
Memory Efficient Laguerre-FDTD Scheme 

for Dispersive Media 
 

Ming Yi, Madhavan Swaminathan 

Interconnect and Packaging Center 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

Atlanta, GA 30332 

myi9@gatech.edu, 

madhavan.swaminathan@ece.gatech.edu 

Myunghyun Ha, Zhiguo Qian, and Alaeddin Aydiner 

Intel Corporation 

Santa Clara, CA 95054 

Chandler, AZ 85226, 

and Hillsboro, OR 97124, 

myunghyun.ha@intel.com, zhiguo.qian@intel.com, and 

alaeddin.a.aydiner@intel.com

 

 
Abstract—The unconditionally stable Laguerre-FDTD method is 

suitable for simulating 3-D structures with large time step. In this 

work, memory efficient Laguerre-FDTD scheme for dispersive 

materials is proposed to ensure accurate modeling and less 

memory consumption compared to standard procedures. The 

memory efficient scheme is realized by representing the Laguerre 

domain expression of electric susceptibility in a recursive manner. 

Formulations have been derived for both Debye and Lorentz 

media. Numerical results show that the proposed Laguerre-

FDTD method exhibits significant peak memory usage reduction 

and equivalent calculation accuracy of dispersive material 

involved transient simulation. 

Keywords-Laguerre-FDTD; memory efficient; dispersive 

material ; Debye and Lorentz media 

I.  INTRODUCTION 

The finite-difference time-domain (FDTD) method has 
been widely used to solve transient electromagnetic problems 
for decades. To overcome the intrinsic stability issue due to the 
Courant-Friedrichs-Lewy (CFL) stability condition, semi-
implicit and implicit FDTD schemes have been studied 
extensively. The alternating direction implicit FDTD (ADI-
FDTD) method has been introduced which is shown to be 
unconditionally stable [1]. More recently, the locally-one 
dimensional FDTD (LOD-FDTD) method has been proposed 
with reduction of arithmetic operations and increased 
computational efficiency compared to ADI-FDTD method [2]. 

One of the major challenges in time domain methods is to 
rigorously and efficiently model the material dispersion. In [3], 
the frequency-dependent material is modeled by incorporating 
a discrete time domain convolution in conventional FDTD and 
is efficiently evaluated using recursion. However, this method 
still suffers from CFL condition which makes it computational 
inefficient to simulate multiscale structures. To ensure 
unconditional stability, the ADI-FDTD method has been 
extended to be able to simulate dispersive material in [4]. Also, 
the frequency-dependent implementation of LOD-FDTD has 
been reported in [2] which showed reduction of simulation time 
compared to explicit FDTD method. 

In recent years, the unconditionally stable Laguerre-FDTD 
method has been proposed and extended with algorithm 
modifications [5]-[7]. By transforming the time domain 
problem to Laguerre domain using temporal Galerkin’s testing 
procedure, the transient solution is independent of time 
discretization. Moreover, Laguerre-FDTD provides advantages 
in less numerical dispersion error when larger time step is used 
compared to ADI-FDTD. A Laguerre-FDTD formulation for 
frequency-dependent materials has been proposed in [7]. 
However, the formulation has a drawback of using all orders of 
solutions of Laguerre coefficients which requires considerable 
memory consumption to incorporate dielectric dispersion. 

In this paper, memory efficient Laguerre-FDTD scheme for 
dispersive materials is proposed. To be specific, the electric 
susceptibility in time domain is obtained with Laguerre domain 
transformation which represents the Laguerre coefficient of 
susceptibility by the product of order-dependent and order-
independent parts. By utilizing the unique mathematical 
properties of Debye and Lorentz models, the general Laguerre-
FDTD formulations for dispersive materials are further 
rewritten into recursive form which significantly reduces the 
memory storage in the simulation.  

This paper is organized in the following manner: In Section 
II, the memory efficient Laguerre-FDTD schemes for Debye 
and Lorentz media is introduced with formulations and 
derivation. In Section III, the proposed method is verified with 
numerical examples which show that structures with Debye 
and Lorentz media can be analyzed efficiently using Laguerre-
FDTD method. In Section IV, we summarize some conclusions. 

II. PROPOSED SCHEME  

A. General Formulations for Dispersive Materials 

In Laguerre-FDTD method, time domain electric field 
components can be represented as a sum of infinite Laguerre 

basis functions 'q(¹t)'q(¹t) scaled by Laguerre basis coefficient ¹Eq¹Eq 

¹E(t) =

1X

q=0

¹Eq'q(¹t)¹E(t) =

1X

q=0

¹Eq'q(¹t)                               (1) 
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where ¹t = t ¢ s¹t = t ¢ s , ss  is the time scaling factor and tt  is time. 

