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Abstract—The latency insertion method (LIM) is a transient
simulation technique for circuits and is based on a finite-difference
formulation, like the well-known finite-difference time-domain
(FDTD) method for solving Maxwells equations. The LIM, like
the FDTD method, is only conditionally stable resulting in an
upper bound for the time step of the transient simulation. This
bound on the time step is a function of the circuit topology and the
circuit element values. It is critical to know this bound analytically
for a given circuit. However, stability conditions of the LIM have
been proven only for 1-D, infinitelylong, distributed uniform RLC
circuits, employed in transmission line modeling. For nonuniform
circuits, these conditions have been predicted and have been ob-
served experimentally as well but have not been possible to prove
using the existing stability analysis techniques. Recently, analytical
stability conditions of the LIM for nonuniform RLC circuits have
been proven using the Lyapunovs direct method (LDM). However,
when a conductance to ground (G) is added to a node of an LC
or RLC circuit, the stability conditions cannot be derived using
the Lyapunov function proposed. In this brief, analytical stability
condition of the LIM is derived for the first time for nonuniform
GLC circuits using the LDM with a new Lyapunov function.

Index Terms—Conditional stability, finite-difference time-do-
main (FDTD) method, spectral radius.

I. INTRODUCTION

T HE rest of the paper is organized as follows. In Section II,
the latency insertion method (LIM) formulation for the

GLC circuits is described. In Section III, the origin of the con-
ditional stability in the LIM is described. Also, in this section,
the problem solved in this paper is defined mathematically. In
Section IV, the Lyapunov’s direct method (LDM) is described.
In Section V, analytical stability conditions of LIM for nonuni-
form GLC circuits are derived using LDM. In Section VII, the
analytical stability condition is numerically verified. Finally, in
Section VIII, the conclusions of this work are drawn.

II. LIM-BASED TRANSIENT SIMULATION FORMULATION FOR

NONUNIFORM GLC CIRCUITS

An example of a nonuniform GLC circuit is shown in Fig. 1.
Some transmission lines can be modeled using a distributed
GLC circuit derived from Fig. 1. Each inductor in this circuit
is defined as a branch. Each node is marked as a solid black
circle. The suffixes and denote a node and a branch, respec-
tively. The quantity denotes the inductance of branch ; the
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Fig. 1. Example of a nonuniform GLC circuit.

quantities and denote the capacitance to ground and con-
ductance to ground from node , respectively. To enable LIM,

and (see [1]). The quantity . Let de-
note the number of branches connected to node . In a uniform
GLC circuit, there are some restrictions on the circuit elements’s
values and on the circuit topology: All branches should have the
same inductance, i.e., for all ’s, and all nodes should
have the same capacitance to ground and the same conductance
to ground, i.e., and for all ’s. Moreover, each
node is connected to same number of branches, i.e.,
for all . In a nonuniform GLC circuit, there are no such restric-
tions (see Fig. 1). Moreover, the quantity can be any positive
integer. In Fig. 1, the quantity denotes a transient current
source connected to node , and a transient voltage source
connected to node . The objective is to compute the transient
node voltages computationally efficiently.

LIM is a transient simulation algorithm for circuits, similar
to the finite-difference time-domain (FDTD) method [2] for di-
electric media, and has optimal computational efficiency [1].
The LIM formulation for the transient simulation in GLC cir-
cuits (see Fig. 1) is described next. Let denote the number
of nodes and the number of branches. Let and

denote the diagonal matrices of ’s and ’s,
respectively. Let be the corresponding diagonal
matrix of branch inductances. Let be the voltage of
node at time instant , and let
be the vector of node voltages. Similarly, be the current in
branch at time instant , and let be the vector
of branch currents. Let be the vector of source
currents entering nodes at time . The LIM formulation involves
obtaining update expressions for node voltages from the Kir-
choff’s current laws (KCL) (at nodes) and update expressions
for branch currents from the Kirchoff’s voltage laws (KVL) (in
branches) in a Yee-FDTD [2] manner.

