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Abstract
In this paper, a novel formulation for the modeling of multi-layer
package power/ground planes has been proposed. The formulation is
developed by first applying the finite element method (FEM) for a
single plane-pair geometry, from which a SPICE-compatible equiv-
alent circuit is extracted. Next, the admittance matrices obtained for
individual plane-pairs are coupled together, to extend the technique,
and to enable the modeling of multiple plane-pairs. This method,
the mutli-layer finite element method (MFEM), uses an adaptive
triangular mesh. This enables MFEM to capture the effects of small
geometrical features that can affect the frequency response, with only
a modest increase in computational cost as compared to methods
that use regular square meshes. MFEM is able to correctly model
the effect of apertures or voids in the planes, which cause vertical
coupling of energy. Several examples have been shown to illustrate
the efficacy of the method for both single and multiple plane-pair
geometries.

I. Introduction
The power delivery network (PDN) of packaged mixed-

signal electronic systems is becoming ever more complex as
increasing number of components are integrated. Due to the
various types of components in the system, multiple power
supplies are typically required. These power supplies are de-
signed as alternating layers of power and ground planes, with
signal lines routed in layers that are sandwiched in between.
These power/ground planes prevent signal lines on different
layers from getting coupled to each other. A schematic il-
lustration of a package for a multi-chip module is shown
in Figure 1. To provide DC isolation to the different supply
voltages, as well as to provide via anti-pads and to route signal
lines, apertures and holes are created in the solid power/ground
planes. These discontinuities in the power/ground planes can
cause vertical coupling of energy. This is particularly critical
in the context of simultaneous switching noise (SSN) or delta-
I noise which can result in large fluctuations in supply voltage.
These voltage fluctuations can propagate across the entire PDN
causing signal integrity (SI) and power integrity (PI) problems
[1], as well as electromagnetic interference (EMI) because of
edge radiation. Therefore, an accurate and computationally
efficient modeling of the PDN is critical to evaluate noise
levels in mixed-signal systems.

The numerical solution of these problems using full-wave
EM solvers is computationally intractable due to the large
problem size. Generic commercial 3D-FEM techniques, while
resulting in sparse systems, typically contain far too many
unknowns. The method-of-moments(MoM)-based approaches

Fig. 1. Schematic of a multi-chip module.

result in systems which contain fewer unknowns, which,
however, are dense. Thus, several techniques have been devel-
oped in literature for solving the multi-layered package PDN
problem.

One solution that has been proposed is the multi-layer finite
difference method (MFDM) [2]. MFDM is a finite difference-
based technique that can solve power plane problems using
square-meshes. This method creates a sparse and banded
admittance matrix and provides an efficient computational
complexity of O(N1.5) [3]. However, the method suffers
from using a rigid, square, grid. Typically, package PDNs are
electrically large and also contain geometrically small features
such as split planes and apertures. To capture very fine struc-
tures, the regular mesh becomes dense locally and globally,
resulting in a large number of unknowns. This problem can
be solved by using a non-uniform rectangular mesh, which is
also not optimal in the modeling of arbitrary geometries, such
as circular voids and via-holes. Hence, techniques using non-
uniform triangular meshes have been proposed in literature
for two layer geometries with circuit extraction for SPICE
compatibility [4]. However, FEM applied to multilayer geome-
tries has typically used hexahedral or tetrahedral meshes [5].
These meshes, being volumetric, require significantly larger
number of unknowns, which in turn translates to an increase
in computational cost.

The contribution of this paper is a method, the multi-layer
finite element method (MFEM)[6], that applies a surface mesh.
As only a surface mesh is required, this approach requires
far fewer unknowns than a general 3D FEM-based solution.
The mesh is based on Delaunay triangulation and is applied
to each metal layer. The potential distribution on each plane
pair is expanded in terms of pyramid basis functions. On
simplification, the obtained matrix equation can be shown to
represent an electrical network.
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The rest of this paper is organized as follows. The formula-
tion for single plane-pair geometries is developed in Section II.
The extension to multiple plane-pairs id discussed in Section
III. Results for model to hardware correlation and comparison
to other simulation tools are demonstrated in Section IV,
followed by conclusions in Section V.

II. Single Plane-Pair: Formulation
An efficient approximation that can be employed for pack-

age power planes is that of a planar circuit [7]. A planar
circuit is a microwave structure in which one of the three
dimensions, say z, is much smaller than the wavelength. Under
this condition, it can be assumed that the field is invariant
along the z-direction. Hence, ∂

∂z = 0 and the governing
equation reduces to the scalar 2D-Helmholtz wave equation:

(∇2 + k2
)

u = jωµdJz , ∇2 =
(

∂2

∂x2
+

∂2

∂y2

)
(1)

where ∇2 is the transverse Laplace operator parallel to the
planar structures, u is the voltage, d is the distance between
the planes, k is the wave number, and Jz is the current
density injected normally to the planes [8]. The open circuit
at the boundary can be represented by a magnetic wall or
Neumann boundary condition, which completes the problem
formulation.