Superscript qq denotes the Laguerre coefficient of order qq. The 

Laguerre basis functions 'q(¹t)'q(¹t) can be expressed as 

'q(¹t) = e¡
¹t=2Lq(¹t)'q(¹t) = e¡
¹t=2Lq(¹t)                               (2) 

where Lq(¹t)Lq(¹t)  is the Laguerre polynomial which is defined 

recursively as 

L0(¹t) = 1L0(¹t) = 1                                     (3) 

L1(¹t) = 1¡ ¹tL1(¹t) = 1¡ ¹t                                  (4) 

qLq(¹t) = (2q ¡ 1¡ ¹t)Lq¡1(¹t)¡ (q¡ 1)Lq¡2(¹t)qLq(¹t) = (2q ¡ 1¡ ¹t)Lq¡1(¹t)¡ (q¡ 1)Lq¡2(¹t), q ¸ 2q ¸ 2   (5) 

Assuming an isotropic, dispersive, lossy media, the wave 
equation can be written as 

r£r£ ¹E =¡¹
@2 ¹D

@t2
¡¹

@( ¹J +¾ ¹E)

@t
r£r£ ¹E =¡¹

@2 ¹D

@t2
¡¹

@( ¹J +¾ ¹E)

@t
               (6) 

where ¹¹  is the magnetic permeability, ¾¾  is the electric 

conductivity. ¹D¹D  is the electric flux density which can be 

expressed as 

¹D(t) = "1"0 ¹E(t) + "0

Z t

0

¹E(t¡ ¿)Â(¿)d¿¹D(t) = "1"0 ¹E(t) + "0

Z t

0

¹E(t¡ ¿)Â(¿)d¿           (7) 

where Â , "0  and "1  are the electric susceptibility, electric 

permittivity of free space and infinite frequency relative 
permittivity, respectively. 

Discretizing the differential equation (6) in Laguerre 
domain using temporal testing procedure yields 

r£r£ ¹Eq = ¡¹s2

"

1
4
¹Dq +

q¡1P

n=0;q>0

(q ¡ n) ¹Dn

#

¡ ¹s

"

1
2

¡
¹Jq + ¾ ¹Eq

¢
+

q¡1P

n=0;q>0

¡
¹Jn + ¾ ¹En

¢
#

r£r£ ¹Eq = ¡¹s2

"

1
4
¹Dq +

q¡1P

n=0;q>0

(q ¡ n) ¹Dn

#

¡ ¹s

"

1
2

¡
¹Jq + ¾ ¹Eq

¢
+

q¡1P

n=0;q>0

¡
¹Jn + ¾ ¹En

¢
#    (8) 

where the Laguerre coefficient of  electric flux density is given 
by [7] as 

¹Dq = "1"0 ¹Eq + "0

Ã
qX

n=0

¹EnÂq¡n ¡

q¡1X

n=0

¹EnÂq¡1¡n

!

¹Dq = "1"0 ¹Eq + "0

Ã
qX

n=0

¹EnÂq¡n ¡

q¡1X

n=0

¹EnÂq¡1¡n

!

    (9) 

Using (9), the frequency-dependent dispersion can be 
incorporated in the Laguerre-FDTD scheme. However, due to 
the form of the transformed convolution term, all previous 

solutions are required to calculate ¹Dq¹Dq. Therefore, as the order 

of Laguerre coefficient increases, significant amount of 
memory is required to store all the solution of previous orders. 
Such large memory consumption is undesirable for solving 
practical 3-D problems. 

B. Debye Media 

The frequency-dependent Debye model of order nn can be 

written as 

 "(!) = "1+ ("s ¡ "1)

nX

i=1

ai

1 + j!¿i
"(!) = "1+ ("s ¡ "1)

nX

i=1

ai

1 + j!¿i
                (10) 

where aiai  and ¿i¿i  denote the strength and time constant of 

various relaxation processes, "s"s is the static permittivity. For 

simplicity, considering only the case for n= 1n= 1. The method 

can be easily extended to n > 1n > 1 cases in a similar manner. 