The KCL at all nodes can be written as

(1)
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where , the quantity is the transpose of
, and is the edge-to-node incidence matrix.

An entry in corresponding to branch and node is defined
as

if is flowing out of node
if is flowing into node
otherwise.

When the KCLs in (1) are discretized using a semi-implicit
integration scheme [3], the equation

(2)

can be obtained. From (2), the node voltages are updated using
the expression

(3)
Following a similar procedure, an update expression for the

branch currents can be obtained. The KVLs in branches can be
written as

(4)

the discretized version of (4) can be written as

(5)

and the update expression for the branch currents can be ob-
tained from (5) as

(6)

The transient simulation using LIM involves computing the
node voltages using (3) first and computing the branch currents
using (6) next for each time step. When a node is connected to
a voltage source, then as an intermediate step, the voltage of
this node is made equal to the value of the voltage source at the
current time instant.

The LIM transient simulation has optimal memory and time
complexity (note the update process (3) and (6) involves only
diagonal matrices) and has accuracy (see [1]) How-
ever, this simulation is stable only for restricted values of ,
i.e., the LIM formulation is only conditionally stable [1], [3],
[4].

III. CONDITIONAL STABILITY

AND STABILITY ANALYSIS OF LIM

The discrete system described by (3) and (6) can be rewritten
as

(7)

where the term is the state vector, defined as

the term is the input vector, defined as

(8)

(9)

The stability of the discrete system can be defined [5]: 1) based
on the boundedness of state, , given an initial condition for
the state and a zero input, ; 2) based on the bounded input
bounded state (BIBS) stability; and 3) based on the bounded
input bounded output (BIBO) stability. The focus of this paper
is on the first kind of stability. This kind of stability is also a
necessary condition for the BIBS stability [5], as it is a special
case of the latter with .

For the state stability, all the eigenvalues of the matrix
should have a magnitude less than or equal to unity. In other
words, the spectral radius of , , is less than or
equal to one. Unfortunately, the eigenvalues of depend
on , resulting in a conditional stability of (7) dictated by the
choice of .

The conditions on can be computed by requiring
. However, finding eigenvalues of an-

alytically is a difficult problem. This difficulty is avoided in
some circuit toplogies if von Neumann method [6] is used
for stability analysis [3]. In this method, the conditions on
are determined by requiring the fourier amplitude of the state
vector to be bounded by unity. The need to analyze the system
in the Fourier domain requires the circuit element values to
be equal and the circuit topology to be uniform at every point
in the circuit; moreover, the circuits have to infinitely long.
Specifically, analytical condition on is known and proven
only for 1-D (i.e., ) uniform RLC circuit (similar to
uniform GLC circuit). Therefore, for a nonuniform GLC circuit,
the stability condition cannot be derived using VM.

In [7], a similar problem in the FDTD method is solved for
nonuniform lossy dielectric media. The approach in [7] is based
on LDM, introduced to the FDTD community in [8].

There are three important differences between the LIM
problem and the FDTD problem [7] and [8]: 1) LIM discretizes
only the circuits even when the circuits are discontinuous, while
the FDTD problem discretizes both the dielectric medium and
the free space. Therefore, the FDTD problem always solves
a continuous problem domain. 2) Unlike the FDTD problem,
the LIM problem can have more than three dimensions: in the
LIM problem, the dimensions weakly refer to the number of
branches connected to a node, which can be more than three. 3)
Unlike the FDTD problem, the circuit problem is nonuniform
with respect to the number of branches connected to a node.

In [4], the approach in [7] is employed to derive the stability
condition of LIM for nonuniform RLC circuit. However, the
Lyapunov function employed in [4] does not remain a Lyapunov
for GLC circuits. The objective of this paper is to obtain the
conditions on for the state stability of LIM for a nonuniform
GLC circuit using the Lyapunov’s direct method, discussed next
for a discrete-time system.

