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Transient Chip-Package Cosimulation of Multiscale
Structures Using the Laguerre-FDTD Scheme

Myunghyun Ha, Krishna Srinivasan, and Madhavan Swaminathan

Abstract—Transient simulation using Laguerre polynomials is
unconditionally stable and is ideally suited for modeling structures
containing both small and large feature sizes. The focus of this
paper is on the automation of this technique and its application
to chip-package cosimulation. Laguerre finite-difference time-do-
main (FDTD) requires using the right number of basis coefficients
to generate accurate time-domain waveforms. A method for
generating the optimal number of basis functions is presented
in this paper. Equivalent circuit models of the FDTD grid have
been developed. In addition, a method for simulation over a long
time period is also presented that enables the extraction of the
frequency response both at low and high frequencies. A node
numbering scheme in the circuit model of the FDTD grid that is
suitable for implementation has been discussed. Results from a
chip-package example that shows the scalability of this technique
to solve multiscale problems have been presented.

Index Terms—Finite-difference time-domain (FDTD), Laguerre,
unconditionally stable.

I. INTRODUCTION

T RANSIENT simulation using Laguerre polynomials is
unconditionally stable and therefore, has the advantage

of not being limited by the time step. Laguerre-FDTD was
first proposed in [1] and has shown to be 70–80 faster than
the conventional FDTD scheme for multiscale simulation. The
unconditionally stable nature of transient simulation using
Laguerre polynomials has been exploited to fix the late-time
instability problem in the time-domain electric-field integral
equations in [2]. Laguerre-FDTD has also been used to obtain
wideband frequency response efficiently in [3]. In this paper,
the Laguerre-FDTD method has been applied to packaging
problems.

A property of the chip-package structure is the multiscale fea-
ture. The on-chip structures require a very fine mesh for simula-
tion, and therefore the time step resulting from the well known
Courant condition can become prohibitively small. The alter-
nating direction implicit-FDTD (ADI-FDTD) scheme can be
used to speed up simulation and has been shown to provide a
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improvement in the simulation time in [4]. Also, multires-
olution time-domain (MRTD) scheme using scaling and wavelet
functions has been shown to provide savings of an order of mag-
nitude with respect to execution time [5], and Holland’s method
proposed in [6] has been used to enhance simulation time by
avoiding fine meshing for thin wires, by modeling the thin wires
with a cell size smaller than the FDTD cell. Laguerre-FDTD,
however, can be significantly faster than FDTD and other time
domain methods especially for packaging problems containing
multiscale dimensions. By using an implicit solution technique,
a decrease in simulation time has been achieved at the expense
of increased memory.

Since the introduction of Laguerre FDTD in [1], several mod-
ifications have been made to the algorithm. In [7], a method
using Laguerre-FDTD for simulating for long time duration has
been presented. In [8], an equivalent circuit model of the FDTD
grid has been developed, thereby reducing the matrix size that
needs to be solved. This method has been applied to both elec-
tromagnetic and circuit problems consisting of inductors, resis-
tors, and capacitors in [8]. In this paper, two enhancements to
the Laguerre-FDTD method presented in [7]–[10] have been de-
scribed. Since Laguerre basis functions decay rapidly in time,
application of the Laguerre-FDTD method for long time simu-
lation is still a challenge. Also, a method is presented that pro-
vides a solution which is far superior to the solution technique in
[7], and therefore provides a frame work for simulation over ex-
tended time periods. In addition, a method for choosing the op-
timal number of basis functions using the norm is presented.
Though this is an extension of [11] and [12], mathematical de-
tails that support this scheme have been presented in this paper
in addition to its application on several packaging examples.

The modified algorithm discussed in this paper has been
named SLeEC, which stands for Simulation using LaguerrE
Equivalent Circuit. The major contributions of this paper are as
follows.

1) Reformulation and application of the Laguerre-FDTD
method for long time duration of 1 s or higher arising in
chip-package problems.

2) Choosing the optimal number of basis function in the La-
guerre-FDTD method with underlying mathematical justi-
fication.

