obtained using the conventional finite-
difference time-domain scheme and the solid waveform by using SLeEC. As shown in the
figure, the waveform obtained from SLeEC is very oscillatory with a large error. The time-
domain waveform between 0 — 5ns using 362 basis functions, which is the optimum number,
is shown in Figure 43. Clearly, the time-domain waveform is very sensitive to the number of
basis coefficients. Choosing the optimum number of coefficients through numerical analysis

is presented in the next subsection.

6.2 Methodology

Let {Ey, Eu, ..., E,} be the coefficients using which the time-domain waveform is generated.
Based on the test cases that have been simulated, the right value for ¢ for a 5ns simulation
interval lies between 150 — 400. The time-domain waveform is very sensitive to ¢ and there
is no range of values for ¢, which gives the right time-domain waveform. Only a few discrete
values for ¢ that can be scattered anywhere between 150 and 400 generates the right time-
domain waveform. In the methodology presented, there is no need to know the approximate
bounds between which the right value for ¢ lies.

Coefficients { Ey, E1, ..., E,,,.. } are solved using the SLeEC methodology. The last coef-
ficient @nq. 1s set to an empirically determined value. Based on the test cases simulated 500
coefficients are sufficient to represent the time-domain waveform for an interval of 5ns used

in the simulation. There are two steps involved in determining the right value for g¢:

1. If g is chosen to be small, the time-domain waveform does not have sufficient energy
content. For example, as shown in Figure 44, the time-domain waveform does not
have sufficient energy content for ¢ = 50. The solid line is the result using SLeEC
and the dots are obtained using the conventional FDTD scheme. As shown in the
figure, the SLeEC waveform decays to zero as a result of the small number of basis
coefficients used to generate the time-domain waveform. The first step is to find the ¢

above which the corresponding time-domain waveform has sufficient energy content.
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Figure 42: The time-domain waveform generated using 179 basis functions.
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Figure 43: The time-domain waveform generated using 362 basis functions.
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i
x10

Figure 44: If a small value for ¢ is chosen, then the time-domain waveform does not have

sufficient energy content.

The value for ¢ above which the time-domain waveform has sufficient energy will be
referred to as qrpee- The reason for choosing this name will be explained in a later

section.

2. If a value for ¢ is chosen such that although the time-domain waveform has sufficient
energy content, the error can be large, as shown in Figure 42. The second step is
to choose the right value for ¢ among the set of values {Ginee, -+, @maz} that has the

maximum accuracy.

The two steps are explained in detail in the following paragraphs. The methodology
will be illustrated using results from the test case shown in Figure 45. The test case is
simulated in 3D. The test case is terminated with PEC boundary. The number of FDTD
cells in the simulation is (nz, ny,nz) = (30,50, 10). The planar metallization is located on

the top surface of the cells with z-coordinates k& = 0. Modulated Gaussian waveform is used

1mm x 0.01 mm

Probe
14 x 14 mm

L]
Source

Figure 45: A planar structure with multiscale dimensions.
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as the source waveform and is located at cell (15,11,0), marked source in Figure 45. The

electric field E, is probed at cell (15,35,7).

6.2.1 Energy analysis to find gg,.. (Step 1)

The time-domain waveform resulting from using a small number of basis functions has little
energy content. The energy content of a time-domain waveform as a function of the number
of basis functions used to generate the corresponding time-domain waveform, starts close
to 0, increases steadily and flattens to a constant value, as the number of basis functions is
increased. The energy profile as a function of the number of basis functions for the example

in Figure 45 is shown in Figure 46.

ansa
s L

T R Energy {Sum of Sguares)
T T T T T T

------

0 1 1 1 1 1 1 1 1 1
] 50 100 150 200 350 200 3\/O 400 450 SO0
Number of Basis Functions

Figure 46: Energy as a function of the number of basis coefficients using Scheme 1.

Two different schemes have been proposed to calculate the energy content of a time-
domain waveform. Energy content calculated using Equation 113 by a summation of the
square of the time-domain waveform values will be referred to as Scheme 1.

Eg) = 3 WP (113)

1=

[e=]

E(q) is the energy content of the time-domain waveform generated using basis coefficients
{Eo, Ey, ..., E,}; W, is the time-domain waveform generated using the (¢ + 1) basis coeffi-

cients, and N is the number of discrete time points making up the time-domain waveform.
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The energy of the time-domain waveform as a function of the number of basis functions
increases steadily until gg,.. = 50 and then flattens out. From the energy profile, it can be
seen that the value for ¢ > qgnee has sufficient energy content. gp,e. is the point where the
energy profile becomes flat. The subscript has been labeled knee appropriately from the

resemblance of the energy profile to a knee.

6.2.2 Finding the right value for ¢ (Step 2)

The right number of basis functions can be chosen by doing an error analysis. Minimizing
the error at time ¢ = 0 is sufficient to determine the right number of basis coefficients. The
optimal value for ¢ is chosen among {qrnece, -, Gmaz} that has the smallest error at time
t=0.

By using a source waveform with the initial value zero, the field values at all locations
also have the value zero at time ¢ = 0. By starting the simulation in a known state, the
initial value is known. The source waveform used is a Gaussian pulse that is shifted in time
to ensure zero value at time ¢t = 0. Therefore, FDTD is not needed to determine the initial
value at time t = 0. The normalized error at time ¢ = 0 for ¢ between grnee and @pqq is
shown in Figure 47. The normalization is done with respect to the smallest error that occurs
for g,pt, as shown by the dotted circle in the figure. The time-domain waveform generated
using coefficients {Ey, E, ..., E,,,,} is shown in Figure 48. There exists a small discrepancy
between the FDTD waveform and SLeEC toward the end of the interval, as indicated by
the dotted circle. This discrepancy has been resolved using a more accurate evaluation of

the energy content of a time-domain waveform, as explained in the next section.

6.3 Improved Methods to Calculate Energy

In order to choose the right number of coefficients, the energy contained in the time-domain
waveform as a function of the number of basis coefficients needs to be calculated. In the
method that was mentioned earlier in Chapter 6.2, the energy content is calculated from

the time-domain waveform by computing the sum of the squares of the discrete transient
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Figure 47: The normalized error at time ¢t = 0 as a function of the number of basis coefficients

using Scheme 1.
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Figure 48: The time-domain F, field obtained using Scheme 1.
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waveform. An alternate scheme to calculate the energy content is given by Equation 114.

i=N—-1

E(g)= Y Wil (114)

i=0

E(q) is the energy content of the time-domain waveform generated using basis coefficients
{Eo, Ey, ..., E;}, W, is the time-domain waveform obtained using (g + 1) basis coefficients,
and N is the number of discrete time points making up the time-domain waveform. The
energy definition given in Equation

The time-domain waveform using 85 basis coefficients using Scheme 1 is given in Figure
48. There is a small discrepancy between the FDTD result and SLeEC toward the end of
the interval, as indicated by the dotted circle. This inaccuracy is due to the “imprecise”
evaluation of the energy content of the time-domain waveform. The energy profile obtained

using Equation 114 is given in Figure 49. Equation 114 better reflects the energy content
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0.0af & -
ol

007} %

. e,

0.06}
= 0.05| *
=
=
wo004f

0.03}

n.0zf

.
0.01F 8

0

1 1 1 1 1 1 1 1 1
0 S0 100 150 200 250 300 350 400 450 500
Number of Basiz Functions

Figure 49: The energy profile as a function of the number of basis coefficients using Scheme

2.

and Figure 49 clearly shows that the knee occurs when the number of basis coefficients used
is 100. The normalized error at time ¢t = 0 is given in Figure 50. The smallest error occurs
when 245 basis coefficients are used, as shown by the dotted circle. The corresponding
time-domain waveform is given in Figure 51. The discrepancy in Figure 48, which has been
obtained using Scheme 1, is not present in Figure 51, which has been obtained using Scheme
2. Scheme 2 has been verified for numerous examples and matches exactly with the results

from the conventional FDTD scheme. Some of these test cases are presented in Chapter 7.
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Figure 50: The normalized error as a function of the number of basis coefficients using

Scheme 2.
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Figure 51: The time-domain £, field obtained using Scheme 2.
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6.4 Summary

The time-domain waveform generated using Laguerre basis coefficients is extremely sensitive
to the number of coefficients used. The examples presented clearly demonstrate that there
is no range of values which gives the best result. The optimal number of coefficients is best

determined through numerical analysis.
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7 3D EM Simulation Results

7.1 Introduction

SLeEC requires solving a matrix of the form Az = b at every iteration. However, LU
decomposition has to be done only once because the A matrix stays constant thoroughout
the iterations. Two different node numbering schemes have been considered. For both the
schemes, the A matrix is sparse and structurally symmetric. Only one of the schemes,
however, results in a banded matrix that is memory efficient for solving a matrix using LU
decomposition. The description of the node-numbering schemes is followed by results from

3D EM test cases.

7.2 Node-Numbering Schemes

The Yee cell is shown in Figure 52. The FDTD cells are cascaded in the z, y, and z
dimensions to create a 3D mesh. For simplicity, only a single cell is shown in Figure 52,
rather than an entire 3D mesh. The cross sections of the FDTD cells that are parallel to
the planes xy, yz, and the zx planes in the entire mesh are labeled 1, 2, and 3. In Scheme
A, all the nodes lying on Planes 1 are numbered first. The nodes on Planes 2 are numbered
next, followed by the nodes on Planes 3. The sparsity pattern of the A matrix that is of
dimension 117712 x 117712 (117 712 unknowns) resulting from Scheme A is shown in Figure
53. The number of nonzero entries in matrix A is 1 476 652. The structural symmetry can
be clearly seen from the pattern. The matrix is always structurally symmetric for PEC and
PMC boundary conditions, regardless of the structure that is being modeled.

