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Abstract—Transient electromagnetic (EM)/circuit simulation
using Laguerre polynomials is an unconditionally stable scheme.
Prior work done on this topic, called Laguerre finite-difference
time domain (FDTD), has the limitation of being able to simulate
only for a certain time duration. An equivalent circuit model of the
FDTD grid allows easier implementation of the algorithm, avoid-
ing long cumbersome equations, and enabling the use of modified
nodal analysis for transient EM simulation using Laguerre poly-
nomials. The enhanced method has been called SLeEC, and stands
for simulation using Laguerre equivalent circuit. In this paper, a
memory and time-efficient solution has been proposed to overcome
this limitation, so that transient simulation can be done for all time
duration. SLeEC has been applied to solve linear transient circuit
simulation problems. Equivalent companion models for inductors,
mutual inductance, and capacitors have been derived.

Index Terms—Finite-difference time domain (FDTD), Laguerre
polynomials, modified nodal analysis.

I. INTRODUCTION

TRANSIENT simulation methods, such as the finite-
difference time-domain (FDTD) method [1] and the la-

tency insertion method (LIM) [2], are one of the most widely
used techniques for transient analysis. Finite-difference schemes
for circuit simulation are differentiated from finite-difference
schemes for electromagnetic (EM) simulation by the terms
circuit-FDTD and FDTD, respectively. In the Circuit-FDTD
method, time-domain differential equations are discretized, and
nodal voltages and branch currents are updated in alternate
time steps. Similarly, in FDTD, electric and magnetic fields are
updated in alternate time steps. FDTD and circuit-FDTD are
examples of marching-on-time (MOT)-based schemes, where
transient simulation is done in the time domain.
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Methods such as the conventional FDTD scheme and LIM
are limited by the Courant condition, which makes the time step
prohibitively small for problems where a fine mesh would be
required.

An unconditionally stable FDTD method using Laguerre
polynomials has been proposed in [3]. It has been shown in [3]
that MOT-based approaches can be made atleast 80× faster,
by using a marching-on-degree (MOD) method. In the MOD
scheme, time-domain waveforms are represented by a sum of
basis functions, scaled by basis coefficients. The basis coeffi-
cients that represent the output transient waveform are solved,
and then converted to a time-domain waveform.

Laguerre polynomials applied to solve the problem of late
time instability when solving time domain-EFIE are given in
[4]. Transient simulation using Laguerre polynomials integrated
with frequency domain is given in [5]. The limitation in prior
work [3] is the limited time duration for which simulation can be
performed, and therefore, cannot be directly applied to problems
that oscillate for a long period of time, which often arises in
packaging. One of the contributions of this paper is to extend
the method, such that simulation can be done for all time.

A circuit model of the FDTD grid has been developed in [6].
The advantages of using the circuit model are: 1) equations
can be set up in a systematic fashion by using the stamp rule
of modified nodal analysis [7]; 2) the number of unknowns
to be solved can be reduced to half without the use of long,
cumbersome equations, making the implementation simpler;
and 3) Spice modified nodal admittance (MNA) engine can be
used to do transient simulation using Laguerre polynomials.

Simulation using Laguerre equivalent circuit (SLeEC) has
also been applied to linear transient circuit simulation problems.
Companion models of inductors, capacitors, and mutual induc-
tance have been developed. By using these companion models,
SLeEC can be integrated into the Spice simulator seamlessly.

The remaining paper is organized as follows. SLeEC transient
simulation methodology is presented in Section II, Laguerre-
domain representation of time-domain waveforms is described
in Section III, improvements over prior work is given in
Section IV, companion model for inductors, capacitors, and
mutual inductance is given in Section V; memory efficiency is
addressed in Section VI, which is followed by simulation re-
sults from test cases in Section VII, and finally, conclusions are
presented in Section VIII.