In addition, the minor contribution of the paper includes a node
numbering scheme using Laguerre polynomials that leads to the
sparsity in the 3-D FDTD grid and application of the SLeEC
method to several structures arising in chip-package problems
with mutilscale dimensions.

The remaining paper is organized as follows. An overview of
the SLeEC methodology is given in Section II. Representation
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Fig. 1. Flowchart of the SLeEC methodology.

of a time-domain source waveform using Laguerre basis func-
tions is described in Section III. The equivalent circuit model
of the FDTD grid is presented in Section IV. In Section V,
a new formulation for simulating over long time is described
along with an example. In Section VI, a method for choosing the
optimal number of basis function is described. In Section VII,
a node numbering scheme that enables matrix sparsity is pre-
sented followed by several test cases in Section VIII. Conclu-
sions are presented in Section IX.

II. SLEEC METHODOLOGY

The transient EM simulation methodology using Laguerre-
FDTD is shown in Fig. 1[11].

The first step in the flow chart is to convert the source rep-
resentations from the time domain into the Laguerre domain.
A time-domain source waveform is represented by a set of co-
efficients in the Laguerre domain. The FDTD grid is next re-
placed by an equivalent companion model composed of resis-
tors, voltage controlled current sources and independent current
sources. The companion model of the 3-D FDTD grid is de-
scribed in detail in Section IV. A series of dc analyses are done
on the circuit model of the FDTD grid, where each of the co-
efficients that represents the source waveform is used as an in-
dependent dc current source. In the circuit model of the FDTD
grid, the dc solution of the nodal voltages represent the elec-
tric-field Laguerre coefficients and the branch currents repre-
sent the magnetic-field Laguerre coefficients. For each of the
coefficients that represents the source waveform, a dc analysis
is done only once. At the end of the dc analysis, the solution is
used to update the companion model before the next dc anal-
ysis is done using the next value of the Laguerre-domain co-
efficient of the source waveform. The final step is to convert
the values obtained from the dc solution of the output field of
interest into time-domain waveform. In this step, choosing the
optimal number of basis coefficients is essential to maximizing
accuracy. Analytical formulae have been given in [1] to deter-
mine the correct number of basis functions. The analytical for-
mulae however provide a range of values for the number of basis
functions that can be used. Test cases that have been simulated

Fig. 2. Laguerre basis functions for order � � �� � [1].

in this paper show that this number has to be of a specific value
which is determined best through numerical analysis.

III. LAGUERRE-DOMAIN REPRESENTATION

OF SOURCE WAVEFORMS

In the SLeEC method, the time-domain source waveforms
have to be converted into equivalent Laguerre-domain represen-
tations. A transient source waveform can be represented
as a sum of Laguerre basis functions , scaled by La-
guerre basis coefficients as shown in (1) [1]

(1)

(2)

In (2), is dimensionless and representing the real time multi-
plied by a scaling factor . This is done to increase the time scale
to the order of seconds. The basis functions for orders
are plotted in Fig. 2 [1]. The basis functions span a time in the
order of seconds as shown by the x-axis in Fig. 2, hence the need
for the scale factor arises.

The definition of the basis function is shown

(3)

Laguerre polynomials are defined recursively as follows:

(4)

(5)

(6)

The transient source waveforms are replaced by equivalent dc
sources. The values of the dc sources are the set of Laguerre
basis coefficients , which represent the transient source
waveform in the Laguerre-domain. is generated from

using

(7)
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Fig. 3. Standard Yee cell.

Laguerre basis functions satisfy the orthonormal property

(8)

In (8), is the Kronecker delta function. Equation (7) can be
derived by multiplying both sides of (1) with , integrating
the two sides from and using the orthonormal property
given by (8). Laguerre polynomials also satisfy the relationship
given in (9), which can be obtained by observing that
for all values of

(9)

The output of Laguerre-domain representation in Fig. 1 is to
compute the set of Laguerre basis coefficients that repre-
sents each of the transient source waveforms.