A. Basis Function

Using a standard finite-element approximation with triangu-
lar mesh elements and linear pyramid or “hat”-basis functions
[9], the weak form of the PDE in Equation (1) is:

N∑

j=1

∫ ∫

Ω

[∇φj · ∇φi + ω2µεφjφi + jωµdJzφi

]
dxdy = 0

(2)
where Ω is the problem domain. The triangular mesh and the
hat function, φ are shown in Figure 2(a). The formulation
of the matrix equation for 2D geometries is well known,
and is reproduced here from [10]. For convenience, simplex
coordinates {L1, L2, L3} have been used, which can be related
to the Cartesian coordinates:

x = L1x1 + L2x2 + L3x3 (3)
y = L1y1 + L2y2 + L3y3 (4)

L1 + L2 + L3 = 1 (5)

The equations above can be solved to obtain:

Li =
1

24 (ai + bix + ciy) (6)

ai = xi+1yi+2 − xi+2yi+1

bi = yi+1 − yi−1

ci = xi−1 − yi+1

and the subscripts are evaluated (modulo 3)+1. 4 is the area
of the triangle with vertices at points (P1, P2, P3). Within the
cell, the pyramid basis functions are identical to the simplex
coordinates themselves.

Fig. 2. (a) Triangular mesh and pyramid basis function (b) Cartesian and
Simplex coordinates.

Hence, Equation (2) can be rewritten in matrix form as
follows: (

K + M
)
U = F (7)

where, K and M represent the stiffness and mass matrices,
respectively, U is the unknown potential, and F contains the
contributions from the current source excitation. The entries
of K, M and F are:

ki,j =
∫ ∫

Ω

j

ωµd
∇φi · ∇φjdxdy (8)

mi,j =
∫ ∫

Ω

−jωε

d
φiφjdxdy (9)

fi =
∫ ∫

Ω

Jzφidxdy (10)

The linear pyramid basis functions are equal to the simplex
coordinates within the cell, i.e.

φi(L1, L2, L3) = Li (11)

Therefore,
∇φi = ∇Li =

1
24 (x̂bi + ŷci) (12)

Substituting Equation 12 in Equation 8,

ki,j =
bibj + cicj

44
j

ωµd
(13)

The evaluation of the integral to obtain mi,j (Equation 9)
and fi (Equation 10) can be performed by transforming the
coordinates from Cartesian to simplex using the Jacobian,

dxdy = dL1dL2
∂(x, y)

∂(L1, L2)
= 24dL1dL2 (14)
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Fig. 3. Topology of equivalent circuit for single plane-pair structures.

The integrals in Equations 9 - 10 are a special case of the
general formula

I =
∫ ∫

Ω

La
1Lb

2L
c
3dL1dL2 =

a!b!c!
(a + b + c + 2)!

(15)

where a, b and c are integer powers. Therefore, substituting
a = 2, b = 0, c = 0 when i = j and a = 1, b = 1, c = 0 when
i 6= j,

mi,j =
−jωε

d

4
12

(1 + δi,j) (16)

where δi,j is the Kronecker delta function. Using a = 1, b =
0, c = 0,

fi = Jz
4
3

(17)

B. Equivalent Circuit

K and M represent the admittance matrices of frequency-
independant inductive and capacitive components, respec-
tively. Specifically, K represents inductors connected between
triangle vertices (i.e., along the triangle edges), and M rep-
resents capacitors connected between triangle vertices and to
ground, as shown in Figure 3.

This can be shown by evaluating one row of the 3×3 local
matrix corresponding to one triangle For example, the sum of
the first row of this matrix is:

S =
3∑

j=1

b1bj + c1cj

44
j

ωµd

Fig. 4. Four-plane test structure: cross section, location of ports, and top
view of each plane.

Consider the b1bj term for j = 1, 2, 3.

b2
1 = (y2 − y3)2 for i = j = 1

b1b2 = (y2 − y3)(y3 − y1) for i = 1, j = 2
b1b3 = (y2 − y3)(y1 − y2) for i = 1, j = 3

∴ b2
1 + b1b2 + b1b3 = 0 (18)

Similarly, c2
1 + c1c2 + c1c3 = 0 (19)

It can be shown that the other rows of the 3× 3 local matrix
also sum to zero. This implies that the rows (and by symmetry,
the columns) of K sum to zero. This corresponds to circuit
elements (in this case, inductances) connected between the
triangle vertices, with no element to system ground. On the
contrary, the row and column sums of M do not vanish,
indicating capacitances to ground in addition to capacitive
elements along edges.