IV. LDM FOR DISCRETE-TIME SYSTEM

The stability of discrete-time systems can be analyzed using
Lyapunov’s direct method [5], which can be stated as follows:
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Let be a vector of states of system, and be the
equilibrium point. Suppose there exists a scalar function
continuous in such that

for (10)

for all (11)

Then, is stable. Moreover, if

for (12)

then is asymptotically stable. If satisfies (10) and
(12) along with the condition that

(13)

then is globally asymptotically stable. The symbol
in (13) stands for the -norm of the vector , where , 2,
and . A continuous scalar function satisfying (10) and
(11) is called a Lyapunov function. Existence of a Lyapunov
function is a sufficient condition for the stability of .

V. ANALYTICAL STABILITY CONDITION FOR NONUNIFORM

GLC CIRCUITS

In this section, analytical stability condition for the LIM for-
mulation in Section II is derived using LDM.

Since only the state stability is demonstrated, input (or exci-
tations) are set to zero in (2). When , Equation (2) can
be rewritten as

(14)

For convenience, the discretized KVL (5) is repeated here

(15)

The equilibrium state of (14) and (15) is same as that of (7).
This state for (7) is the state for which for all
in the absence of (see [5], pp. 343). The origin
is an equilibrium state of (7). In the following, an energy-like
function is chosen as a scalar function, and the conditions for
this function to be a Lyapunov function for (14) and (15) are
determined. These conditions in turn result in an upper bound
for . When is chosen within this upper bound, is
stable.

First, the Lyapunov function proposed in [4] for a nonuniform
RLC circuit is tested for its Lyapunov property for (14) and (15).
This function is

(16)

The function in (16) is checked if it satisfies (11), a property
of Lyapunov functions, for (14) and (15). Using (16), the differ-
ence can be written as

which can be simplified using (14) and (15) as

(17)
From the RHS of (17), the condition can
not guaranteed for all ’s; therefore does not satisfy (11).
Consequently, the function can not be a Lyapunov function
for (14) and (15).

Since the existence of a Lyapunov function is only a sufficient
condition for stability, the nonLyapunov nature of for (14)
and (15) does not imply the instability of . Therefore,
a new function is chosen as a potential candidate for the
Lyapunov function for (14) and (15):

(18)

The function can be shown to satisfy the condition in (11):
Using (18), the quantity can be written as

which can be simplified using (14), (15) as

(19)
The inequality in (19) is true as is positive semidefinite
(semidefinite because conductances can be zero). Additionally,
if is positive definite, satisfies (12).

For to satisfy (10), is written as

(20)
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For to satisfy (10), the matrix in (20) has to be positive
definite. In the following, the conditions for to be positive
definite are found. The stability conditions are derived as a re-
sult. The stability conditions are found first when each node is
connected to only two branches. These conditions are extended
when the number of these branches is arbitrary and different for
different nodes in the circuit.

A. Condition on When Two Branches are Connected to
Every Node

Let the subscript denote a node, and let the subscripts
and denote the two branches connected to node

. Let and denote the branch currents that enter
and leave node , respectively. Let denote a branch, and let the
two nodes of this branch be denoted by and , with
the branch current flowing from node to node .
The quantity in (20) can also be written as

(21)

where

(22)
From (21), is positive (in other words satisfies (10)) if

is positive for all . Expressing as a quadratic
form

(23)
The quantity is positive if the matrix is positive def-
inite. For to be positive definite, all the upper left subma-
trices , where denotes the size of upper left submatrix,
should have positive determinants [9]. The determinant of the
first upper left matrix should then satisfy

(24)

So all branch inductances should be nonzero and positive. Sim-
ilarly, it can be shown that the condition is true if

(25)

Since is non-negative for any real , from (25), it can
concluded that , i.e., all capacitances to ground should be
positive. Finally, it can be shown that the condition
is true if

(26)

Making use of the fact that

the condition in (26) is satisfied if

(27)

Since the condition in (27) is more strict than (25), the matrix
is positive definite if ’s and ’s are positive and (27) is

satisfied. When this analysis is repeated for all , the condition
(27) becomes

(28)

resulting in a condition for as

(29)

When (29) is simplified, the well-known Courant time step for
1-D circuit is obtained:

(30)

If ’s and ’s are positive and satisfies (29) or (30),
satisfies (10): If ’s and ’s are positive and satisfies (29)
or (30), is positive definite, which makes satisfy
(10) [see (23)], which in turn makes satisfy (10) (see (21)).