IV. EQUIVALENT CIRCUIT MODEL REPRESENTATION

OF THE FDTD GRID

The standard FDTD Yee cell is shown in Fig. 3 [13]. The
cross sections of the FDTD cell at the locations marked by the
dotted lines in Fig. 3 are shown in Fig. 4. These represent the
cross sections as viewed by standing on the of y, x, and
z axis and facing the Yee cell. A circuit model that represents
the Laguerre basis coefficients of the fields has been derived in
[10], where the nodal voltages represent the basis coefficients of
the electric fields and the branch currents represent the magnetic
fields.

Consider the following two of six Maxwell’s differential
equations:

(10)

(11)

The initial conditions are explicitly included in the differen-
tial equations before converting them to the Laguerre domain, to
enable restarting a simulation beyond a certain time duration, as
explained in [7]. Using the procedure similar to [7], the time-do-
main differential (10) and (11) can be converted to the Laguerre
domain, given by

(12)

(13)

Equations (12) and (13) can be represented in a circuit form as
given in Fig. 5. Fig. 5 represents the circuit model for the mag-
netic field and the electric field ,
at the location marked by the solid edges and their intersection
in Fig. 4. Only the partial 3-D model is given in Fig. 5. The com-
plete model can be derived in a similar fashion.

The branch currents represent the th Laguerre basis coeffi-
cient of the magnetic fields and are given by

(14)

(15)

The nodal voltages represent the th basis coefficient of the elec-
tric fields

(16)

The branch current circuitry represents (12) and the circuitry
connected to the node with voltage represents (13).
The values of the branch current circuitry are

(17)

(18)
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Fig. 4. Sections of the Yee cell marked by the dotted lines in Fig. 3 parallel to the xz, yz, and xy planes, respectively; dots indicate direction of the fields pointing
out of the page.

Fig. 5. Companion model of the 3-D FDTD grid in Laguerre domain.

The circuitry connected to the node with voltage have
the values

(19)

(20)

(21)

(22)

The circuit given in Fig. 5 can be stamped in a modified nodal
analysis (MNA) matrix and solved to find the unknown Laguerre
basis coefficients of the electric and magnetic fields. The solu-
tion at the end of the th iteration in the flowchart given in Fig. 1
represents the th Laguerre basis coefficient of the electric and
the magnetic fields. The dc solution at the end of the th itera-
tion is used to update the companion model before solving for
the next set of Laguerre basis coefficients. The number of un-
knowns that needs to be solved in dc analysis can be reduced by
using the Norton equivalent form looking into the circuit marked
by the double arrow in Fig. 5. The values of the Norton equiva-
lent circuit are given by

(23)

has terms involving and and is therefore a current
controlled current source. In MNA analysis, current controlled
current source terms in introduce additional unknowns, be-
sides the unknown nodal voltages [14]. However, can be
implemented as voltage controlled current sources and current
sources, by stamping the current in a branch directly and the
additional unknowns can be eliminated. Voltage controlled cur-
rent sources do not introduce additional unknowns [14]. The un-
knowns to be solved are only the electric field coefficients (nodal
voltages) and therefore the matrix dimension to be solved is in
its optimal form.

With the values given by (17)–(23), it can be seen from KCL
and KVL equations that these satisfy (12)–(13). The partial
model in Fig. 5 can be completed in a similar fashion and can
satisfy the complete set of 3-D Maxwell’s differential equations
in the Laguerre domain.

Different types of boundary conditions can be implemented
in the companion model. The companion models, besides
making the implementation easier, offer a very elegant way to
implement the algorithm. The models for the perfect electric
conductor (PEC) and the perfect magnetic conductor (PMC)
boundary conditions which have been implemented in this
paper are presented in the next subsection.

A. PEC Boundary

In the PEC boundary, the tangential electric fields to the
boundary are set to zero. As shown in Fig. 6, the PEC boundary
is implemented by setting a node to ideal ground. In Fig. 6, the
vertical bars represent the positions of the electric fields on the
grid and the symbol represent the locations of the magnetic
fields. The last node, which represents the electric field that
is tangential to the boundary, has been set to zero. In SLeEC,
the nodal voltages represent the electric-field coefficients. By
setting the nodal voltages, which correspond to the tangential
electric fields to the boundary to zero, the PEC boundary
condition can be implemented.