Hence, the equivalent circuit for the single plane-pair case
can be represented by the admittance matrix Y, where Y =
K+M. This matrix is sparse and the solution to Equation (7)
can be obtained using standard linear equation solvers. The
ability to obtain an equivalent circuit enables the extension of
the method to multiple plane pair geometries, without the need
for using 3D-mesh elements (i.e. tetrahedral or hexahedral).

III. Formulation: Multiple Plane-Pairs

A. Meshing

As in the single plane-pair case, a triangular mesh is applied
to each metal layer. As will be explained, the multi-layer
formulation requires that the location of the mesh nodes be the
same on every layer. This is done by flattening or collapsing
the features on each metal layer on to one layer, on which
triangulation is performed to obtain the mesh. The mesh thus
obtained is used to discretize all layers. This is best explained
using an example.
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Fig. 5. Top view of the meshed planes.

Fig. 6. (a) Two-port networks with separate references (b) Combined four-
port network with common reference.

A four-layer structure containing apertures in each layer is
shown in Figure 4. When all the features on the multiple layers
is flattened onto one layer, the resulting 2D shape contains the
outlines of the planes and all apertures. In Figure 5, this 2D
shape with a triangular mesh is shown. This mesh can describe
the geometrical features (polygon vertices and edges) in any
of the layers. The method to obtain the admittance matrix for
multiple plane-pair structures is described next.

B. Solid Planes without Apertures

In Section II, the procedure to obtain an equivalent circuit
for two-layer geometries with a common ground reference
node has been described. For a multiple plane-pair structure
containing more than two layers, it is possible to construct an
equivalent circuit for each plane-pair. However, the equivalent
circuit of different plane pairs assign their respective ground
reference node to different layers. Therefore, to obtain the
model for the multi-layered plane requires shifting the different
reference nodes to one common ground.

This shifting of ground reference nodes can be done using
indefinite admittance matrices [11]. This is illustrated, without
loss of generality, by using two-port networks with separate
ground references, as shown in Figure 6(a). The four-port
admittance matrix for the system with the common reference
node can be derived as follows:

Y A
11V1l + Y A

12V1r = I1 (20)
Y B

11V2l + Y B
12V2r = I2 (21)

By noticing that

Ibl = I2 − I1, Ial = I1,

V1l = Val − Vbl, V1r = Var − Vbr,

V2l = Vbl and V2r = Vbr,

it is possible to write one row of the admittance matrix of the
combined four-port.

Y A
11(Val − Vbl) + Y A

12(Var − Vbr) = Ial (22)

A similar approach can be used to obtain the complete
system in the following form:

(
Y A −Y A

−Y A Y A + Y B

)



Val

Var

Vbl

Vbr


 =




Ial

Iar

Ibl

Ibr


 (23)

For an M + 1-layer (M plane-pair) package with solid
power/ground planes on each layer, the system matrix, Y, is
obtained as a simple extension of Equation 23.

Y =




Y1 −Y1

−Y1 Y1 + Y2 −Y2

. . . . . . . . .

−YM−1

−YM−1 YM−1 + YM




(24)
, where Yi, i = 1, 2, . . . , M are admittance matrices obtained
for the ith plane-pair counting from the top of the stack.

C. Inclusion of Apertures

Without apertures, the problem domain is simply a rect-
angle. In a more complex case with apertures, the flattened
problem domain can be decomposed into a number of sub-
domains, containing the solid metal planes and the apertures.
To further explain this concept, an M + 1-layer package with
an arbitrary number of apertures on each layer can be flattened
into a rectangular problem domain containing N sub-domains.
Each of these sub-domains represents one aperture or many
overlapping apertures.

Thus, while adding the contributions of each layer i, i =
1, 2, . . . , M , to the admittance matrix, the following cases are
considered. As before, i = 1 is the top-most layer.

1) Sub-domains j1, j2, . . . , jP correspond to no
apertures on layers i and i + 1: This case is handled
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Fig. 7. (a)Geometry of split-plane structure (b) Mesh (c) Cross-section.

as in the previous sub-section. The contributions of
the sub-domains j1, j2, . . . , jP are added to Yi without
alteration.

2) Sub-domains k1, k2, . . . , kQ correspond to apertures
on layer i: The contributions of sub-domains
k1, k2, . . . , kP are removed from Yi.