Thus, the frequency dependent susceptibility function is given 
by 

Â(!) = ("s¡ "1)
a

1 + j!¿
Â(!) = ("s¡ "1)

a

1 + j!¿
                     (11) 

where aa and ¿¿  are the strength and time constant of the first-

order Debye relaxation process. Performing Fourier transform 
of (11), the time domain expression for susceptibility is 

Â(t) =
a("s ¡ "1)

¿
e¡

t
¿Â(t) =

a("s ¡ "1)

¿
e¡

t
¿                        (12) 

Using the definition in (1) and applied partial integration, 
with some manipulations, the Laguerre-domain expression for 
susceptibility is 

Ân = ®D¯
2
DÂn = ®D¯
2
D                                     (13) 

where 

®D =
2a("s ¡ "1)

2 + s¿
®D =

2a("s ¡ "1)

2 + s¿
                              (14) 

¯D =
2¡ s¿

2 + s¿
¯D =

2¡ s¿

2 + s¿
                                    (15) 

Rewritten (9) into 

¹Dq = "1"0 ¹Eq + "0 ¹Gq¹Dq = "1"0 ¹Eq + "0 ¹Gq                           (16) 

where 

¹Gq =

qX

n=0

¹EnÂq¡n ¡

q¡1X

n=0

¹EnÂq¡1¡n¹Gq =

qX

n=0

¹EnÂq¡n ¡

q¡1X

n=0

¹EnÂq¡1¡n              (17) 

and inserting (13) into (17) results in 

¹Gq = ®D

Ã
qX

n=0

¹En¯q¡n ¡

q¡1X

n=0

¹En¯q¡1¡n

!

¹Gq = ®D

Ã
qX

n=0

¹En¯q¡n ¡

q¡1X

n=0

¹En¯q¡1¡n

!

       (18) 

Subtracting ¯D
¹Gq¡1¯D
¹Gq¡1 from ¹Gq¹Gq, we have 

¹Gq ¡ ¯D
¹Gq¡1

= ®D

µ
qP

n=0

¹En¯
q¡n
D ¡

q¡1P

n=0

¹En¯
q¡1¡n
D

¶

¡ ®D

µ
q¡1P

n=0

¹En¯
q¡n
D ¡

q¡2P

n=0

¹En¯
q¡1¡n
D

¶

= ®D

¡
¹Eq ¡ ¹Eq¡1

¢

¹Gq ¡ ¯D
¹Gq¡1

= ®D

µ
qP

n=0

¹En¯
q¡n
D ¡

q¡1P

n=0

¹En¯
q¡1¡n
D

¶

¡ ®D

µ
q¡1P

n=0

¹En¯
q¡n
D ¡

q¡2P

n=0

¹En¯
q¡1¡n
D

¶

= ®D

¡
¹Eq ¡ ¹Eq¡1

¢

         (19) 

Therefore, ¹Gq¹Gq can be calculated recursively as 

¹Gq = ¯D
¹Gq¡1 +®D

¡
¹Eq ¡ ¹Eq¡1

¢
¹Gq = ¯D

¹Gq¡1 +®D

¡
¹Eq ¡ ¹Eq¡1

¢
              (20) 

For zero order 

¹G0 = ®D
¹E0¹G0 = ®D
¹E0                                    (21) 

Inserting (20) and (21) into (16), the Laguerre coefficient for 

electric flux density ¹Dq¹Dq  can be calculated recursively which 

requires only one previous order (q ¡ 1q ¡ 1) solution. 



C. Lorentz Media 

The frequency-dependent Lorentz model of order nn can be 

written as 

"(!) = "1 + ("s ¡ "1)

nX

i=1

ai!i

!2
i + 2j!±i ¡ !2

"(!) = "1 + ("s ¡ "1)

nX

i=1

ai!i

!2
i + 2j!±i ¡ !2

        (22) 

where aiai , !i!i  and ¿i¿i  represent the pole amplitude, the pole 

location and the damping factor. Again, only the case for n= 1n= 1 

is discussed here. The frequency dependent susceptibility 
function is given by 

Â(!) = ("s ¡ "1)
a!2

0

a!2
0 + 2j!± ¡ !2

Â(!) = ("s ¡ "1)
a!2

0

a!2
0 + 2j!± ¡ !2

                (23) 

The time domain expression of susceptibility can be obtained 
as 

Â(t) =
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2
e¡±t sin

µq

!2
0 ¡ ±2

¶

Â(t) =
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2
e¡±t sin

µq

!2
0 ¡ ±2

¶

           (24) 

Introducing complex numbers, (24) can be rewritten into 

Â(t) = Im

"
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2
e
¡
³
±¡j
p

!2
0¡±

2
´
t

#

Â(t) = Im

"
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2
e
¡
³
±¡j
p

!2
0¡±

2
´
t

#

          (25) 

Transforming (25) into Laguerre domain yields 

Ân = Im(®L¯
n
L)Ân = Im(®L¯
n
L)                              (26) 

where 

®L =
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2

2

2
³
± ¡ j

p
!2

0 ¡ ±2

´
+ s

®L =
a!2

0("s ¡ "1)
p
!2

0 ¡ ±2

2

2
³
± ¡ j

p
!2

0 ¡ ±2

´
+ s

          (27) 