B. Perfect Magnetic Conductor (PMC) Boundary

In the PMC boundary, the tangential magnetic fields to the
boundary are set to zero. As shown in Fig. 7, the PMC boundary
is implemented by leaving a branch, whose current corresponds
to the magnetic field that is tangential to the boundary, open cir-
cuit. In Fig. 7, the vertical bars represent the positions of the
electric fields on the grid and the symbols represent the lo-
cations of the magnetic fields. The current in the last branch,
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Fig. 6. PEC boundary condition.

Fig. 7. PMC boundary condition.

Fig. 8. Algorithm to compute ��� Laguerre basis function in [9].

which represents the magnetic-field coefficient that is tangen-
tial to the boundary, is set to zero. By leaving the branch as an
open circuit, the current through the branch is forced to be zero,
thereby implementing the PMC boundary condition.

V. SIMULATION FOR LONG TIME PERIOD

As described earlier, the Laguerre basis functions are as de-
scribed in (3)–(6). The Laguerre basis functions decay rapidly
to zero as in Fig. 2 and hence cannot be used in its present form
for simulation over long time period.

Fig. 8 shows the flowchart of the approach used in [9] for
computing . By following the recurrence loop in Fig. 8,
the Laguerre polynomial has very large value as order
increases and the magnitude of the basis function’s value be-
comes too large to be represented with limited precision of the
computer beyond a large enough order number and time , and
therefore overflow occurs. Hence, after some time and order,
the basis function no longer has meaningful value as shown in
Fig. 10 where the waveform abruptly terminates around

. As a solution, [9] divides the total simulation-time into a

Fig. 9. Total simulation-time is divided into different time-intervals in [9].

Fig. 10. Calculated 1000th Laguerre basis function by the method in [9] for a
multiscale example.

number of short time-intervals and the initial condition of each
interval is set to the final condition of the previous interval, as
shown in Fig. 9. However, as the number of intervals increases,
error accumulates and significant error can occur in later inter-
vals.

The limitations in [9] can be overcome by introducing a bal-
ancing process in the recurrence loop, as shown in Fig. 11 [12].
For the balancing process, is represented as follows:

(24)

where (25)

(26)

and in (25) and (26) are called as balanced
Laguerre polynomial and balanced exponential function, re-
spectively. can be calculated by using the recursion
in (4)–(6) and (26). New parameters and variables such as ,

, and are introduced related to the balancing process.
is a threshold value that limits the magnitude of the balanced
Laguerre polynomial in the recurrence loop. Parameters and

represent the strength of the balancing process and degree
of balancing, respectively. The relation between the balanced
Laguerre polynomials before and after incrementing the degree
of balancing is

(27)

where is selected to ensure is large enough to avoid
overflow problem. For large , can be too small to be
represented as a nonzero value in the computer. This should be
avoided because goes to 0 by incrementing the degree
of balancing . Therefore, needs to be sufficiently large to
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Fig. 11. Proposed algorithm to compute ��� Laguerre basis function.

ensure can be represented using finite precision in the
computer.

A rule of thumb for representing in terms of threshold value
is as follows:

(28)

resulting in

(29)

If (29) is satisfied, using (28), the magnitude of the balanced
Laguerre polynomial goes to 1 as the degree of balancing in-
creases. The balancing process is used for preventing the mag-
nitude of balanced Laguerre polynomial from becoming too
large. If the magnitude of the balanced Laguerre polynomial
gets larger than the threshold value , the balancing process is
performed by increasing the degree of balancing . Since and

have positive values, the magnitude of the balanced Laguerre
polynomial reduces as the degree of balancing increases, as
per (25). Therefore, the overflow problem can be avoided since
the balanced Laguerre polynomial always remains less than in
the recurrence loop.

After the computation of , the Laguerre basis function
can be calculated using (24). Hence, this formulation enables
the application of the Laguerre-FDTD method for computing
the response over long time duration.

The computation of the 1000th Laguerre basis function
using the proposed method and the earlier method used in [9] is
shown in Fig. 12. The method in [9] cannot calculate the basis
function when is larger than 1440, which is equivalent
to 20 ns when the time-scale factor is , while the pro-
posed method successfully obtains the value of Laguerre basis
function at time greater than 1440, as shown in Fig. 12.