The sparsity pattern resulting from Scheme B for the same structure is shown in Figure
54. The A matrix is banded, and therefore the number of nonzero entries in L and U
factors are much less than the matrix resulting from Scheme A. In Scheme B, the nodes are
numbered on a cell by cell basis. The nodes within a cell are numbered first, before moving

to another cell.
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Figure 52: Planes 1, 2, and 3 in the inefficient node numbering scheme.

x10" Sparsity Pattern (117712 117712)

nz = 1476652

Figure 53: The sparsity pattern of the A matrix from an inefficient node-numbering scheme.

7.3 EM Test cases

Four EM test cases are presented in this section. The results show an excellent correlation
with the finite-difference time-domain scheme. The planar test cases are drawn on a single
metal layer on the top surfaces of the FDTD cells whose coordinates in the z-direction is
k = 0. The test cases are enclosed in a PEC box, as shown in Figure 55. The bottom face
of the PEC boundary serves as the ground plane. For the four test cases, only the top view
of the metallization with dimensions will be shown, as shown in Figure 56. For example,

Figure 56 is a shorthand representation for the actual set up in Figure 55.
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Figure 54: The sparsity pattern of the A matrix that is suitable for LU decomposition.

A graphical interface using Microsoft Excel® has been developed and a sample layout is
shown in Figure 57. The planar metallization layer can be drawn on the Excel file and easily
transported into the SLeEC code using a macro. The non-uniform dimensions of the FDTD
cells are also included in the Excel file, which are shown by the dotted boxes in Figure 57.

An FDTD cell located within the mesh will be referred to with coordinates (i, j, k),
where i, j, and k are between [0,nz — 1], [0,ny — 1], and [0, nz — 1], respectively. For the
first three test cases to be presented, the probe locations for the F,, F,, E., H,, H,, and H,
fields are given in Table 1. The first column is the field component and the second column

is the cell coordinates whose field component is probed.

7.4 A Split Power-Ground Plane

The first test case is a split power-ground plane. The structure is 10mm x 10mm. The
slot width has been reduced to 1pum to make the simulation multiscale and see the speedup
obtained compared to FDTD. Dimensions smaller than 1um is possible for chip-package
cosimulation. The small slot dimension also emulates the presence of on-chip structures
along with the package.

The simulation time and the memory requirement comparing SLeEC and FDTD is sum-

marized in Table 7.4. SLeEC shows a speedup of 3x compared to FDTD, at the expense of
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Figure 55: The bird’s eye view of an EM test case that is enclosed within a PEC box.

Top-view I I I

Figure 56: The top view of an EM test case.
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Figure 57: Microsoft Excel® is used as a GUI for the layout of the test cases.
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Table 1: The probe locations of the electric and magnetic fields for the three test cases.

Field Component | Probed Cell
E, (19,15,5)
E, (20,27,5)
E. (20,27,0)
H, (10,26, 5)
H, (20,8, 5)
H, (8,5,5)

more memory. The Courant time step used in FDTD is 4 x 10~'s. The source waveform
is modulated Gaussian and is located at the location marked Src in Figure 58. The contour
maps of the F, field with slot widths of 1um and 20um are given in Figure 59. As expected,
the coupling to the power island is a lot less for a larger slot-width spacing. The electric
and magnetic fields that are probed at the locations given in Table 1 are shown in Figure
60 - Figure 62. The numbers marked on the figures show the maximum amplitude of the
fields. The dotted waveform has been obtained using FDTD and the solid waveform using
SLeEC. There is an excellent correlation between the two datasets. The captions beneath
the figures indicate the number of coefficients used to generate the time-domain waveform in
SLeEC. The methodology given in Chapter 6 has been used to choose the optimum number

of basis coeflicients.

10mm

.Src
Slot Width = 1um

10mm

4 5mm

Figure 58: A split power-ground plane.
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Table 2: The memory and simulation time comparison for Test case 1.

Solver | Simulation Time | Memory

FDTD 90min. 1kB

SLeEC 30min. 150MB

Slot Width = 20um

Slot Width = Tum

Figure 59: The contour maps of the split-plane test case.

o Ey {W/m) P {Slat W idth 1um)

Ex (Vim) F (Slot W idth 1um)
T T T

Wim

Figure 60: E, (126 basis coefficients) and E, (208 basis coefficients) fields in the split-plane
test case. Solid: SLeEC and Dots: FDTD
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15e-3
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Figure 61: E, (490 basis coeflicients) and H, (226 basis coefficients) fields in the split-plane
test case. Solid: SLeEC and Dots: FDTD

107 Hy F (Slat Width Tum) gt Hz P (Slat Width Tum)
5 T T T T T

7e-9

it 1e-9 ] il

Figure 62: H, (259 basis coefficients) and H, (398 basis coefficients) fields in the split-plane
test case. Solid: SLeEC and Dots: FDTD
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7.5 An EBG Structure

An EBG test case 18mm x 36mm is shown in Figure 63. The source waveform J, is a

modulated Gaussian placed at the location indicated on the figure. The slot widths are

1pum.

Src

18mm

36 mm

Figure 63: A 2D EBG test case.

The contour maps of the E, field after 950ps, 1200ps, and 1300ps are shown in Figures
64, 65, and 66, respectively. The simulation time and the memory requirement comparing
SLeEC and FDTD are summarized in Table 7.5. SLeEC shows a speedup of 3x compared to
FDTD, at the expense of more memory. The Courant time step used in FDTD is 4 x 107 °s.

Table 3: The memory and simulation time comparison for Test case 2.

Solver | Simulation Time | Memory

FDTD 90min. 1kB

SLeEC 30min. 150MB

The number of cells used in SLeEC is 30 x 50 x 10. The PEC boundary condition is
used to terminate the mesh. The electric and magnetic-field plots at the locations given in

Table 1 are shown in Figure 67 - Figure 69.
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Figure 64: The 2D EBG contour map of the |(£,, E,)| field after 950ps.

Figure 65: The 2D EBG contour map of the |(E,, E,)| field after 1200ps.
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Figure 66: The 2D EBG contour map of the |(E,, E,)| field after 1300ps.

w10t Ex EBG (Slet Width 1um) gt Ey EBG (Slat Width 1um)
. . . . . T T T T T

Figure 67: E, (413 basis coefficients) and E, (413 basis coefficients) fields in the EBG test
case. Solid: SLeEC and Dots: FDTD
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_x 10° Ez EBG (Slct Width 1um) x10° Hx EB G (Slat Width 1um)
: T : T T T T

6e-8

Figure 68: E, (413 basis coefficients) and H, (141 basis coefficients) fields in the EBG test
case. Solid: SLeEC and Dots: FDTD

%10t Hy EBG (Slot Width 1um) x10° Hz EBG (Slot Width 1um)
. . 5

1e-8 ! h 1.2e-8

Alm

Figure 69: H, (171 basis coefficients) and H, (141 basis coefficients) fields in the EBG test
case. Solid: SLeEC and Dots: FDTD
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7.6 On-chip Coupled Lines

The third test case is shown in Figure 70. Three coupled transmission lines with 100nm

spacing between the transmission lines and 1mm long has been simulated.

waveform is modulated Gaussian placed at the solid dot on the figure.

0.1um

1um

1 mm

5 cells

Figure 70: Three on-chip coupled transmission lines.

The source

The contour map of the E, field is shown in Figure 71. The electric and magnetic field

plots at the locations given in Table 1 are shown in Figure 72 - Figure 74. The dotted line

has been obtained using FDTD and the solid curve is the simulation result using SLeEC.

Numbers on the figures show the maximum amplitude of the field. The Courant time step

used in FDTD is 2.0 x 10~ %%s. The simulation time and the memory requirement comparing

SLeEC and FDTD are summarized in Table 7.6. Over 70x speedup has been obtained using
SLeEC compared to FDTD. The number of cells used in SLeEC is 30 x 50 x 10. The PEC

Table 4: The memory and simulation time comparison for Test case 3.

Solver | Simulation Time

Memory

FDTD | 2160min. (36hrs)

1kB

SLeEC 30min.

150MB

boundary condition is used to terminate the mesh.
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Figure 71: The contour map of the E, field.

10" Ex 3 Coupled Lines x10° Ey 3 Coupled Lines

Wm

-3
=10

Figure 72: E, (49 basis coeflicients) and E, (446 basis coefficients) fields of the transmission-
lines test case. Solid: SLeEC and Dots: FDTD
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<10t Ez 2 Coupled Lines 10" Hix 3 Coupled Lines
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1e-13

58'4 i 0.5k

Wim

Figure 73: FE. (409 basis coefficients) and H, (188 basis coefficients) fields of the
transmission-lines test case. Solid: SLeEC and Dots: FDTD

w10 Hy 2 Coupled Lines T Hz 3 Coupled Lines
s
T T

S5e-13 T4

6e-13

Alm
=)
Alm

Figure 74: H, (437 basis coefficients) and H, (411 basis coefficients) fields of the
transmission-lines test case. Solid: SLeEC and Dots: FDTD
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7.7 A Chip-Package Structure

The results from a chip-package cosimulation test case is presented in this section. The
simulation, including defining the test case, has been done by Myunghyun Ha, member of
the EPSILON group, Georgia Tech. The top view of the structure is shown in Figure 75.