II. TRANSIENT SIMULATION METHODOLOGY

As mentioned earlier, the limitation of Laguerre-FDTD
method proposed in [3] is that simulation can be performed

0018-9375/$26.00 © 2009 IEEE
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Fig. 1. Total simulation time of Laguerre-FDTD is divided into different time
intervals.

only for a certain time duration. A discussion of the reasons
for this limitation is deferred until Section IV. The solution to
overcome this limitation is to divide the total simulation time
into different intervals. Let Interval I span from time t = t0
to t = t1 , Interval II span from time t = t1 to t = t2 , and
so on, as shown in Fig. 1. The length of each interval is chosen
such that simulation can be accurately performed in that time
duration. The final values at the end of Interval I are used as
initial conditions to simulate in interval II. This process is re-
peated until the time duration for which the simulation needs to
be done is completed.

SLeEC can be applied to linear transient circuit simulation or
EM simulation. The SLeEC methodology in Fig. 2 is applied in
each of the intervals shown in Fig. 1. The first step is to represent
the source waveforms in time domain into equivalent represen-
tations in the Laguerre domain. The time-domain waveforms are
represented as a sum of Laguerre polynomials that are scaled
by Laguerre basis coefficients. The mathematical representa-
tion is explained in Section III. The second step is to replace:
1) the FDTD grid, or, in the case of circuit simulation, 2) ca-
pacitors, inductors, and mutual inductance with their equivalent
Laguerre-domain companion models. The companion models
for the linear circuit components are given in Section V. The
transient sources are replaced with dc sources. For each of the
values in the Laguerre domain that represents the time-domain
source waveform, a dc analysis is performed once. The solution
at the end of each dc analysis is used to update the companion
models, before the next dc analysis is performed. After updat-
ing the companion models, a dc analysis is carried out using
the next value in the Laguerre domain that represents the source
waveform. These series of steps are given by steps 2 and 3 in
Fig. 2. The final step (step 4) is to construct the time-domain
waveform from the dc solution of the output of interest.

III. LAGUERRE-DOMAIN REPRESENTATION

OF SOURCE WAVEFORMS

The first step is to represent the time-domain source wave-
forms into equivalent Laguerre-domain representations. A tran-
sient source waveform W (t) can be represented as a sum of
N Laguerre basis functions ϕp(t̄), scaled by Laguerre basis
coefficients Wp as [3]

W (t) =
p=N −1∑

p=0

Wpϕp(t̄) (1)

t̄ = st. (2)

In (2), t̄ is the real-time t multiplied by a scaling factor s. The
actual time scale at which the simulation is run is very small,
typically picoseconds, when rise/fall times are in the order of

Fig. 2. Flowchart for transient simulation using Laguerre polynomials.

picoseconds. To make the basis function work, the real time is
multiplied by s to scale the magnitude in the order of seconds.
The basis functions span a time in the order of seconds; hence,
the need for the scale factor.

Output of step 1 is a set of Laguerre basis coefficients {Wp}
for each of the transient source waveforms. Detailed procedure
for step 1 to compute the set of the Laguerre basis coefficients
is described in [6].

IV. IMPROVEMENTS OVER PRIOR WORK

The drawback of the methodology in [3] is that the transient
simulation can be performed only for a certain time duration,
and cannot be done for all time. There are two reasons for this
limitation: the first reason is due to the nature of the Laguerre
basis functions and the second reason is due to the finite pre-
cision of the computer, which makes it impossible to represent
very large numbers or very small numbers.

The first reason for the limitation is due to the nature of the
basis functions. All of the basis functions approach 0, as t tends
to ∞. Therefore, any time-domain waveform that is spanned
by these set of basis functions also goes to 0 as t tends to ∞.
Structures that are lossless or have a low loss cannot be simulated
accurately, because the fields can be nonzero for a long period
of time.

The second reason for the limitation is due to the finite pre-
cision of the computer. The Laguerre basis function is an expo-
nentially decaying function multiplied by Laguerre polynomial.
The exponential function quickly decays to 0, and beyond a
certain time point, the exponential function is treated exactly
as 0. Laguerre polynomials become very large with increasing
time. Beyond a certain time, the numbers become very large
to be represented with the limitation of finite precision, and
is represented as Inf in the IEEE 754 floating-point standard.
Consequently, beyond a certain time point, the basis function is
represented as 0 × Inf or NaN, and not by a number.

Consider the lossless resonant cavity shown in Fig. 3. The Ey

field at the location marked probe is plotted in Fig. 4. Theoreti-
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Fig. 3. Example to illustrate breakdown in the simulation.