VI. CHOOSING THE OPTIMAL NUMBER OF BASIS FUNCTIONS

The final step in the SLeEC methodology is to generate the
time-domain waveform using the Laguerre basis coefficients of
the output of interest. Here, the number of basis functions used

Fig. 12. Calculated 1000th Laguerre basis function by the balancing method
for a multiscale example (Dots indicate calculated basis function using [9] for
comparison).

in generating the time-domain waveform is very important to
obtain accurate results because of the time-domain waveform’s
sensitivity to the number of basis functions. The methodology
used for choosing the optimal number of basis coefficients is
explained in detail in the following subsections.

A. Methodology

1) Energy Analysis (Step 1): Laguerre basis functions decay
to 0 as time increases, as shown in Fig. 2 and it decays slower
as the order of Laguerre basis function increases. Thus, for the
later part of a time-domain waveform, which is computed as the
sum of weighted Lagurerre basis functions, the number of basis
function needs to be sufficiently large. The minimum number
of basis functions to represent a time-domain waveform
can be found by analyzing the time-domain waveform’s energy
content as a function of the number of basis functions.

2) Finding the Optimal Number of Basis Functions (Step 2):
Given the minimum number of basis functions from Step 1, the
correct number of basis functions can be chosen by doing an
error analysis. Since the Laguerre basis functions have max-
imum magnitude at time , minimizing the error at time

is sufficient to determine the exact number of basis coef-
ficients. The optimal number of basis functions is chosen
between that has the smallest error at time

.
By using a source waveform with initial value zero, the field

values at all locations also have the value zero at time .
By starting the simulation in a known state, the initial value is
therefore known. The source waveform used in this paper is a
Gaussian pulse shifted in time to ensure zero value at time .

In the next two subsections, the following are discussed.
1) Calculating using the norm instead of the square

of the norm which provides the minimum number of
basis functions required.

2) Minimizing the error at time to choose the optimal
number of basis functions between and .

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 19, 2009 at 13:11 from IEEE Xplore.  Restrictions apply. 



822 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 32, NO. 4, NOVEMBER 2009

Fig. 13. Planar structure with multiscale features.

B. Norm Versus Norm for Calculating

As discussed earlier, the energy contained in the time-domain
waveform as a function of the number of basis coefficients needs
to be calculated in order to choose the correct number of basis
coefficients. The energy can be defined as a summation of the
square of the norm as [11]. An alternate scheme used in this
paper for calculating the energy content is defining the energy
content as a summation of the norm.

Consider and , which represent the calculated
energy content of the time-domain waveform generated using
basis coefficients with first basis functions
using the norm and square of the norm, respectively

(30)

(31)

where is the time-domain waveform obtained using
basis coefficients, and is the number of discrete time points
making up the time-domain waveform. In this section, we show
that the norm is better than the norm for calculating .

The energy’s sensitivity to the th discrete time-domain wave-
form value can be calculated as

(32)

(33)

Since sensitivity of the energy content using norm
is proportional to the magnitude of , it is insensitive to
small s and is dominated by large s. Hence,
waveforms with large variation in the magnitude can lead to
erroneous results at late time when magnitudes become small.
On the other hand, the energy content using norm is equally
sensitive to every irrespective of their magnitude. This
implies that using norm will minimize the error at every dis-
crete time of the waveform, as compared to the square of the
norm.

Fig. 14. Energy as a function of the number of basis coefficients using scheme
A (the square of � norm) and scheme B (� norm).

Fig. 15. Time-domain � field from � basis functions using scheme A
and B.

An example shown in Fig. 13 is used to illustrate the advan-
tage of using the norm instead of the square of the norm
for calculating the minimum number of basis functions.

As shown in Fig. 13, three electromagnetic band gap (EBG)
patches with dimension of mm mm are connected
through bridges. The example has been termi-
nated using a PEC boundary. The number of FDTD cells used
in the simulation is . Modulated
Gaussian waveform was used as the source waveform and is
located at cell , marked source in Fig. 13. The electric
field is probed at cell .