The structure that has been modeled is on-chip interconnects in the metal layers M1 and

T“‘E*‘”““B””Im Trace width 100 nm
Probe

Source _
o] ' [.!@ : o]

LG

100 pm

Figure 75: A chip-package structure with multiscale features.

M2, connected by vias and routed on the redistribution layer, through the solder pads, to
the package and routed as package-level interconnects.

A feature of the chip-package structure is multiscale dimensions. The on-chip structures
are in the nm scale, the dimensions of the structure present at the interface betwen the
chip and the package, such as the redistribution layer, solder pads, are in the um scale,
and package structures such as the power-ground planes are in the mm range. The on-chip
structures that are in the nm scale require a very fine mesh, and therefore the simulation
time can become prohibitively large using conventional FDTD scheme due to the Courant
time-step limit. Non-uniform mesh dimensions are given in Figure 76 and the cross section
of the structure is shown in Figure 77. The 3D layout showing the structure is given in
Figure 78. Time-domain response of the electric field at the location marked probe in Figure
75 is given in Figure 79. There is an excellent correlation between SLeEC and FDTD. The
number of cells used in the simulation is 15 000. FDTD takes 1 day to run, while SLeEC
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takes only 5 minutes to complete. The simulation is run on a Pentium quadcore 2.4GHz

processor with 4GB RAM.

Figure 76: Non-uniform mesh dimensions simulated using SLeEC.

Solder pads

Figure 77: The cross section of the different metal layers.
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Figure 78: The 3D Layout of the chip-package structure.

— SLeEC
FOTD

Figure 79: SLeEC and FDTD results of the chip-package structure.
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7.8 Summary

Simulation results from a chip-package structure were presented to illustrate the scalability
of the technique. For this test case, a speed up of over 150X is obtained compared to the
conventional FDTD scheme. The same number of FDTD cells are used in the comparison.
The field plots show good correlation with the FDTD scheme. The optimal number of
coefficients to generate the time-domain waveform are chosen based on the methodology

presented in Chapter 6.
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8 Time-domain to Frequency-domain Transformation

8.1 Introduction

The procedure to obtain frequency-domain parameters through time-domain simulation is
presented in this section. The methodology presented in this section can be applied to

structures where voltages are well defined. The technique is demonstrated using a test case.

8.2 A Test Case to Illustrate the Transformation

The power-ground plane that has been simulated in time domain using the conventional
FDTD scheme, before converting the results to frequency-domain parameters, is shown in

Figure 80. The 2D structure consists of two metal planes sandwiched between a dielectric

Src
@

[
Probe

Figure 80: A power-ground plane test case.

material with permittivity €, = 3.8 and thickness 60pm. Only the E., H,, and H, compo-
nents are used to model the structure. The number of FDTD cells used is 40 x 40 and the
perfect magnetic conductor (PMC) boundary condition is used to terminate the mesh. The
metal plane is 15mm x 15mm. The locations marked Src and Probe will be referred to as
Port 1 and Port 2. The ports are defined with respect to the ground node located directly

beneath the postive terminals of the port definitions.
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For the two port definitions, Z;; and Zy; can be obtained from Equations 115 and 116.

_ F{W[n]}

Zy = F{Il[n]}|f2:° (115)
_ F{W[n]}

Zn F{L [} | 1=0 (116)

F' is the discrete Fourier transform operator. The source waveform for J, is the Gaussian
pulse given in Equation 117. The value for 3 is chosen to ensure that the source waveform

has sufficient frequency content between 0 — 20GHz.

o 2
J.[n] = exp (—%) (117)
n=0,1,2..., ng = 25000, 3 =750 for At=1.0x10"13

The voltage at Port i, V;, and the input current at Port i, I;, can be obtained from Equations

118 and 119.

Vi = E.d for uniform E, (118)
= J.AzAy. (119)

e

The variables in Equations 118 and 119 are shown pictorially in Figure 81. The cross section
of the power-ground plane, with thickness d and uniform FE,, is shown in Figure 8la. The
top view of the FDTD grid with a J, source is shown in Figure 81b. Az and Ay in Equation
119 are the dimensions around the J, source.

The time-domain FE, values at Ports 1 and 2 have been sampled every 25ps. The total
simulation time is 1us. For At = 25ps, the values for # and ng, which correspond to the
J, parameters given in Equation 117 for At = 1.0 x 107!, are 3 and 100, respectively. The
frequency values corresponding to the discrete Fourier transform of a time-domain response
with sampling time 7" and N sampled points are given by [22]

fr (units Hz) = i,k =0,1,...N —1. (120)
NT

The time-domain £, waveform at Probe 1 is shown in Figure 82. The frequency-domain

parameters obtained using Equation 115, is shown in Figure 83. The solid waveform is

the result from FDTD and the dotted waveform is the result from MFDM. The MFDM
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FDTD grid

AX

a) Voltage b) Current

Figure 81: Voltage and current definitions.

«10° Time-domain E-field at Probe 1 (No Windowing)

zero level

Ez (V/m)

"o p1 02 03 04 05 0B 07 08 09 1

Time (s) w10°

Figure 82: The time domain E, waveform between 0 — 1us at the location marked Src in

Figure 80.

methodology is given in [18]. The solid waveform is very oscillatory. The reason for the
oscillation is the nonzero steady-state value of the time-domain FE, waveform, as shown in
Figure 82. By multiplying the time-domain F, waveform by the right half of the Kaiser
window, which is shown in Figure 84, the oscillation can be removed, resulting in a good
agreement with MFDM. The time-domain F, waveform with windowing is shown in Figure

85 and the Z;; parameters, which has been obtained after windowing of the time-domain F,
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Figure 83: Z;;, 0-10GHz, without windowing and the PMC boundary condition has been
used to terminate the mesh. Dots: MFDM [18] and Solid: FDTD
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Figure 84: The second half of the time-domain Kaiser windowing function.

waveform, is shown in Figure 86. The Z;5 parameters obtained with and without windowing
of the time-domain E, waveform are shown in Figure 87 and 88. A good correlation between

FDTD and MFDM has been obtained using windowing of E, waveforms.
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1 Time-domain E-field at Probe 1 (With Windowing)

Ez (v/m)

o5 06 07 08 08 1
Time (g) x10°®

Figure 85: The time domain F, waveform in Figure 82 with windowing.

Z11 (PMC Boundary, With Windowing)
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Figure 86: 71, 0-10GHz, with windowing and the PMC boundary condition has been used
to terminate the mesh. Dots: MFDM [18] and Solid: FDTD
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Figure 87: Zi5, 0-10GHz, without windowing and the PMC boundary condition has been
used to terminate the mesh. Dots: MFDM [18] and Solid: FDTD
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Figure 88: Z15, 0-10GHz, with windowing and the PMC boundary condition has been used
to terminate the mesh. Dots: MFDM [18] and Solid: FDTD
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8.3 Summary

The transformation from time domain to the frequency domain may require the use of
windowing in the time domain to reduce ripples in the frequency domain. An excellent

correlation with a frequency-domain solver has been obtained for the test case presented.
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9 Efficient Use of Full-Wave Solvers For Chip-Package

Cosimulation

9.1 Introduction

A method by which full-wave solvers can be applied efficiently for cosimulation of chip-
package structures is presented in this section. The traditional and the proposed methods
for chip-package cosimulation are given in Figure 89. In the traditional way, starting with the
layout of the chip and the package, full-wave solvers are used to obtain the frequency-domain
parameters between ports that are defined on the layout. The frequency-domain parameters,
which capture the parasitics of the layout, are used to do the time-domain simulation. In the
methodology that has been proposed in this thesis, the signal-distribution network (SDN) in
the package, the power-distribution network (PDN) in the package, and the on-chip struc-
tures are analyzed independently. As mentioned earlier, the power-distribution network is
composed of power-ground planes and decoupling capacitors; the signal-distribution network
is made up of interconnects and passive terminations. Full-wave solvers are used to capture
the frequency-domain parameters of the SDN, the PDN, and the on-chip structures sepa-
rately and then integrated together in the following step. The integrated frequency-domain
parameters is used for the time-domain simulation. By breaking up the problem into smaller
pieces and applying full-wave solvers on the smaller blocks, the memory requirement and
the computation time can be reduced. As a starting point, the focus of this section will be
on integration of SDN and PDN networks at the package level. The on-chip structures have
been simplified to current sources with a pseudo-random bit stream to emulate the CMOS

logic.

9.2 SDN-PDN Cosimulation

Existing techniques are limited by either accuracy or time and memory required for compu-
tation. The newly proposed transient simulation methodology to cosimulate SDN and PDN
is shown in Figure 90. The first step is to separate the power-distribution network (PDN)
and the signal-distribution network (SDN). The frequency parameters of the SDN and the
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Figure 89: The traditional and proposed methodologies for chip-package cosimulation.

