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Abstract— A circuit-equivalent frequency-domain 

electromagnetic simulation for packaging structures is proposed. 

Simulations are carried out using an iterative memory-efficient 

approach – quasi-minimal residual method. The convergence of 

the solver is accelerated by the use of a suitable preconditioner. 

Results for a power-plane example, with and without aperture, 

are presented. 

  

I. INTRODUCTION 

The analysis of power-ground structures presents a significant 

problem in signal/power integrity as well as for 

electromagnetic interference (EMI) considerations [1] [2]. 

Such problems have been analyzed in the past by making use 

of time- and frequency- domain techniques. Most of these 

solvers can be classified, in increasing order of accuracy, as 

two-dimensional (2D) [3], two-point-five –dimensional (2.5D) 

[4] and three-dimensional (3D) [5]. Though 3D solvers are the 

most accurate, they also impose a heavy penalty in terms of 

time required for analysis. At a lower level, lumped circuit 

models for such structures have also been proposed [6]. The 

parameterization of these lumped-circuit models can then help 

in the fast analysis of very large structures.  Thus a 

hierarchical approach to the design and analysis of such 

problems is best – at the first stage, lumped circuit models can 

be used followed by analysis with 2D or 2.5D solvers. This is 

then followed up with full-wave solution as the final 

verification step for fine-tuning before the actual fabrication. 

 

Fig.1 Hierarchical design flow based on simulation complexity affording 

more design iterations at lower levels 

 Some of the full-wave approaches that have been investigated 

include – finite difference, finite element, and spectral 

domain, to name a few. Finite-difference time-domain 

(FDTD) in particular, has been extensively studied and used 

for various applications [7], because of its flexibility and 

ability to simulate high frequency behavior. On the other 

hand, work on finite-difference based frequency domain 

simulation tools is limited.  Frequency domain simulation 

offers several advantages: 1) Accurate simulation of low 

frequency characteristics 2) Easier incorporation of frequency-

dependent material parameters and 3) Elimination of post-

processing steps to extract equivalent circuits, as opposed to 

FDTD where transformation to frequency-domain with 

appropriate use of windowing is required.  

The solution to the frequency domain Maxwell’s equation 

presents what is called an inverse problem. Such problems are 

usually time-consuming. However, due to the sparse nature of 

the matrix, fast direct solvers can be exploited [8]. But, as the 

problem sizes begin to grow, the analysis becomes 

increasingly difficult due to prohibitive memory requirements. 

Iterative solutions are therefore used in such cases [9]. Two of 

the most popular algorithms used are the conjugate gradient 

method and the bi-conjugate gradient method [10]. However, 

for the current problem, both these techniques face 

convergence issues. Therefore the quasi-minimal residual 

(QMR) method [11] is used. In conjunction with 

preconditioning techniques, it provides for a quicker 

convergence, thus making possible a memory-efficient fast 

simulation of power/ground structures. 

This paper proposes an electromagnetic simulation method 

by converting the Maxwell’s equations into an electrical 

equivalent network for the analysis of metal plane structures. 

This offers the advantages of 1) making use of Spice-based 

circuit solvers to run full-wave simulations and 2) using 

circuit based numerical techniques to speed-up the simulation. 

Further, the use of QMR approach for solving such problems 

is analyzed and performance improvement is demonstrated by 

making use of a diagonal preconditioner.  The paper is 

organized as follows: Section II describes the formulation of 

the equivalent circuit based simulator along with the QMR 

algorithm. Section III details the results and discussion.     
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II. FORMULATION 

A. Maxwell’s Equations Discretization 

Consider the differential form of Maxwell’s equation in the 

frequency domain  

                BE ωj−=×∇                                                       (1) 

                DH ωj=×∇                                                       (2)                                                          

 where, E and H are the vector electric and magnetic fields 

           D and B are the vector electric and magnetic field                  

densities 

           ω  is the frequency in radians  

Assuming an isotropic, lossless and homogeneous medium, 

the above equations can be written for a two-dimensional (2D) 

transverse magnetic (TM) wave as: 
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            where, ε and µ are the material permittivity and 

permeability, respectively 

           Ep and Hp represent the electrical and magnetic field 

in the p-direction (p = x or y or z). 

           Jz is the external current source in the z-direction 

 

  Discretizing the above equations using the Yee-grid, so as 

to implicitly satisfy the divergence laws, we can form an 

electrical equivalent circuit for the resulting equations as 

shown in Fig. 2. The nodal voltages represent the electrical 

fields and the magnetic fields map to the branch currents. The 

circuit branch connected to ground can be further simplified to 

an equivalent Norton circuit, thus reducing the problem to one 

of solving only for the nodal voltages. The solution of the 

electrical network results in a linear equation of form Ax = b 

where A is the sparse and banded nodal analysis (NA) 

amplification matrix, x is the vector of unknown nodal 

voltages and b is the vector containing external current 

sources.  