3) Sub-domains l1, l2, . . . , lR correspond to apertures
on layers i + 1, i + 2, . . . , i + X: The contributions of
sub-domains l1, l2, . . . , lR are removed from Yi. Create
admittance matrix M containing the contributions of the
excluded sub-domains, with reference to corresponding
nodes in layer X + 1.

IV. Results

The critical problem with finite difference methods such
as MFDM is that in the presence of small features, the
mesh becomes dense, as a result of which the number of
unknowns in the system can be large. An example to illustrate
this is a single plane-pair test case. The lower metal layer
is a solid ground plane, while the top layer, of dimensions
100mm × 100mm contains a 0.2mm slot, dividing it into two
100mm×49.9mm islands. The geometry of the structure, the
mesh, and the cross-section are shown in Figures 7(a), 7(b)
and 7(c) respectively. The only port in the structure is placed
on one of the power islands. The slot width (0.2 mm) is large
enough when compared to the dielectric height (1 mil) that gap
coupling can be ignored. As a consequence of the Delaunay
mesh generation algorithm that has been used, the mesh is
denser around small features and coarse elsewhere.

The structure was simulated with MFEM, as well as
MFDM. All simulations were performed on an Intel Core2
Duo 2.2 GHz workstation with 2.0 GB RAM. The impedance
at Port 1, Z11 is shown in Figure 8, and there is good
agreement between MFEM and MFDM. A summary of the
computational requirements are listed in Table I.

To validate MFEM, two test cases have been considered.
The following test cases were designed to demonstrate the
capability to model vertical coupling through apertures in the
metal planes.
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Fig. 8. Self Impedance Z11

TABLE I
SUMMARY OF RESULTS.

Method Unknowns Time / Freq Pt. Code MFEM
Speed-up

MFEM 1,439 0.250 s MATLAB -
MFDM 250,000 10 s C++ 40X

The geometries of the first test case is shown in Figures 9,
along with the port locations.

Ideally, if the metal-layers were all solid and contained no
holes or apertures, then there will be no coupling between the
ports, at the frequencies of interest. This is due to the fact
that the field penetration depth reduces with frequency. The
skin-depth can be expressed as

δs =
√

1
πfµσ

(25)

, where f is the frequency of operation, µ is the permittivity
of the medium and σ is the conductivity of the metallization.
At 100 MHz, for copper metallization, the skin-depth is
approximately 7 µm (and 2 µm at 1 GHz). In these test cases,
the copper used was 30 µm thick. Hence, field penetration will
not play a major role over the frequencies of interest (> 100
MHz).

However, from the insertion loss results shown in Figures

Fig. 9. Test vehicle 1 (a) Geometry (b) Stack cross-section.
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Fig. 11. Magnitude of Self Impedance (Z11).

10, there is significant coupling between ports. This is due to
aperture coupling. Also, the results from MFEM correlate well
with measurements.

The second test case is the four-layer structure that was
previously used to explain the meshing scheme, with plane di-
mensions of 100mm × 100mm. The differences in dimensions
of each aperture was maximized to emphasize the meshing
scheme employed by MFEM. Hence, the largest aperture size
was 40×40 mm and the smallest was 3×3 mm. The minimum
aperture size was chosen such that it still influenced the
response of the structure at the maximum simulation frequency
of 1GHz. Two ports are placed between the bottom plane
(ground) and the second plane, and between the third plane
and the top plane, respectively, as shown in Figure 4. The
dielectric is FR-4 with εr = 4.4.

The structure was simulated with MFEM, which has been
implemented using MATLAB, and the results were compared
with MFDM [3] and a commercial power integrity simulator.
The commercial tool performs 2.5-D simulation using FEM.
The self and transfer impedance results have been plotted
in Figures 11 and 12. As can be seen from the results,
there is good correlation between MFEM and the others
methods. A summary of the results with timing information
and implementation details has been provided in Table II.
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Fig. 12. Magnitude of the transfer impedance (Z12).
TABLE II

SUMMARY OF RESULTS FOR STRUCTURE IN FIGURE 4

Method Unknowns Time / 100 Freq Pt. Code MFEM
Speed-up

MFEM 3,594 35 s MATLAB -
MFDM 122,411 560 s C++ 16X

Comm. tool 71,204 200 s Unknown 5.5X

V. Conclusions
In this paper, a novel modeling method to obtain the fre-

quency response of multi-layer package power/ground planes
has been proposed. This method, MFEM, results in a system
which is sparse, while only applying a 2D triangular mesh on
the metal surface. Thus, MFEM has been shown to require
significantly fewer unknowns and still provide accuracy com-
parable with other simulation methods.
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