PDN, which capture the parasitics of the structure, are first obtained separately and then
integrated together in the following step. The frequency parameters of the power-ground
planes can be obtained using the Transmission Matrix Method (TMM) without the need
for full-wave solvers [16]. The frequency parameters of transmission lines can be obtained
from the ADS® library without any numerical analysis. The second step is to integrate
the frequency parameters of the interconnects and the power-ground planes. Not all of the
ports resulting after the integration of the SDN and the PDN are needed for transient simu-
lation. Some of these ports can be eliminated to save memory, which is the third step. The
bandlimited frequency-domain data of the power-ground planes and the interconnects can
violate causality [17]. Delay between two ports can be extracted from the frequency-domain
parameters. The delay information that is extracted in Step 4 is used in the final step, which
is transient simulation, to obtain simulation results that do not violate causality. The first
four steps are operations done in the frequency domain and the final step is in the time
domain.

The remaining part of this section is organized as follows: obtaining the frequency-
domain parameters of SDN and PDN is given in Chapter 9.3; integration of SDN and PDN
is explained in Chapter 9.4; port reduction is presented in Chapter 9.5; delay extraction
and causality enforcement is outlined in Chapter 9.6, followed by transient simulation in

Chapter 9.7.
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Figure 90: The SDN-PDN cosimulation methodology.

9.3 Frequency-Domain Parameters of PDN and SDN

The frequency-domain parameters of the power-ground planes can be obtained using the
Transmission Matrix Method (TMM). In the transmission matrix method, a power-ground
plane is divided into unit cells, as shown in Figure 91. The parasitics of each unit cell
is modeled as shown in Figure 91. Expressions relating the values of the parasitics and
the structure dimensions and the material properties are given in [16]. Ports are defined
at the vertices of the unit cells and the frequency parameters can be obtained by solving
a system of linear equations. Frequency-domain parameters of power-ground planes with
more than two metal layers can be obtained using the Multilayer Finite Difference Method
(MFDM) [18]. Frequency parameters of interconnects can be obtained using the ADS®

library or measurement data.

9.4 Integration of PDN and SDN

Three common types of interconnect configurations in a package are shown in Figure 92.
The three types are microstrip, coplanar waveguide, and stripline configurations. The fourth
type shown in the figure is a combination of the first three cases. In the microstrip configu-

ration, an interconnect is routed above a power-ground plane; in a coplanar waveguide, the
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Figure 91: A power-ground plane.

interconnect is routed in the same layer as the power or the ground plane; in a stripline con-
figuration, the interconnect is sandwiched between the power plane and the ground plane.
Modeling methods for the microstrip and the coplanar waveguide are given in Chapter 9.4.1
and 9.4.2, respectively. A stripline model is given in [19] and a similar methodology has
been applied to model the coplanar-waveguide configuration. Models for microstrip, copla-
nar waveguide, and stripline can be combined together to represent interconnects that are

a combination of different types of configurations.

9.4.1 Microstrip Configuration

A microstrip line referenced to a nonideal power-ground plane is separated into a power-
ground plane pair and a microstrip line as shown in Figure 93. Two ports P1 and P2 are
defined on the power-ground plane at the near-end reference and the far-end reference of
the microstrip line, as shown in Figure 93. The frequency parameters of the power-ground
plane can obtained using TMM, as explained in Chapter 9.3. The frequency response of the
microstrip line can be obtained using the ADS® library.

The circuit model of a single microstrip line referenced to a nonideal power-ground
plane for some frequency is shown in Figure 94. For the two-port admittance-matrix model

shown in Figure 94, the resistors represent self-admittance parameters Y;; and Yas; voltage-
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1 Voo
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Figure 92: The common types of interconnect configurations in a package.

controlled current sources represent transfer-admittance parameters Y5 and Ys;, which cap-
ture the coupling between the ports.

The integrated microstrip line and the power-ground plane can be represented as an
admittance matrix using the stamp rule [20]. As explained in [20], Y-parameter blocks that
are referenced to a global ground node can be stamped in the admittance matrix without
the need for a circuit model. For this reason, the two-port parameters of the power-ground
plane is shown by a black box in Figure 93, rather than a circuit model.

To model M coupled transmission lines referenced to a power-ground plane, 2M ports
are defined on the power-ground plane. T'wo ports on the power-ground plane are defined for
each transmission line, one at the near-end reference and the other at the far-end reference of

the interconnect. The circuit model to represent an M — port network can be extended from

?{ P20

Figure 93: A microstrip line over a power-ground plane.
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the two-port network shown in Figure 94. The self admittance at each port is modeled by a
resistor and voltage-controlled current sources are placed in parallel to model the coupling
to all the other ports. The admittance matrix circuit model for an M — port network

referenced to a nonideal power-ground plane is shown in Figure 96.

9.4.2 Coplanar-Waveguide Configuration

In this section, a model for a conductor-backed coplanar-waveguide structure is developed.
Due to a high wiring density in a package, an interconnect may be routed on the same layer
as a power or a ground plane, as shown in Figure 92. A slot is created on a plane and the
interconnect is routed in the slot.

The cross section of a conductor-backed coplanar-waveguide structure is shown in Figure
97. The interconnect and the Vdd plane can be viewed as multiconductor transmission lines
over a ground plane. Although the cross section in Figure 97 shows three conductors over
a ground plane, it is assumed in the derivation that the Vdd conductors are connected
together and are treated like a single conductor. By using multiconductor transmission-line
theory [9], the Vdd plane and the interconnect can be decoupled from each other. The
coupling between them can be represented using controlled sources at the near end and the
far end of the transmission lines, as shown in Figure 98. Remaining of this section presents
the mathematical derivation of the circuit model.

Multiconductor transmission-line equations in the frequency domain can be written as,

dizv(z) = (R4 jwl)I(z) = —ZI(2) (121)
dilzf(z) = (G + jwO)V(2) = —YV(2). (122)

]:%, i, CZJ,C:' represent per unit length resistance, inductance, conductance and capacitance
matrices; V(z) and I(z) represent the voltage and current at some location z along a trans-
mission line with uniform cross section, as shown in Figure 99; Z and Y are per unit length
impedance and admittance matrices.

Let 1:} and 7:“‘/ be transformation matrices to transform variables I and V to I,,, and V,,,
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Figure 94: The circuit model for a microstrip line referenced to a power-ground plane.

Vdd
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Figure 95: N coupled lines referenced to a power-ground plane.
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respectively.

[ =TI, (123)

V =Ty, (124)

Substituting Equations 123 and 124 in Equations 121 and 122, Equations 125 and 126 can
be obtained.

dizvm(z) e T ZT I (2) = —ZnIn(2) (125)
L 1(2) = T VT V() = Tl (126)

7:} and TV are chosen such that Zn and }:/m result in diagonal matrices. Equations 125 and
126 are transmission-line equations with no coupling between the transmission lines. The
decoupled transmission lines will be referred to as modal transmission lines. Zn and §:/m
are per unit length impedance and admittance parameters of the modal transmission lines,
whose modal voltages and modal currents are V;, and I,,,, respectively (see Figure 99).
The transformation matrices 7:}/ and 7:} can be written in terms of self and mutual in-

ductances for the special case of two lossless transmission lines in a homogeneous medium.

Port 1 Y R — Q ¥V
2M-port
Power-
Plane Port 2 Yas R () YouVig
Parameters l

PortM % y,.,,é)y,”v, ,,,,,,,,, () Yiew Vs

Figure 96: The Y-parameter model for an M-port network referenced to a power-ground

plane.
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Figure 97: The cross section of a coplanar-waveguide structure.

The lossless requirement can be relaxed after the circuit model has been derived and dielec-
tric and conductor losses can be included. For the special case of perfect conductors in a

homogeneous medium, the following relationships hold true [9]:

R=0 (127)
CL=LC = pel (128)
7L = LG = pol (129)

From Equation 127, the per unit length impedance matrix is simply the impedance of per

unit length inductance matrix, as given in Equation 130.

ol
gl
gl

7 =R+ jwL = ju (130)

Suppose that 7:“‘/ and 7:} can be found such that the inductance matrix L is diagonalized to

L,,, then it can be shown that the admittance per unit length matrix is also diagonalized.

T 1 ZT; = jwTy ' LTy = jwL,, (131)

Vdd Plane

_@_

[t

Uncoupled T-Lines

R

Interconnect

Figure 98: The coupling between the transmission lines is captured using controlled sources.
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Figure 99: N coupled transmission lines and modal transmission lines.

In Equation 131, Em is a diagonal matrix that represents per unit length modal inductance.

TrYTy, = T;7YG+ jwC)Ty (132)
= T7'GTy + juT;'CTy (133)
= poT; 'L Ty + jopel ' LTy, (134)
= (po + jwpe)(Ty ' LT;) ™ (135)
= (po + jwpe) L, (136)
= Y, (137)

Equation 134 is obtained from Equation 133 by substituting the relationships between L
and C , as well as G and i, given in Equations 128 and 129. Equation 136 has been obtained
based on the assumption that the transformation matrices JZ“V and 1:} diagonalizes the per
unit length inductance matrix. Equations 132 - 137 show that for lossless conductors in a
homogeneous medium, if the per unit length inductance matrix is diagonalized, then the per
unit length admittance matrix is also diagonalized. Therefore, it is sufficient to diagonalize
the per unit length inductance matrix to transform the coupled transmission lines to the
decoupled modal transmission lines.