The analysis of the circuit network can be done at discrete 

frequencies using NA. The resulting admittance matrix gives 

rise to an O(N
2
) direct problem, where N is the number of 

nodes. The complexity can be further reduced by making use 

of suitable sparse solvers.  In addition, the circuit 

representation allows the use SPICE-based circuit solvers for 

frequency-domain full-wave simulation. The current-

controlled current sources (CCCS) are converted into voltage-

controlled current sources (VCCS). This reduces the 

dimension of the NA matrix, by ensuring that only the nodal 

voltages are being solved for, without the addition of the 

branch currents to the vector x.  

 

                                    
(a) 

 
(b) 

Fig.2 (a) Yee-grid unit-cell and (b) its equivalent-circuit representation for 

full-wave simulation 

 

The circuit elements in the equivalent network in Fig.2 are 

given as follows. 

Impedances: 
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Dependent Voltage Sources: 
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CCCS: 
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    where, ∆x and ∆y are the grid spacing along the X- and Y- 

directions, respectively. 

Perfect electric conductor (PEC) and perfect magnetic 

conductor (PMC) boundary conditions are enforced by 

shorting and opening the nodal points along the boundaries of 

the simulation domain, respectively. The above procedure is 

easily extended to three dimensions and the full-wave 3D 

solution is used for further analysis in the paper. 

B. Quasi Minimal Residual (QMR) Method 

The QMR method proposed in [11] is essentially a 

nonsymmetric Lanczos process based on projection on to a 

biorthogonal basis in the Krylov subspace. It improves on the 

convergence behavior of the bi-conjugate gradient (BiCG)  

and uses look-ahead techniques in the Lanczos process to 

avoid breakdown. The Lanczos biorthogonalization process 

[13] is used to generate these subspaces. 

The algorithm for generating these subspaces is given in 

Fig.3. 
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Fig.3 The Lanczos biorthogonalization algorithm which forms the basis for 

the QMR algorithm 

 

This process is then used within the two-sided Lanczos 

algorithm to solve the linear system, 

                              Ax = b                          (9) 

where, A is the complex coefficient matrix. If x0 is an 

initial guess for x, then r0 is defined as r0 = b – Ax0, then the 

starting vector is chosen as   
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Then the nth Krylov complex subspace generated by v1 and 

A are given by 

 

}v,.....AAv,span{vA),(vK 1
1m

111n
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and a corresponding subspace is generated for the transpose 

of A matrix using a starting vector w1 such that  

                 1),( 11 =wv .                                        (12) 

The two-sided Lanczos algorithm [13] is described in Fig.4. 

 

 

Fig.4 The two-sided Lanczos algorithm for the solution of linear systems 

 

where, Tm is now defined as the tridiagonal matrix 
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The result of the Lanczos process is a relation of the form  

               
T

mmmmmmmm evTVTVAV 111 +++ +== δ               (14) 

Subsequently, a general minimal residual method (GMRES) 

[12] -like process is used on the result obtained from the 

Lanczos algorithm.  However, unlike the GMRES case, here 

the basis vectors used are not orthogonal, thus giving rise to 

the name quasi-minimal residual algorithm. Defining              

)1...,2,1,0(),,...,( 121 +=>=Ω + mjdiag jmm ωωωω     (15) 

as a diagonal weight matrix, the corresponding residual in 

the Lanczos process can now be evaluated as 
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The problem is then reduced to the least squares problem 

C∈Ω−=Ω− mmmmmmmmm yyTdyTd ,)(min)(          (17)  
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where, C  is the complex vector space. 

The QMR algorithm is outlined in Fig.5. 
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Fig.5 The QMR algorithm – implemented by combining the look-ahead 

Lanczos procedure with a least squares algorithm. 

 

Here the matrix 
H

mQ  represents the complex conjugate of 

the matrix mQ . 

The breakdown of iterative algorithms presents an 

important problem. An exact breakdown of the Lanczos 

algorithm may occur if 

                              0),( 11 =wv .                        (18) 

A near-breakdown occurs when the Lanczos vectors are 

scaled by very small values. The basic concept of the look-

ahead algorithm is that, even though the pair (vj+1,w j+1) cannot 

be defined in a biorthogonal sense, the subsequent pair (v j+2,w 

j+2) can be successfully defined. This avoids cases of near-

breakdown, at the cost of increased computational steps, thus 

providing for superior convergence of QMR. The other 

significant advantage of QMR is that the required memory 

volume does not increase with iteration count, as is the case 

with minimal residual methods like GMRES. Only two sets of 

vectors have to be stored during an iteration, as opposed to 

storing the entire history of the basis vectors. 