Since is already shown to satisfy (11), from Section IV,
the equilibrium state is stable. Now if , which is
satisfied if there is a node such that , also satisfies
(12), making asymptotically stable. Moreover, it can be
proven that if in the form (20) is asymptotically stable, then

is also globally asymptotically stable. From Section IV, this
proof is completed if is shown to satisfy (13): the function

can be shown to be radially unbounded if is positive def-
inite [8, App. B], which is satisfied if in the form (20) also
satisfies (10). All radially unbounded functions satisfy (13)[8,
App. B].

B. Condition on When Arbitrary Number of Branches are
Connected to a Node

Let denote the number of branches connected to node .
The generic condition on can be easily obtained by letting

and in (22) and repeating the derivation
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Fig. 2. Sample nonuniform GLC circuit. All resistors are in ohms, all capacitors
in nanofarads, and all inductors in nanohenries.

from (21)through (29). For a generic case, the condition on
in (29) can be shown to be

(31)

where denotes the value of th inductor connected to node
. As can be observed, the derivation described thus far does

not require the circuit to be uniform or infinitely long. Also,
the (equivalent) circuits can be discontinuous, i.e., have irreg-
ularities in connections to neighboring nodes. Such discontinu-
ities are observed in irregular on-chip power grids or in package
power/ground planes with a hole.

VI. LIMITATIONS

The Lyapunov function (18) proposed for GLC circuits in this
paper has a dual drawback to the Lyapunov function proposed
for RLC circuits in [4]: The function (18) does not remain a
Lyapunov when nonzero series ’s are added to the inductors
in the GLC circuits. As a result, analytical stability condition of
LIM for nonuniform RLGC circuits is still an open problem.

The proposed analytical stability condition is valid only for
linear circuit elements as shown in Fig. 1. In case of a nonlinear
circuit element, such as a diode to ground, the update expression
(14) changes; these changes can become time dependent. Con-
sequently, this analysis (which gives a time-independent sta-
bility condition) remains not proven when nonlinear elements
are present.

VII. NUMERICAL VALIDATION

In this section, the sufficient condition for stability provided
by the choice of according to (31) is numerically verified. Let

denote the quantity on the right-hand side of (31). Since the
LIM iteration in (7) is going to converge when ,
then the stability is verified if the condition is
verified for .

Consider a sample circuit shown in Fig. 2. The spectral radius,
, is computed for different values of and is plotted

in Fig. 3. For small , becomes close to an identify ma-
trix [see (8) and (9)], making its spectral radius close to unity.
This unity spectral radius can be observed in Fig. 3 as well. Also,
it can be observed that when . Also,

Fig. 3. Spectral radius of the matrix� � is shown as a function of the ratio
����� .

it can be observed that as increases, , demon-
strating the conditional nature of the LIM’s stability. Also, it
can be noticed that when is slightly greater than , the

still. This demonstrates the sufficient condition
nature of (31).

VIII. CONCLUSION

The LIM is a transient simulation technique for circuits and
is based on a finite-difference formulation, like the well-known
FDTD method for solving Maxwell’s equations. The LIM, like
the FDTD method, is only conditionally stable, resulting in an
upper bound for the time step of the transient simulation. This
bound on the time step is a function of the circuit topology and
circuit element values. It is critical to know this bound analyt-
ically for a given circuit. Stability conditions of the LIM have
been proven only for nonuniform RLC circuits. In this paper,
analytical stability condition of the LIM for nonuniform GLC
circuit is derived in this paper, resulting in an upper bound for
the time step. This upper bound for time step is verified numer-
ically.
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