The scheme for choosing the basis coefficients using the en-
ergy definition in (30) will be referred to as scheme B while the
scheme using norm is referred to as scheme A. Scheme A and
B differ only in the equations used to calculate . Choosing
the optimal value for among the set by min-
imizing the error at time , remains the same for both
schemes, as explained in the next subsection.
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Fig. 16. Probability density functions of normal distribution with large and
small variances.

Fig. 17. Normalized error at � � � as a function of the number of basis coef-
ficients using scheme B.

The energy profiles obtained using (30) and (31) are shown
in Fig. 14. In the figure, resulting from scheme B is 110
while using scheme A is 40. The time-domain waveform
from 40 basis coefficients using scheme A and from 110 basis
coefficients using scheme B are shown in Fig. 15. There is a sig-
nificant discrepancy between the FDTD result and SLeEC with
scheme A toward the end of the time interval. This inaccuracy
is due to the imprecise evaluation of the energy content which
is dominated by with large magnitude in early time, as
per (33). However, the discrepancy that has been obtained using
scheme A is not present in the waveform that has been obtained
using scheme B in Fig. 15, which implies found by scheme
B results in more accurate results.

C. Error Minimization at Time

Using energy analysis in the previous subsection, can be
found which provides the minimal number of basis functions to
describe the time-domain waveform. Now, the optimal number
of basis function between and should be chosen to
ensure accuracy, which is the subject of this section.

Fig. 18. Time-domain � field using � and � compared with FDTD:
(a) 0–5 ns (b) Enlarged view of marked area in (a).

Let be the exact solution of the time-domain
waveform which is represented as a sum of infinite number of
weighted Laguerre basis functions where represents
Laguerre coefficient corresponding to the Laguerre basis
function

(34)

Using an approximation with basis functions, the wave-
form is now represented as

(35)

The error at time can be written as
(36)

(37)

(38)
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Fig. 19. Inefficient node numbering scheme (scheme 1).

Fig. 20. Sparsity pattern of the A matrix from an inefficient node-numbering
scheme (scheme 1).

(39)

Since is approximated using the first basis
functions, , , , are unknown while , ,

, are known. Let us assume where be a
random variable with normal distribution (mean and variance

) given by

(40)

Error at time can be calculated as
(41)

(42)

(43)

Fig. 21. Efficient node numbering scheme (scheme 2).

Fig. 22. Sparsity pattern of the A matrix suitable for LU decomposition
(scheme 2).

(44)

The mean of is

(45)

Thus, under the assumption that for is a Gaussian
random variable, its mean should be zero.

Since the sum of Gaussian random variables with zero-
mean and variance is another Gaussian random variable with
zero-mean and variance , error at is a Gaussian
random variable with zero-mean and variance while
goes to infinity

(46)
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Fig. 23. Simulated EBG structure.

TABLE I
FDTD Versus SLEEC

Similarly, error at also can be represented as a
Gaussian random variable since it is the sum of weighted
Gaussian random variables. While its mean is still zero, Since

for , as shown in Fig. 2, variance of error
is always smaller than variance of for

(47)

(48)

(49)

Since is much smaller than 1 for most , as shown in
Fig. 2, is much smaller than . Their proba-
bility density functions can therefore be approximated as shown
in Fig. 16. The probability that is greater than for

is very small, which implies that for
in most cases. Therefore, in most cases, error at time is
bounded by error at time . Thus, minimizing error at time

is effective in reducing error at , which has been
used as a measure to choose the optimal number of basis func-
tions in this paper.

To illustrate error minimization, the example in Fig. 13 has
been used again in this section. Normalized error at time

as a function of the number of basis coefficients is shown
in Fig. 17. The number of basis functions that has minimum
error at time between and is 196, as marked
in the figure. Therefore, based on analysis, 196 is chosen as

. Time-domain waveforms generated using and
are shown in Fig. 18(a) and compared to FDTD. Both and

seem to provide good correlation with FDTD. However,

Fig. 24. Time-domain waveform at probe point 1 in the EBG structure: (a)
From 0 to 5 ns; (b) from 995 ns to � ��.

a zoomed view shown in Fig. 18(b) reveals that provides
better accuracy than .