For the special case of two lossless transmission lines in a homogeneous medium, an
analytical expression for the transformation matrices that is written in terms of the per
unit length inductance matrix entries can be derived. Let the per unit length inductance

matrix of a two-conductor transmission line over a ground plane be

Lpp LPS

Lsp Lss

=~
Il

(138)
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In Equation 138, subscript p refers to the power plane and s refers to the signal line. If the

transformation matrices Ty, and T are chosen as,

1 0
Ty = (139)
—k 1
1 k
T, = (140)
01
—L
where k = —2, (141)
Ly

then Ty and 77 diagonalize the per unit length inductance matrix given in Equation 138.
Diagonalizing the impedance matrix, which is the same as diagonalizing the inductance
matrix due to the lossless condition, also diagonalizes the admittance matrix as shown in
Equations 132 - 137.

The two modes of propagation in a conductor-backed coplanar-waveguide structure are
the parallel-plate mode and the coplanar-waveguide mode. The electric field patterns for
the two modes are shown in Figure 100. In the coplanar-waveguide mode, there is no electric
field, or in other words no voltage difference, between the Vdd plane and the Gnd plane.
The parallel-plate mode captures the electric field between the Vdd plane and the Gnd

plane, as shown in Figure 100.

Coplanar-Waveguide Mode

AP
-

Parallel-Plate Mode

Figure 100: The E-field patterns for the coplanar-waveguide mode and the parallel-plate

mode.

The circuit model for a coplanar-waveguide structure is shown in Figure 101. VZM, Vours

I, and I? = are the modal voltages and currents of the parallel-plate mode at the near

99



M MY

Y e —- — L -— o=
o ; i sl i o
p ‘F Ipar Vpa  VddPlane  Viy Ipa ® P Vp
£ T

i Uncoupled T-Lines i

j.;[,p P KT 7

£ ] e} P
- I;'—F'h...n" P+ *_& — JjeTT
L:i 5 CPW Veopw Interconnect ['C‘P“'_ ISP]T' 5 I’}ﬂ

[C,

Figure 101: The circuit model for a coplanar-waveguide structure.

end and the far end of the modal transmission line. Vi, Vipw, Iopw, and Igpy, are the
modal voltages and currents of the coplanar-waveguide mode at the near end and the far
end of the modal transmission line. VZ, vy, II’;, and [ are the voltages and currents at the
input and the output of the physical transmission line. V7, V° I! and I? are the voltages
and currents at the input and the output of the interconnect.

The coupling information between the modal transmission lines is captured in the trans-
formation matrices 7:}/ and T;. The coupling terms are added to the modal transmission
lines such that Kirchoff’s Voltage Law (KVL) and Kirchoft’s Current Law (KCL) equations
at the input and the output ports of the modal transmission lines satisfy Equations 142-143

of the transformation matrices.

|7 1 0 Voar
Pl o= P (142)
V, —k 1 Verw
I 1 k I ar
Pl o= P (143)
I, 0 1 Icpw
—L,,
where k = ——, (144)
Lpp

The modal transmission lines can be replaced with two-port frequency parameters of
the power-ground plane and the interconnect that can be obtained using TMM and the
ADS® library (see Figure 102). The advantage of this circuit model is that the frequency
parameters of the power-ground plane and the interconnect can be obtained separately and

integrated together in the following step, making the process memory and time efficient.
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9.4.3 A test structure to verify the coplanar-waveguide model

The test case shown in Figure 103 was simulated using the coplanar-waveguide model and
the results were compared with Sonnet® EM simulator. The top view of the test structure
and its cross section are shown in Figure 103. A slot is created in the middle of the Vdd plane
and an interconnect is routed in the slot on the same layer as the Vdd plane. The spacing
between the interconnect and the Vdd plane is 100um. The dimensions of the power-ground
plane is 10mm x 10mm and the length of the interconnect is 7.4mm. The entire structure
is embedded in a dielectric material with ¢, = 3.8. The width of the interconnect is 1mm.
The locations of four ports P1, P2, P3, and P4 are marked in the figure. P1 and P2 are
located on the Vdd plane; P3 and P4 are located on the interconnect. Si3 (dB and phase),
Si4 (dB and phase), and S34 (dB and phase) are plotted in Figures 104-109. Results show

excellent correlation with Sonnet® over a wide bandwidth of 8GHz.

9.5 Port Reduction

The integrated power-ground plane and the interconnect can be represented as an admit-
tance matrix, which will be referred to as Yj,;, using the stamp rule [20]. The dimension of
Yt can be reduced to save memory because not all of the ports are needed for transient sim-
ulation. The ports of interest in transient simulation are the ports where the driver circuit
and passives are connected, and ports where the voltage waveforms are to be observed. The
purpose of this step is to reduce the number of ports to only those of interest in transient

simulation.

! o
! o
P B If — —- ; ; ¥| Two-port freql.;e?'lc'_.f - N F o . ;

V P I 4 parameters of the | [7 ) -

. il P power-ground plane par - par P

k¥ KVE

€3 . )
NS el oy 2
7 5 CPW T} po o E h
Vs CP_m interconnect CPW “CPW I’.a:

Figure 102: The modal transmission lines replaced with two-port frequency parameters.
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Figure 103: A test structure to verify the CPW model.

The algorithm for port reduction is described here [20]. The rows and columns of Y,
are reordered such that the matrix entries for the ports of interest, Y, are on the top left

of the matrix, as shown in Equation 145.

Ipp _ Y;7p }/pc ‘/pp ( 1 4 5)
Iother )/cp Y;c ‘/other

Setting Ioeher to 0 and solving for I_pp, the Y-matrix of the reduced network is given in

Equation 146.
Yeduced = }/pp + }/pc(_Ychlifcp) (146)

Y educea can be converted to S-parameters using the equations given in [20] [21].

9.6 Causality Enforcement Through Delay Extraction

In simulation of long interconnects using frequency-domain parameters the finite bandwidth
and the limited number of points in the frequency-domain data may cause simulation results
to violate causality [17]. Frequency response from [0, co] will be needed to accurately capture
the delay in the impulse response. Delay can be extracted from the frequency-domain
parameters using the Hilbert transform and this information can be used to obtain a causal
impulse response of the S-parameters [17]. The remainder of this subsection presents a

summary of the methodology in [17].
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Figure 104: S;3 magnitude of the CPW test structure. Dots: Sonnet and Solid: CPW
Model
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Figure 105: Si3 phase of the CPW test structure. Dots: Sonnet and Solid: CPW Model
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Figure 106: S;4 magnitude of the CPW test structure. Dots: Sonnet and Solid: CPW
Model
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Figure 107: S14 phase of the CPW test structure. Dots: Sonnet and Solid: CPW Model
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Figure 108: S5, magnitude of the CPW test structure. Dots: Sonnet and Solid: CPW
Model
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Figure 109: S34 phase of the CPW test structure. Dots: Sonnet and Solid: CPW Model
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Let S be the frequency response between two ports with a long delay. S5 is separated

into minimum-phase and all-pass components, as given in Equation 147 [22].

Si2(jw) = Sizmin(jw)Si2,4p(jw) (147)

The delay is embedded in the all-pass component that can then be calculated. The magni-
tude and the argument of the minimum-phase component of S-parameters can be calculated

using Equations 148 and 149.

[S12min(j0)| = [S12(jw)] (148)
4 -1 i ‘ —0
arg(Sizmin(jw)) = gP/ log|S12(j0)|cot (WT) do (149)

The all-pass component has unity magnitude and therefore, the magnitude of the minimum-
phase S-parameters is the same as the magnitude of the S-parameters, as given in Equation
148. The argument of the minimum-phase S-parameters can be computed using the Hilbert

transform given in Equation 149. The all-pass component of Si5 is given in Equation 150.

. S12(jw »
Slg,AP(ju)) = SHLJ(]L) e JwTy (150)

The all-pass component is assumed to be of the form e=7“T¢_ where T} is the delay between

Ports 1 and 2. Solving for the port-port delay,

T, — _aTg(Smc,uAP(jw))' (151)

The impulse response of Sis can be written as

F7H(S12) = F ' (Si2minS12,4pP) (152)
= Fﬁl(SlzvmineijWTd) (153)
= S12,min (t - Td), (154)

where operator F'~! is the inverse Fourier transform and S12,min(t — Ty) is the impulse
response of the minimum-phase S-parameters shifted by time delay T,. For non-uniformly
spaced frequency samples, the non-uniform inverse discrete Fourier transform can be used
[23]. The causal impulse response of Si5 can thus be obtained by ensuring that the impulse

response remains zero until the time delay 7.
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9.7 Transient Simulation

There are two possible schemes for transient simulation. Both schemes require solving a
matrix of the form Ax = b at each time step to compute the unknown voltages and currents.
The difference between the two schemes are the way in which the S-parameter equations,
terminations, and sources are set up in the A matriz. The two schemes are presented in
Chapters 9.7.1 and 9.7.2. In the second scheme, the equations are set up in a modified nodal
analysis (MNA) framework. The industry standard for circuit simulation is Spice and Spice
uses MNA formulation for circuit simulation [14]. The second scheme, which is based on
MNA formulation, will therefore be compatible with existing tools and is a more attractive

option.

9.7.1 Transient Simulation Using Signal-Flow Graphs

The S-parameter equations, together with sources and terminations, are set up in a matrix
of the form Ax = b. The matrix is solved once at each time step to calculate the unknown
voltages and currents, with the b matriz updated at the end of each iteration. The transient
simulation methodology will be illustrated with an example [25].