 The convergence of the QMR process can be improved by 

making use of a preconditioning matrix M. The 

preconditioning matrix is used as a multiplier, and instead of 

solving (9), the following equation is solved 

                                  M
-1
Ax = M

-1
b.                       (19) 

A very commonly used preconditioner is the incomplete 

LU factorization (ILU) of the A matrix [13]. However, the 

ILU factorization of the A matrix in the present case fails to 

provide a solution [14]. To overcome this issue, the diagonal 

of the A matrix is used as the preconditioner. 

 

III. RESULTS AND DISCUSSION 

To verify the accuracy of the QMR process, a 13mm x 

13mm thin metal plane is considered, placed at the center of a 

dielectric box of dimensions 21mm x 21mm x 60µm. A unit 

cell of 1mm x 1mm x 10µm was used to discretize the 

structure shown in Fig. 6. 

 

 

Fig.6 (a) Cross-section and (b) top-view of metal plane structure   

A probe is placed at a point 5µm below the metal plane and 

at a distance of 7mm from the PEC boundaries, and is 

referenced to the bottom PEC. A frequency sweep of the 

structure is carried from 0.5GHz to 6GHz and the results of 

the QMR-based solver are compared with those of the direct 

method. The target residual is set to be 10
-6

 with the maximum 

number of iterations set at 400.  

 
 

Fig.7 Impedance response of the metal plane structure showing close match 

between the QMR based approach (solid) and Laguerre-MNA [5] (dashed) 

Fig.7 shows a favorable comparison of the QMR solver 

with a close overlap with the Laguerre solver (Laguerre-MNA) 

[5] over the entire frequency range, thus validating the solver. 

The power plane problem gives rise to a square matrix of 

dimension, N = 9,372. Since QMR solver exhibits conjugate 

gradient-like memory usage properties, i.e., of O(Nlog(N)), as 



opposed to O(N
2
) of direct solvers, a comparison is made of 

the memory used by the solvers themselves for the current 

problem. The memory used by the direct solver is 49 

megabytes (MB) compared to using the QMR solver with 

preconditioner, wherein only 3.3 MB of memory is required. 

 

Next, a two-metal plane structure with aperture on the top 

plane is considered. The structure, with PEC boundaries,  is 

shown in Fig.8. The discretization of the 22mm x 22mm x 

80µm volume is done using a unit cell of 1mm x 1mm x 10µm. 

A probe is placed 5µm directly below the edge center of the 

plane with aperture, referenced to the bottom plane.  

 

Fig.8 (a) Cross-section and (b) top-view of metal plane structure with aperture. 

Aperture is present only in the top plane.  

 

Frequency sweep simulations are carried out from 0.5 to 6 

GHz, and the results of the QMR-based solver for different 

residuals are plotted in Fig.9. Frequency steps of 0.1 GHz are 

used to analyze this structure. From the plot, it is clear that 

accuracy is reached when the tolerance level is set to 10
-3

, 

since the curves of residual equal to 10
-3

 and 10
-4

 overlap. 

Fig.10 and Fig.11 show the top-view cuts of electric fields 

10µm above the top metal surface. The fringing fields clearly 

shown in these plots are accounted for in lower-dimensional 

solvers by means of analytical expressions and therefore are 

heavily structure dependent.  Thus, in case of analyzing novel 

layouts, as also in validating lower dimensional simulations, 

there is a need for 3D simulation. 

To analyze the performance improvement with the use of 

preconditioner, we run the above simulation at 1GHz, with 

target residual of 10
-3

, with and without the use of 

preconditioner 

 

Fig.9 Impedance response plot for the structure shown in Fig.8 for various 

tolerance levels in the QMR algorithm.  

The simulation converges in 462 iterations without the 

preconditioner, and converges in 216 iterations when the 

diagonal preconditioner is used. Clearly, the use of 

preconditoner enables superior convergence, with very little 

additional computational cost, due to the sparse diagonal 

nature of the preconditioner.  The problem gives rise to a 

square matrix of dimension, N = 13,340. The memory used by 

the direct solver is 90 MB as compared to using the QMR 

solver with preconditioner, wherein only 4 MB of memory is 

required.  

 

 

Fig.10 Top-view of x-field component of electric field plotted along the plane 

10µm above the top metal.  

In conclusion, a three-dimensional solver for analyzing 

metal plane structures in modern packages has been presented 

and validated. The use of diagonal preconditioner has been 

demonstrated effecting an improvement in the convergence of 

the QMR algorithm. 



 

Fig.11 Top-view of y-field component of electric field plotted along the plane 
10µm above the top metal.  

The acceptable increase in memory requirement in the case 

of the QMR solver as compared to a drastic increase in the 

memory requirement of direct solver in moving from the first 

test case to the second implies that large complex structures 

can be analyzed without being prone to exponential increases 

in memory.  Thus, a fast iterative memory-efficient procedure 

for obtaining the solution in frequency domain has been 

demonstrated with superior convergence. 
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