VII. NODE NUMBERING SCHEME

SLeEC requires solving a matrix of the form at every
iteration. However, LU decomposition has to be done only once
because the matrix stays constant throughout the iterations.
For the Laguerre-domain companion model of the FDTD grid,
two different node numbering schemes are considered. For both
the schemes, the matrix is sparse and structurally symmetric.
The first scheme, which is labeled as scheme 1, is extremely
inefficient for LU decomposition since it results in a nonbanded
matrix while scheme 2 results in a sparse and banded matrix.

A Yee cell is shown in Fig. 19. The FDTD cells are cascaded
in the x, y, and z dimensions to create a 3-D mesh. For simplicity,
only a single cell is shown in Fig. 19, rather than an entire 3-D
mesh. The cross sections of the FDTD cells that are parallel to
the planes xy, yz, and the zx planes in the entire mesh are labeled

and 3 in the figure. Let us assume that a domain consists of
cells. In scheme 1, all the nodes lying on Plane 1

for are labeled first; the nodes
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Fig. 25. S-parameters between probe points in the EBG structure: (a) S11; (b)
S12.

Fig. 26. Simulated EBG structure.

on Plane 2 for are labeled next,
followed by the nodes on Plane 3 for

. are the number of cells in the , , and
directions.

TABLE II
FDTD Versus SLEEC

Fig. 27. Time-domain waveform at the probe point 1 in the EBG structure with
narrow slit. (a) From 0 to 5 ns. (b) From 45 to 50 ns.

The sparsity pattern of the matrix that is of dimension
(117 712 unknowns) resulting from scheme 1

is shown in Fig. 20. The number of nonzero entries in matrix
is 1 476 652. The structural symmetry can be clearly seen from
the pattern. The matrix is always structurally symmetric for the
PEC and the PMC boundary conditions, regardless of the struc-
ture that is being modeled.

The sparsity pattern of the matrix from scheme 1 is not
desirable due to its bandwidth which contains a large number
of nonzero entries in and matrix after LU decomposition.
Thus, node ordering scheme that makes matrix banded is
preferable.

Here, an alternate method (scheme 2) is proposed for the
matrix to become banded. In scheme 2, the nodes are numbered
on a cell by cell basis.
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Fig. 28. S-parameters between probe points in the EBG structure with narrow
slit: (a) S11; (b) S12.

Let us assume that a domain consists of cells
and label an th Yee cell on th row on th plane as cell ,
as shown in Fig. 21.

The nodes within a cell(000) at the corner are numbered first,
and the nodes within an adjacent cell in x direction, cell(100),
are labeled next. In case of the shared nodes between cell(000)
and cell(100), since all nodes within cell(000) are numbered
prior to the numbering of the nodes within cell(100), the
shared nodes are skipped in the numbering of the nodes within
cell(100). Next, the nodes within a cell(200) are numbered in
a similar fashion, and the numbering continues until it reaches

. As a similar numbering process is applied to the
nodes within cells at other rows and planes, all nodes in the
domain are numbered.

Due to the local behavior of Maxwell equations on a Yee cell,
this form of node numbering can lead to the matrix being
banded.

The sparsity pattern resulting from scheme 2 for the same
structure is shown in Fig. 22. The matrix is banded, and there-
fore the number of nonzero entries in and factors are much
less than the matrix resulting from scheme 1.

Fig. 29. Chip-package structure with multiscale features. (a) Package structure.
(b) Redistribution layer and package bump. (c) Chip structure.

VIII. MULTISCALE TEST CASES

A. Test Case 1: EBG Structure

As an example, consider the EBG structure shown in Fig. 23.
The EBG patch dimension is mm mm and dimension of
bridge between EBG patches is mm mm with a dielectric
thickness of and conductor thickness of . The
EBG structure is referenced to a continuous ground plane be-
neath it. The structure is surrounded by PEC boundary with a
gap of 15 mm. The current source is excited between two con-
ductors at the point shown in Fig. 23 and the vertical component
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Fig. 30. Cross section of the different metal layers.

of the electric field is probed at the probe points shown in the
figure. The source waveform is a Gaussian derivative. The sim-
ulation has been done up to 1 s using the proposed method in
Section V. The simulations were run on a Pentium quad core,
2.4 GHz processor with 4 GB RAM. The comparison of simu-
lation time between SLeEC and FDTD is shown in Table I.