An S-parameter network may be represented in the form of a signal-flow graph (SFG)
[24]. A two-port network and its signal-flow graph is shown in Figure 110. The two-port
network represents the transmission line frequency response. The terminations at the near
end and the far end of the interconnect are Z; and Zs; g1(t) and go(t) are voltage sources
connected to the near end and the far end of the interconnect. S-parameter equations in
the time domain can be written using the convolution operation, as given in Equations 155

and 156.

bi(t) = s11(t) * a1 (t) + s12(t) * as(t) (155)

bo(t) = so1(t) * ay(t) + saa(t) * as(t). (156)

Additional equations are obtained from the terminations connected to the S-parameter

network. For the example under consideration, the additional equations at Ports 1 and 2
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Figure 110: A two port signal-flow graph [25].

ay(t) = iby(t) + Thgi(t)

as(t) = Taba(t) + Thga(t).

(157)
(158)

I'y and I's are the reflection coefficients at Port 1 and Port 2. T} and 75 are the transmission

coefficients at Port 1 and Port 2.

i — Zyeg
Y i+ Zye
ey
Y Zi+ Zoey

(159)

(160)

The expressions for the reflection and the transmission coefficients are given in Equations

159 and 160. Equations 155 - 158 are discretized in the time domain and a system of linear

equations of the form Ax = b is solved at each time step to obtain the unknown nodal

voltages and currents [17] [25].

9.7.2 Transient Simulation Using S-Parameters in MNA Framework

Transient analysis using S-parameters can be made compatible with the existing tools by

setting up the matrix in MNA format. The transient analysis methodology will be illustrated

with an example of a two-port network with terminations, which is shown in Figure 111.

The nodes are labeled n1, n2, and n3 as shown in the figure.
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Figure 111: A two port S-parameter network with sources and terminations.

The relationship between the port currents and the port voltages, in terms of the power

waves a,; and b,; [4], discretized in the time domain are

ipiln] = Yo(api[n] — byiln]) (161)

vpiln] = apiln] + byiln), (162)

where Y, is the inverse of the reference characteristic impedance of the S-parameter network.

a(t) and b(t) are related to the impulse response of the S-parameter network 5(t) by
b(t) = 5(t) = a(t), (163)

where * denotes the convolution operation. Equation 163 is discretized in the time domain

to obtain Equations 164 and 165.

bln] = 50]& n] + h[n] (164)
hiln] = sij[n — mja;[m] (165)

N, is the number of ports in the S-parameter block and h;[n| is a history term that is a
function of @ in the previous time steps. Equations 161-162 and Equations 164-165, together
with the equations for the passive terminations and sources, enable solving for the nodal
voltages and the branch currents.

To include independent DC sources in the transient simulation, DC analysis will have
to be done prior to the transient simulation to determine the initial nodal voltages. The
initial operating point will be included in the transient simulation. To determine the initial
operating point, assume that apc and bpe are constant for all time duration as shown in

Figure 112. The convolution between the impulse response s;; and a; pc, which are shown
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in Figure 112, reduces to a simple summation of the values of the impulse response, which

is given in Equation 166.

S"[I"I]u
[ .
T .
o1 2 2 4 5 & —_— n
L ! ] - ‘{1! { ' ] L] ‘E”}:
54 -3-21 01 2 3 4 5 6 — f

Figure 112: The convolution of the impulse response s;; and constant a; pc.

Sij * aj,DC =

(Z Sij W) aj,pc

_ *

(166)

(167)

Symbol s}; is the result of the convolution operation and N is the number of points in the

impulse response. Assume that for time ¢ < 0, the independent voltage source in Figure

111 has a constant value of vg[0].

The MNA matrix for DC analysis is

= 0 #H 0 Y, =Y, 0 0 v1,DC 0
0O 77— 0 0 0 0 Y, -Y V2, pC 0
= 0 41 0 0 0 0 v3,pC 0
o 0 10 0 0 0 0 s v4[0
e ||l (168)
0 0 0 0 —sf; 1 —sf, O a1,pe 0
0 0 0 0 —s3 0 —s3 1 b1,pc 0
1 0 00 -1 -1 0 0 as,p0 0
o 1 00 0 0 -1 -1 by, pC 0

a; pc and b; pc appear in the unknown vector x after the conventional MNA variables, which

are the nodal voltages and the current through the independent voltage sources.
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Figure 113: The values of a;[n] for n < 0.

In the transient analysis, which follows the DC analysis, a;[n] has value a; pc for n < 0,
as shown in Figure 113. The discretized S-parameter convolution equation given in Equation

165 is modified to include the DC analysis terms a; pc. The modified expression for h;[n] is

hir[n] = _Zp { (i(sm[” —mla; [m]) + Z_ Sz‘j[Q]%‘,DC} . (169)

j=1 m=1 g=n+1

The MNA matrix for the network shown in Figure 111 at time-step n will be

R% 0 ;Ti 0 Y, -Y, 0 0 (1 0

0 z%~ 00 0 0 Y, -Y vy 0

= 0 &1 0 0 0 0 v3 0

0O 0 1 0 0 0 0 0 s vs[n]

= . (170)

0 0 0 0 —S11 [O] 1 —S12 [O] 0 aq th[n]

0 0 0 0 —S921 [O] 0 —S929 [O] 1 b1 hQT [TL]

1 0 0 0 -1 -1 0 0 ag 0

0 1 0 0 0 0 -1 -1 by 0

Equation 170 is solved once at each time step and the history terms h;r are updated after
the solution has been obtained.

Although the example presented is for a two-port network, the method can be easily
generalized for an N-port S-parameter network. Complex non-linear driver models can also

be included in the simulation.

9.8 Results

Simulation results from three test cases are presented in this section. The first test case

in Chapter 9.8.1 has a nonzero DC operating point and DC analysis is done prior to the
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transient simulation using the methodology explained in Chapter 9.7.2. The second test
case in Chapter 9.8.2 compares simulation results with and without causality enforcement.
The third test case was simulated using the transient simulation methodology in Chapter

9.7.1 and shows the scalability of the technique to practical problems.

9.8.1 Transmission Line Simulation

A 50Q2 transmission line with matched termination is shown in Figure 114. The two-port
transmission-line frequency-domain parameters are obtained for a bandwidth of 10GHz.
The two ports are located at the near end and the far end of the interconnect. The delay of
the interconnect is 3ns. The driver is represented by two time-varying resistors to emulate a
static CMOS driver. Rpush(t) and Rpull(t) represent the pull-up and the pull-down network
of the static CMOS driver. The time-varying resistor waveform, Rpush(t), is plotted in
Figure 115. Rpush(t) and Rpull(t) have opposite polarities as shown in Figure 116. The
rise/fall time of the driver is 200ps and the data rate is 2.5Gbps. The voltage waveform
at the far end of the interconnect is plotted in Figure 117. The dots are the simulation
results from ADS and the solid curve is from the simulation methodology presented in
Chapter 9.7.2. Note that the nonzero DC operating point at time ¢ = 0 has been accurately
captured by the proposed scheme.

3.3V

Rpushit)

lossy line

Rpull(t) é Zo =500, TD = 3ns, 500
|

Figure 114: Transient simulation of a transmission line with DC analysis using MNA for-

mulation.
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Figure 115: A typical time-varying resistor waveform.

Rpush(t)

High resistance

Rpull(t)

Low resistance

Figure 116: Rpush(t) and Rpull(t) have opposite polarities.
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Figure 117: The voltage waveform at the far end of the interconnect. Solid

simulation with DC analysis and Dots: ADS

113

: S-Parameter



9.8.2 Step Response of an Interconnect With Causality Enforcement

A 50€) transmission line with a mismatched termination of 252 and a delay of 2.5ns is
shown in Figure 118. A long transmission-line delay and a mismatched termination has
been chosen to observe violation of causality in the reflected and the transmitted waves.
The unit step input has a rise time of 100ps. The frequency-domain parameters of the
interconnect has been obtained for a bandwidth of 10GHz. The step response at the far
end of the interconnect is plotted in Figure 119. The solid curve has been obtained using
ADS®, the dotted-dashed line is simulation without causality enforcement, and the dashed
line is with causality enforcement. There is a good correlation between ADS® and the
simulation without causality enforcement. A zoom of Figure 119 is shown in Figure 120.
It can be clearly seen that the simulation without causality enforcement starts to increase
before the actual delay of the line, which is non-physical. However, simulation with causality

enforcement remains zero until the actual delay of the line.

’7—(3 CO—1—
" P2

_//—Q 2501
View =10
Vhigh =1 V \——O O1—
Delay= 2.5 ns

Rise time = 100 ps

Figure 118: The simulation set up for the step response of an interconnect.

9.8.3 Sixty-Four Bit Bus Referenced to a Nonideal Power-Ground Plane

A sixty-four bit bus referenced to a nonideal power-ground plane is shown in Figure 121.
The dimension of the plane is 10¢n. x 10in. The characteristic impedance of the microstrip
lines are 22€). The termination at the far end of the line is 432 to the Vdd plane and
43Q) to the ground plane. The rise/fall time is 500ps and the date rate is 1.6Gbps. The
frequency-domain parameters of the power-ground plane and the interconnect has been

obtained for a bandwidth of 2.5GHz. The number of ports in the S-parameter network after
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Figure 119: The step response of a long interconnect from 0 — 20ns.
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Figure 120: The zoom of Figure 119 from 0 — 6ns.
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port reduction is 130, sixty-four ports at the near end of the interconnect and sixty-four
ports on the power-ground plane at the near-end references of the interconnect to connect
the driver, one port on the power-ground plane for the voltage supply, and one port at the
far end of the interconnect to observe the output voltage waveform. Eye diagrams without
and with causality enforcement are plotted in Figure 122. Results show that eye-diagram

simulation without causality enforcement results in an artificial eye closure of 110mV.