Fig. 4. Limitation of prior work. (Red, solid line) Laguerre-FDTD.
(Blue, dots) FDTD.

cally, since the cavity is lossless, the fields must never decay to
0. The red solid waveform is formed by using Laguerre-FDTD
and the blue dots by conventional FDTD scheme. Since the ba-
sis functions go to 0, as t tends to ∞, the red waveform starts
to decay to 0, as shown in the figure. The abrupt termination
of the red waveform (indicated by the box) occurs due to the
finite-precision problem described earlier.

A solution to fix the problem is to divide total simulation
time into different intervals; the final values at the end of an
interval are used as initial condition in the next time interval. The
differential equations have initial conditions explicitly included
to enable restarting the simulation. Using the proposed solution,
simulation can done for all time duration.

V. COMPANION MODELS

The second step is to replace the FDTD grid, or the inductors
and capacitors in the case of circuit simulation, by its respective
companion model, as shown in Fig. 2. Companion model of an
inductor is derived in Section V-A and the companion model
of a capacitor is given in Section V-B. The companion models

Fig. 5. Thevenin/Norton form of the companion model for an induc-
tor/capacitor.

for mutual inductance and FDTD grid are given in [8] and [6],
respectively.

The structure of the companion models in the Laguerre do-
main of an inductor and a capacitor are the same as the time-
domain companion models used by the Spice simulator [7]. The
models presented here can be seamlessly integrated into the
Spice simulation engine.

A. Companion Model of an Inductor

The Thevenin/Norton forms of the companion model for an
inductor of value L is shown in Fig. 5. The current through the
inductor at time t is i, the initial current through the inductor
is i(0), and the direction of the current flow is marked by the
arrow shown in the figure. The voltages at node A and node
B are V A and V B , respectively. V A

p and V B
p represent the pth

basis coefficient of voltages V A(t) and V B(t), respectively. The
pth basis coefficient of the branch current i is marked as ip . In
the Thevenin form, an inductor is replaced by a resistor in series
with two voltage sources. The value of the series resistor is

Rind,T = 0.5Ls (3)

where s is the time-scale factor and subscript T stands for
Thevenin. The value of the first voltage source is a function
of the previous dc results of the branch currents. The value of
the first voltage source is

Vind,T = Ls

p−1∑
k=0,p≥1

ik . (4)

For the first dc analysis that is performed (p = 0), Vind,T is set
to 0. The value of the second voltage source (marked in red) is

Vo,ind,T = Lsi(0). (5)
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The rest of the section presents the mathematical derivation of
the companion model.

The voltage across the inductor is given by

V A − V B = L
di

dt
− Li(0)δ(t). (6)

The current and voltages, i, V A , and V B can be written as a
sum of Laguerre basis functions as

i =
∞∑

q=0

iqϕq (t̄) (7)

V A =
∞∑

q=0

V A
q ϕq (t̄) (8)

V B =
∞∑

q=0

V B
q ϕq (t̄). (9)

Variables iq , V
A
q , and V B

q are qth basis coefficients for the cur-
rent and voltages, ϕq is the qth Laguerre basis function, and t̄ is
the scaled time defined in (2). Time derivative of U , written in
terms of Laguerre basis coefficients, is given as [3]

dU

dt
=

d

dt

( ∞∑
q=0

Uqϕq (t̄)

)

= s

∞∑
q=0


0.5Uq +

q−1∑
k=0,q≥1

Uk


 ϕq (t̄). (10)

Substituting (7)–(9) in (6) and using the time-derivative rela-
tionship in (10), (11) can be obtained as
∞∑

q=0

V A
q ϕq (t̄) −

∞∑
q=0

V B
q ϕq (t̄)

= Ls
∞∑

q=0


0.5iq +

q−1∑
k=0,q≥1

ik


 ϕq (t̄) − Li(0)δ(t). (11)

Multiplying (11) by ϕp(t̄), integrating from [0, ∞], and using
the orthonormal property of basis functions, (12) can be obtained
as

V A
p − V B

p = Ls


0.5ip +

p−1∑
k=0,p≥1

ik


 − Lsi(0). (12)