In Fig. 24, the simulated time-domain waveform using
SLeEC at probe point 1 is shown and compared with the FDTD
method. They show excellent correlation until 1 s though
SLeEC took 3.7x lesser time to simulate the structure. The
s-parameters between the two probe points are also extracted
from the simulated time-domain waveforms, as shown in
Fig. 25. SLeEC and FDTD show very good correlation in the
frequency domain as well.

B. Test Case 2: EBG Structure With Narrow Slit

This structure is similar to the previous EBG structure as
shown in Fig. 26. However, the dimension of bridge between
EBG cells is reduced to . Since the dimension of
the mesh is very small at the bridge, the FDTD
method requires a very small time step of and hence takes
long time to simulate, as shown in Table II

The simulated time-domain waveform using SLeEC at probe
point 1 are shown in Fig. 27 and compared with the FDTD
method. They show very good correlation until 50 ns. A 67x
speedup was possible using SLeEC as compared to the FDTD
method for this example. The S-parameters extracted from the
simulated time-domain waveform are also shown in Fig. 28,
which show good correlation with the FDTD method.

C. Test Case 3: Chip-Package Structure

Results from chip-package co-simulation is presented in this
subsection. The package structure is shown in Fig. 29(a). A chip
that contains SRAM cell is flipped and attached on a package
with redistribution layer. The on-chip structures, along with
the interface between the chip and the package, are shown in
Fig. 29(b). The zoom of the center region in Fig. 29(b) is shown
in Fig. 29(c). The on-chip structures in Fig. 29(c) represent
the interconnects in M1 and M2 layers of an SRAM cell. The
structures that have been modeled are the on-chip interconnects
in metal layers M1 and M2, connected by vias and routed on
the redistribution layer, through the solder pads, to the package
and routed as package-level interconnects.

An important feature of the chip-package structure is its mul-
tiscale dimensions, as shown in Fig. 30. The on-chip structure is

Fig. 31. Nonuniform mesh simulated using SLeEC.

Fig. 32. SLeEC and FDTD results of the chip-package structure.

in the nanometer scale, the dimensions of the structure present
at the interface between the chip and the package, such as the
redistribution layer, solder pads, are in the micrometer scale,
and package structures such as the power-ground planes are
in the millimeter range. The on-chip structures that are in the
nanometer scale require a very fine mesh, and therefore the sim-
ulation time can become prohibitively large using the FDTD
method due to the Courant condition.

A nonuniform mesh has been used here, as shown in Fig. 31.
Meshes shown in the figure are not proportional to actual mesh
dimensions. Meshes at the center are very fine due to the SRAM
chip structure in the center. The scale difference in this example
is 1:50 000.

A modulated Gaussian source current was excited at the loca-
tion marked source in Fig. 29(a) and the time-domain response
of the electric field at the location marked probe in Fig. 29(a) is
shown in Fig. 32. There is excellent correlation between SLeEC
and FDTD. The field snapshots at 1, 1.25, and 1.5 ns are shown
in Fig. 33. The propagation of the electromagnetic wave through
the structure can be seen in Fig. 33
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Fig. 33. � field snapshots at (a) 1 ns, (b) 1.25 ns, (c) 1.5 ns.

The number of cells used in the simulation was 26,144. FDTD
took over one day to run, while SLeEC takes only 9 min to
complete, as shown in Table III. The simulation was run on the
Pentium quad core, 2.4 GHz processor with 4 GB RAM.

TABLE III
FDTD Versus SLEEC

IX. CONCLUSION

In this paper, the Laguerre-FDTD method has been used
for simulation of multiscale structures. The Laguerre-FDTD
has been applied by converting it into a circuit representation
(SLeEC). Two major issues have been addressed in this paper,
namely, simulatiing over long time and choosing the optimal
number of basis functions. The accuracy and advantage of this
method have been validated by comparing it with FDTD on
several examples arising in packaging.
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