100,

Line 1

Driver 32

Ciriver &4

Armplitude

12505 1.25ns

Figure 122: The eye-diagram simulation results without and with causality enforcement.
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9.9 Speed And Memory Optimization

The memory required to store an N — port S-parameter block with f frequency points is
O(N x N x f). The number of frequency points f in the S-parameter data must be large
enough to obtain accurate impulse response. S-parameters are computed and stored prior
to transient analysis, which would become memory intensive for large number of ports.
For transient simulation using linear current sources, memory can be optimized by using
Z-parameters. It will be shown in Chapter 9.9.1, with Z-parameters there is no necessity to
compute the N-port Z-parameter block prior to transient simulation. However, the memory-
efficient technique can be applied only for linear time-invariant transient simulation. A
smaller memory required for simulation also results in faster simulation time. Linear current
sources can be used to model switching logic circuits and therefore, the technique can be
valuable for quick analysis prior to a more detailed simulation. The simulation methodology

in Chapter 9.9.1 is followed by a test case in Chapter 9.9.2.

9.9.1 Methodology

The simulation methodology is best explained with an example. The circuit representation
of a transmission line referenced to a power-ground plane, similar to the structure shown in
Case 1 of Figure 92, is shown in Figure 123. The parasitics of the nonideal power-ground
plane is represented as a 1D structure, rather than 2D, for simplicity. The driver is repre-
sented by two current sources shown in the dotted box, one discharging the interconnect,
while the other charging it. The switching current patterns for the two sources have oppo-
site polarities as shown in Figure 124. For this example, the desired goal is to obtain the
simultaneous switching noise voltage at the node marked P1.

The circuit representation of the interconnect and the power-ground plane can be repre-

sented as an admittance matrix, which is given in Equation 171, using the stamp rule [20].
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Figure 123: A transmission line referenced to a power-ground plane.

The size of the matrix is the same as the number of nonzero nodes in the circuit.

I Yo Y2 . . . Yy Vi
I Yo Yo .o . . Yoy Va
| | ' (71)
sparse :
Iy . . VN1
Iy Yvi Yo o . . Yawn Vn

The voltage at P1 can be obtained from the transfer-impedance parameters between P1
and all the other nodes, which is given by the set {Z11, Z12, ...., Zin }, where N is the num-
ber of nodes/ports in the circuit. The impedance matrix is symmetric and the first row,
{Z11, Z12y ..., Zin '}, is the same as the first column of the matrix, {Z11, Z21,...., Zn1}. By
the property that the impedance and admittance matrices are the inverse of each other, the
required row or the column of the impedance matrix can be obtained. The first row of the

impedance matrix can be obtained by solving Equation 172. To obtain the i** row/column

I:h

Idis et o

Figure 124: The charging and discharging currents that model the source have opposite

polarities.
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of the impedance matrix, the right hand side in Equation 172 must be the i row/column

of the identity matrix.

Y Yo . . . Yin Zn(w) 1
Yo Yoo Yon Z12(w) 0
= (172)
sparse
0
Yvi Yo . . . Yan Zin(w) 0

The desired voltage at P1 can be computed by the matrix vector product given in Equation
173. The column vector I(w) in Equation 173 are the current sources that are connected to

the nodes in the circuit.

I(w)
L(w)

Vl(w):<zn(w) Zi(w) . .. ZlN(w)> (173)

[N,l(w)
IN(W)

The time-domain voltage waveform at P1 can be obtained by computing the inverse Fourier
transform of Vj(w). To ensure operation A(w)B(w) is the same as the linear convolution
between A(t) and B(t), zero padding must be done [22].

Therefore, given the circuit representation of the integrated power-ground plane and the
interconnect, with linear current sources to model the drivers, there is no need to compute
and store the S-parameter block prior to a transient simulation. The speed and the memory

can thus be optimized.

9.9.2 Enhancement of Power Integrity Using Embedded Capacitors

Passive components that are embedded in a package are becoming increasingly important
for the next generation miniaturized systems through the gradual replacement of discrete

passives. Improvements in the electrical performance of microelectronic systems can be
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achieved by the integration of embedded passive elements such as capacitors, resistors,
and inductors. The biggest challenge in integration of all passives are those posed by the
capacitors. This is primarily because of the high capacitance that is associated with these
structures. Decoupling in today’s systems is primarily achieved by using surface mount
(SMT) capacitors. These capacitors are ineffective at frequencies above 100MHz due to
the large inductances associated with the capacitors [26]. Capacitors that are embedded
inside a package, which is shown in Figure 125, overcome this limitation because of the low
inductance microvias that connect these capacitors to the power and ground planes of the
package.

Two types of embedded capacitors are used in the simulation: (1) large planar capacitors,
and (2) embedded discrete capacitors, both of which are shown in Figure 125. A planar
capacitor is used as a power-ground plane, which also acts as a reference for the microstrips.

Figure 125 shows a typical package connected to a printed circuit board (PCB). Two active

r - 7 Signal Delivery
Discrete 25 i Meais

Embedded
Capacitors

Figure 125: A typical package connected to a PCB.

chips are connected to the package. End to end simulation of signal lines connected from
the driver to the receiver that is referenced to a high-k planar capacitor is simulated. The
embedded discrete capacitors are placed in the package, close to the chip. The proximity
of the capacitors to the chip minimizes parasitic inductance and provides charge to the
switching circuits quicker. The SMTs, which are placed on the PCB, have larger parasitic
inductance (ESL) and resistance (ESR) resulting from the longer current path from the
capacitor to the chip. Embedded capacitors have significantly lower ESL and ESR and

better pin down the SSN voltage than surface mounts. This is demonstrated by transient
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simulation of SSN using the memory optimized scheme that is presented in Chapter 9.9.1.

The simulation set up is shown in Figure 126. The thickness of the power-ground plane
substrate is 14um. The plane size is 15mm by 50mm. Hundred single ended 502 microstrips
that are each 15mm long are referenced to the power plane. Each microstrip is terminated
with 99€ resistors to the Vdd plane and the ground plane. SSN is simulated at the location
marked by the arrow in Figure 126. The ESL and the ESR of a 100nF SMT is 205.5pH and
100m£2. The ESL and the ESR of a InF embedded discrete capacitor is 33.54pH and 9mS).

Vdd Plane - '
“SSN probe A

100 Lines

s i L/ .
Plané / g {////

15mm

Figure 126: The simulation set up for SSN simulation.

Figure 127 shows the switching noise due to twenty-five 100nF SMTs and a power-ground
plane substrate that has a relative permittivity of ¢, = 3.8. The peak noise voltage is
approximately 150mV. If the number of SMTs is increased from twenty five to one hundred,
the noise voltage reduces to 100mV, which is shown in Figure 128. Figure 129 shows the
SSN for the case with twenty-five InF embedded discrete capacitors and a high-k planar
capacitor with €, = 11 that is used as a power-ground plane. The peak noise voltage for this
case is H0mV. Simulation results show that a high-k dielectric material for the plane pair,
together with embedded discrete capacitors, help reduce SSN better than surface mount

discrete capacitors.

9.10 Summary

Simulation of a chip-package structure using a full-wave solver is a memory and time-
intensive operation. An efficient way to simulate the structure is to separate it into different
blocks, apply the solver on each of these smaller problems separately, followed by integration

of the blocks using the modal-decomposition technique.
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Figure 127: Twenty-five 100nF SMTs and power-ground plane substrate ¢, = 3.8.

(V) 100 1000F SMTs, g, = 3.8

2000 a00 00 0000

Figure 128: Hundred 100nF SMTs and power-ground plane substrate ¢, = 3.8.

251nF, Embedded Discretes, £, = 3.8

']1_‘=|

(¥)

Time (At = 50ps)

Figure 129: Twenty-five InF embedded discrete capacitors and power-ground plane sub-

strate €, = 11.
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10 Future Work: Alternate Schemes for DC Analysis
of the FDTD Lattice

10.1 Introduction

The companion model of the Yee cell given in Chapter 5 gives rise to alternate schemes for
DC analysis, which is Step 3 of the SLeEC algorithm that is shown in Figure 130. The
SLeEC methodology was presented in Chapter 2.2 and the flowchart is shown here again

for convenience.

Time-domain source Laguerre-domain
waveform representation
FDTD/circuit
companion model
(]
I
o
o
3
DC analysis
Time-domain output DC values of the
waveform output

Figure 130: The flowchart of the SLeEC methodology.

Alternate schemes for DC analysis, such as the random-walk scheme used to analyze
on-chip structures [29], can also be applied in the SLeEC algorithm. The steps involved in
the flowchart given in Figure 130 remain the same, except for the way in which the third
step DC' Analysis is done. An alternate method to do DC analysis using ABCD parameters
for 1D, 2D, and 3D FDTD grids is given below. Information on ABCD matrices are given
in [20]. Only the methodology is given and the implementation is left for future work. The
remainder of this section presents the DC analysis technique using ABCD parameters for

the 1D, 2D, and the 3D cases.
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10.2 1D Grid

The Norton variation of the 1D companion model of the FDTD grid is shown in Figure 131.