In deriving (12), (13) is used when integrating the delta function
term as ∫ ∞

0
δ(t)ϕp(t̄)dt̄ = sϕp(0) = s. (13)

Equation (12) can be represented as a Thevenin form in terms
of circuit components by a resistor in series with two voltage
sources with values given in (3)–(5). Equation (12) can be rear-
ranged in order to obtain a Norton representation. Solving for
ip in (12), (14) can be obtained as

ip = 2i(0) +
1

0.5Ls
(V A

p − V B
p ) − 2

p−1∑
k=0,p≥1

ik . (14)

The Norton representation of the companion model for an in-
ductor is a resistor and two current sources, all in parallel con-
figuration. The Norton representation is shown in Fig. 5. The
value of the resistor term is

Rind,N = 0.5Ls. (15)

The value of the current source that represents the initial condi-
tion is

Io,ind,N = 2i(0). (16)

The value of the second current source in parallel with the rest
of the components is

Iind,N = 2
p−1∑

k=0,p≥1

ik . (17)

B. Companion Model of a Capacitor

The companion model of a capacitor is shown in Fig. 5. The
voltage across the capacitor at time t is given by V AB ; the
initial voltage across the capacitor of value C is V AB(0) and
the polarity of the voltage is shown in the figure. V A

p and V B
p

represent the pth basis coefficient of voltages V A(t) and V B(t),
respectively. The pth basis coefficient of the branch current i
is marked as ip . The Norton form of the companion model for
a capacitor is two current sources and a resistor, all in parallel
configuration, as shown in Fig. 5. The value of the parallel
resistor is

Rcap,N =
1

0.5sC
(18)

where s is the time-scale factor. The value of the current source is
a function of the previous dc nodal voltages across the capacitor.
The value of the current source is

Icap,N = −sC


 p−1∑

k=0,p≥1

V A
k −

p−1∑
k=0,p≥1

V B
k


 . (19)

The value of the current source that represents the initial condi-
tion is given by

Io,cap,N = −sCV AB(0). (20)

The derivation of the companion model of a capacitor is similar
to an inductor. The current through a capacitor is given by

i = C
dV AB

dt
− CV AB(0)δ(t). (21)

The time-domain current and voltages can be written in terms
of Laguerre basis functions, as given by (7)–(9). Substituting
these into (21), using the time-derivative relation in (10), mul-
tiplying both sides by ϕp(t̄), integrating from [0,∞], and using
the orthonormal property of Laguerre basis functions, (22) can
be obtained as

ip = 0.5sC(V A
p − V B

p )

+ sC


 p−1∑

k=0,p≥1

V A
k −

p−1∑
k=0,p≥1

V B
k


 − sCV AB(0). (22)
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In deriving (22), (13) is used when integrating the delta function
term. Equation (22) can be represented in a Norton form by a
resistor and two current sources, all in parallel, as shown in
Fig. 5. Equation (22) can be rearranged in order to obtain a
Thevenin representation. Solving for V A

p − V B
p in (22), (23)

can be obtained as

V A
p − V B

p =
1

0.5sC
ip + 2V AB(0)

−2


 p−1∑

k=0,p≥1

V A
k −

p−1∑
k=0,p≥1

V B
k


 . (23)

The Thevenin represention for the companion model of a capac-
itor is a resistor in series with two voltage sources. The value of
the resistor is given by

Rcap,T =
1

0.5sC
. (24)

The value of the voltage source that represents the initial condi-
tion is given by

Vo,cap,T = −2V AB(0). (25)

The value of the second voltage source is given by

Vcap,T = −2


 p−1∑

k=0,p≥1

V A
k −

p−1∑
k=0,p≥1

V B
k


 . (26)

VI. MEMORY REQUIREMENTS

It must be noted that SLeEC does not require storing all nodal
voltages and all branch currents from the series of dc analysis
that has been performed. At the end of each dc analysis, once
the companion models have been updated, there is no need for
saving the solution. The only solution that needs to be stored at
the end of each dc analysis is the solution of the output for which
the transient waveform is to be observed, which is a constant
amount of memory.

The final values at the end of an interval, e.g., interval Q, must
be computed in order to use these values as the initial conditions
in the next time interval, interval (Q + 1). Not all the coefficients,
i.e., the dc solution, for the voltage across a capacitor and the
current through an inductor need to be saved, in order to compute
the final value at the end of a time interval. At the end of each
dc analysis, the contribution of pth Laguerre basis coefficient
(Wp) to the final value of the transient waveform at the end of
a time interval (tf ) can be computed by using

value(tf ) = value(tf ) + Wpϕp(stf ). (27)

value(tf ) is first initialized to 0, before using (27). By using
(27), the coefficients of the dc solution need not be saved in
order to compute the final value of a quantity at the end of a
time interval.

VII. SIMULATION RESULTS

1) Test Case 1: The first test case is a power plane structure,
where two solid metal planes are sandwiched between dielectric

Fig. 6. Test case 1. Solid power plane structure with a nonuniform mesh.

Fig. 7. Simulation results from 0 to 5 ns for test case 1. (Red, solid line)
SLeEC. (Blue, dotted) FDTD.

material, as shown in Fig. 6. The dimension of the power plane
is 100 mm× 50 mm. The mesh is 1 mm× 1 mm, except at
the center, where a fine mesh of 1 mm× 10 µm is used. The
source waveform Jz is a Gaussian pulse, place at the center
of the cells, 19.5 mm away from the left edge of the plane.
Simulation results from 0 to 5 ns are shown in Fig. 7. At the
end of 5 ns, the final values are used as initial conditions for
simulation from 5 to 10 ns. Simulation results from 5 to 10 ns
are shown in Fig. 8. The (solid line) red waveform represents
results from SLeEC and the (dotted) blue waveform is formed by
using conventional FDTD scheme. The value of the time-scale
factor used is s = 8.1 × 1010 . The number of basis functions
used in SLeEC is 308. Using one-tenth of the Courant time step,
conventional FDTD requires a million iterations to complete
the simulation. However, SLeEC requires only 308 iterations to
generate the time-domain waveform. The run time comparison
between FDTD and SLeEC for test case 1 in terms of the number
of iterations is summarized in Table I.
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Fig. 8. Simulation results from 5 to 10 ns for test case 1. (Red, solid line)
SLeEC. (Blue, dotted) FDTD.

TABLE I
COMPARISON OF THE NUMBER OF ITERATIONS BETWEEN

FDTD AND SLEEC FOR TEST CASE 1

Fig. 9. Test case 2: an EBG structure.

2) Test Case 2: The second test case is an EM bandgap
(EBG) structure, which is a power plane structure as before,
with metallization that have been removed in certain regions,
as shown in Fig. 9. The patch size is 14 mm× 14 mm, with
three patches connected in series. The patches are connected by
a branch that is 1 mm× 0.01 mm, with 0.01-mm-wide narrow
slots. Simulation results from 0 to 10 ns are shown in Fig. 10. The
source and the time-scale factor used are the same as test case 1.
The source waveform Jz is placed 5 mm away from the edges of
the lower-left corner, and the Ez is calculated 5 mm away from
the edges of the top-right corner in Fig. 9. The (solid line) red
waveform represents results from SLeEC and the blue (dotted)
represents conventional FDTD scheme. To generate the time-
domain waveform, 309 basis functions were used in SLeEC.
The number of iterations required by FDTD, using one-tenth of
the Courant time-step is a million. As described before, SLeEC
requires a lot fewer iterations compared to conventional FDTD
scheme,due to which the speed up can be obtained. The run time
comparison between FDTD and SLeEC for test case 2 in terms
of the number of iterations are summarized in Table II.

Fig. 10. Simulation results from 0 to 10 ns for test case 2. (Red, solid line)
SLeEC. (Blue, dotted) FDTD.

TABLE II
COMPARISON OF THE NUMBER OF ITERATIONS BETWEEN

FDTD AND SLeEC FOR TEST CASE 2

VIII. CONCLUSION

SLeEC transient simulation methodology, which can be used
to simulate for all time and for all structures, has been proposed.
A companion model for inductors, capacitors, and mutual in-
ductance has been derived, which enables transient simulation
using the Spice MNA engine. Simulation results from test cases
showing excellent correlation between SLeEC and conventional
FDTD method were presented.
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