The derivation of the companion model was presented in Chapter 5.2. The vertical bars

L Lg
= N

Figure 131: The Norton companion model for a 1D FDTD grid terminated with PEC

boundary.

and the multiplication symbols represent the spatial positions of the electric and magnetic
fields. The DC values of the nodal voltages represent the electric-field coefficients and the
DC branch currents represent the magnetic-field coefficients. The number of nodes in the
network can be reduced by constructing ABCD matrices of individual cells and multiplying
them together. For example, in Figure 132, a chain of ABCD matrices are multiplied
together reducing the chain to a single block. The desired set up for the FDTD grid is
shown in Figure 133. T) represents the ABCD parameters of the first unit cell and

-——-{ ABCD | - E— - I
Matrix Cell i+1 Cell i+2 Cell N-1 CellN

PR —— Ti — _— I — - [ —

TiTit1... Ty

Figure 132: A cascade of ABCD matrices reduced to a single block by multiplying the

parameters of individual blocks.

T>T5... Ty represents the product of the ABCD matrices for Cells {2,3, ..., N}, where N is
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PEC Boundary l PEC Boundary

Ty ToTs...Tn

Figure 133: The reduced FDTD grid network.

the number of cells in the FDTD grid. The DC analysis is done on the smaller problem
shown in Figure 133. The DC voltage at the node marked by the arrow in Figure 134
represents the coefficient F; that is shown in Figure 134. The DC values of all the £ and

PEC Ho H; Hy . PEC
A >< | ™ | ™ I >< | FA |
| I | | I | |
E(] E1 Ez Ez

Figure 134: All the field coefficients in the entire 1D grid can be calculated using E; alone

for the given boundary conditions.

H field coefficients can be obtained from E; alone in a constant O(1) time using Kirchoff’s
voltage and current laws. Proceeding in the direction shown by the arrow in Figure 134,
using Fy and F, Hy can be obtained; from Hy and E;, H; can be solved; E; and H; can

be used to get Es, and so on, until all the field coefficients have been obtained.

10.3 2D Grid

The DC analysis for a 2D case using ABCD matrices can be done in a similar fashion to the
1D case. A 2D FDTD grid with fields E,, E,, and H, is shown in Figure 135. The ABCD
matrix for a column of unit cells have to be obtained, as shown by the dotted box in Figure
135. The ABCD matrices of columns of cells are multiplied together to set up the system
in the form shown in Figure 133. 77 in Figure 133 is the ABCD matrix for Column 1 of the
2D FDTD grid shown in Figure 135 and T,73... Ty are the product of the ABCD matrices
for Columns 2, 3, ..., N, where N is the number of columns in the grid. The input ports for
the ABCD matrices are the £, nodes on the left of the dotted box and the output ports are

the E, nodes on the right of the dotted box. DC analysis is done on the reduced multiport
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Figure 135: A 2D FDTD grid.

network, which is shown in Figure 133, and the £, and the £, fields for the first column are
calculated. Once the nodal voltages for the first column have been obtained, the remaining
fields for the entire grid can be obtained in O(1) time using Kirchoff’s voltage and current
laws.

The calculation of all the field coefficients in constant time for the entire grid is illustrated
in Figure 136. Once the E-fields in Column 1 (vertical and horizontal diamonds) have been
calculated, the clouds can be determined; using clouds and vertical diamonds, stars can be
calculated; from stars, chevrons can be solved; from vertical diamonds, stars, and chevrons,
multiplication symbols can be found. Proceeding from left to right, the fields in the entire
grid can be solved in a constant or O(1) time using KCL and KVL equations.

A 2D FDTD grid with metallization is shown in Figure 137, where the metallization is
represented by the shaded cells. For such a structure, the ABCD matrix for the column
marked by the dotted box must have asymmetric input-output ports, as shown in Figure
138. Information on asymmetric input-output transfer scattering parameter matrices is
given in [20]. The output ports are located on the nodes corresponding to the E, fields that
are not tangential to the metallization structure. For the dotted column shown in Figure
137, there will be 4 input ports and 1 output port. Asymmetric input-output ports make
it possible to include metallization in the structure, as illustrated by the test case in Figure

137.
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Figure 136: The calculation of the fields in the entire grid using the E-field values in

Column 1 alone.
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Figure 137: A 2D FDTD grid with metallization.

m input — Asymmetric
portsp Input & Qutput | n output
— Ports ports

Figure 138: A T-parameter matrix with asymmetric input-output ports.
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10.4 3D Grid

Similar to solving the 1D and the 2D FDTD grids, ABCD parameters can be used to solve
for the field coefficients in the 3D case. Cascaded 3D Yee cells are shown in Figure 139. As
before, ABCD matrices are constructed and set up in the form shown in Figure 133 before
the DC analysis is done. T is the ABCD network for the cells at £ = 0 and T5,75...Ty is the
product of the ABCD matrices for the cells k = 1,k = 2,...,k = N. For k = k, the input
ports are the nodes located on the bottom face of the FDTD cells at k£ = k, and the output
ports are the nodes located on the top face of the FDTD cells at k£ = k,. Once the E-fields
at k = 0 have been solved, the fields in the entire 3D grid can be calculated in O(1) time.
Similar to the 1D and the 2D cases, the fields at £ = 0 can be used to calculate the fields at
k =1 and so on, until the DC nodal voltages and branch currents for the entire grid have

been obtained.

]

k=0

Figure 139: FDTD cells in a 3D grid.

10.5 Summary

The companion model of the FDTD grid gives rise to new schemes for solving a system
of linear equations, rather than using the conventional LU-decomposition method. The
alternate schemes could result in a more memory-efficient solution. It has been shown

in this chapter that only some of the electric-field coefficients need to be solved and the

128



remaining electric and magnetic-field coefficients can be obtained in a constant time using

KCL and KVL equations.
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11 Conclusions

The conventional time-domain techniques that are limited by the Courant condition are
unsuitable for chip-package cosimulation. The on-chip structures are in the nanometer range
and require a mesh with small dimensions. The small mesh dimensions result in a time step
that is prohibitively small, making the total simulation time unacceptable for designers.
For the chip-package test case presented in this thesis, the time taken for simulation using
the FDTD scheme is one day, while SLeEC takes only 5 minutes for the same number of
cells. Prior limitations in the Laguerre-FDTD scheme have been overcome in this research
work. The new enhanced scheme has been named SLeEC and stands for simulation using

Laguerre equivalent circuit. The following improvements have been made:

e Laguerre-FDTD has the drawback of being able to simulate only for a limited time
duration. In the new methodology the simulation can be restarted, which will enable

simulation to be run for any length of time.

e The companion model for the FDTD grid has been developed, making the implemen-

tation easier without the use of long cumbersome equations.
e A methodology for choosing the correct number of basis coefficients has been proposed.

e Laguerre-FDTD has been applied for linear transient circuit simulation composed of
inductors, capacitors, resistors, and mutual inductance. Companion models have been

developed for each of these components.

e Scalability has been demonstrated by applying SLeEC to practical test cases. A node

numbering scheme for optimal memory efficiency has been suggested.

Efficient use of full-wave solvers for chip-package cosimulation has been proposed. Sev-
eral test cases have been simulated using the proposed methodology. The model for mi-
crostrip lines referenced to power-ground planes has been developed. The model for an inter-
connect routed on the same layer as the power or the ground plane, which form a conductor-
backed coplanar-waveguide structure, has been derived using the modal-decomposition

method.
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12 Appendix A: Derivation of the Courant Condition

The Courant condition limits the maximum allowable time step that can be used to obtain
stable simulation results. The derivation of the Courant condition using dispersion analysis
is given in [10] and is summarized in this section.

A propagating wave in a discretized FDTD grid at position (IAxz, JAy, KAz) and at

time step n can be written as

‘7|?JK _ ‘7(’)6]'[(d}real+jrlzimag)nAtfl;zIAxflEyJAyfl;ZKAz]

_ V_'(’)ef@imagnAtej(d}reamAtfl;zIAxfl;yJAyfl;ZKAz) (174)

The relationship between the propagating wave’s angular frequency @ and the wavevector
(lgx, lgy, k;) for an FDTD grid made up of cells with dimensions Az, Ay, and Az is given
by

-2
W= Rgsin (€), where  (175)

£ =cAt (Alx)2 sin? (kaAx> + (A1y>23m2 (k@?y) + (A1z)2 sin? (kZQAZ> (176)

The value of £ is bounded between

1 1 1
0 S f S CAt\/(A:L‘)2 + (Ay)Q + (A2)2 = fupper bound (177)

for all possible real values of k. The possible values of & can be partitioned into two intervals.

Stable Range : 0 <¢ < 1 (178)

Unstable Range : 1 <& < Eupper bound (179)

It can be shown that Equation 179 results in an unstable time-domain response by substitut-
ing Equation 175 into Equation 174, resulting in an expression that indicates an increasing
amplitude for the time-domain waveform with every time step for & > 1. The unstable

range in Equation 179 exists only if

1 1 1
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In other words

At > ! (181)

1 1 1
C\/ BaP T @y T By

makes the time-domain response unstable. Equation 181 gives an upper bound on the time

step that can be used for stable results, completing the derivation of the Courant condition.
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