 ¯L =
2
³
± ¡ j

p
!2

0 ¡ ±2

´
¡ s

2
³
± ¡ j

p
!2

0 ¡ ±2

´
+ s

¯L =
2
³
± ¡ j

p
!2

0 ¡ ±2

´
¡ s

2
³
± ¡ j

p
!2

0 ¡ ±2

´
+ s

                       (28) 

Performing the similar procedures as for Debye model, the 
electric flux density of the Lorentz model can be calculated 
recursively as 

¹Dq = "1"0 ¹Eq + "0Im
¡
¹Gq
¢

¹Dq = "1"0 ¹Eq + "0Im
¡
¹Gq
¢
                     (29) 

where 

¹Gq = ¯L
¹Gq¡1 +®L

¡
¹Eq ¡ ¹Eq¡1

¢
¹Gq = ¯L

¹Gq¡1 +®L

¡
¹Eq ¡ ¹Eq¡1

¢
                 (30) 

and for zero order 

¹G0 = ®L
¹E0¹G0 = ®L
¹E0                                     (31) 

III. NUMERICAL RESULTS 

To validate the memory usage improvement using the 
proposed scheme, a simple microstrip line shown in Fig. 1 is 
simulated and analyzed. The structure has a dielectric substrate 
with width and thickness of s = 30mms = 30mm and d = 0:305mmd = 0:305mm . 

The dielectric material is FR-4 and is assumed to be dispersive 
and can be approximated with first order Debye model. 
Parameters for Debye model are "s = 4:530"s = 4:530 , "1 = 4:398"1 = 4:398 , 

a= 1a= 1, ¿ = 57:22ps¿ = 57:22ps given in [8]. The metal strip is considered 

as copper (conductivity ¾ = 5:8£ 107S=m¾ = 5:8£ 107S=m) with length, width 

and thickness of l = 93:5mml = 93:5mm, w = 0:51mmw = 0:51mm and t = 0:03mmt = 0:03mm, 

respectively. The simulated structure is surrounded by an box 

 
 

Fig. 1.  Cross sectional view of the simulated microstrip line 
  

 
 
Fig. 3.  Insertion loss of the simulated microstrip line with (a) Standard 

Laguerre-FDTD (b) proposed memory efficient Laguerre-FDTD and (c) 

measurement 

  

 
 

Fig. 2.  Time domain response of the observation point of micrstrip line 

using (a) Standard Laguerre-FDTD (b) proposed memory efficient 
Laguerre-FDTD 

  



with first order ABC boundary with height h = 1mmh = 1mm. Two 

ports are set at each end of the metal strip. 

Fig. 2 shows the time domain response of the observation 
point at one port of the microstrip line using the standard 
Laguerre-FDTD method and the proposed memory efficient 
Laguerre-FDTD method. Good agreement can be observed. Fig. 
3 shows the comparison of insertion loss of the microstrip line 
using both methods along with the measurement. Good 
correlation with the measurement can be observed for both 
methods. The peak memory consumption using both methods 
are compared in Table I. It can be observed form Table I that 
under the same level of accuracy, the memory consumption for 
standard Laguerre-FDTD method is 0.92GB whereas the 

counterpart for memory efficient Laguerre-FDTD is 0.48GB. A 
52.2% of improvement is achieved. 

Fig. 4 shows the test case of a microstrip patch antenna. 
The structure has a dielectric substrate with thickness of 
d = 0:8mmd = 0:8mm. The dielectric material is FR-4 and is assumed to 

be dispersive. The Debye parameter of the material is the same 
as in the previous example. The metal strip is considered as 

copper whose conductivity is ¾ = 5:8£ 107S=m¾ = 5:8£ 107S=m. The feature 

sizes shown in Fig. 4 are Wf = 1:53mmWf = 1:53mm , Wt = 0:4mmWt = 0:4mm , 

Wp = 30mmWp = 30mm , Lt = 12mmLt = 12mm , and Lp = 20mmLp = 20mm , respectively. 

The simulated structure is surrounded by ABC boundary with 
one port assigned at the end of the feed line. 

Fig. 5 shows the comparison of return loss of the patch 
antenna using the standard Laguerre-FDTD and the memory 
efficient Laguerre-FDTD. Good agreement can be observed. 
Table I shows the comparison of peak memory consumption 
for both methods. It can be observed that the memory 
consumption for standard Laguerre-FDTD and proposed 
Laguerre-FDTD are 1.85GB and 0.95GB, respectively. A 
51.4% improvement is achieved. 

IV. CONCLUSION 

The memory efficient Laguerre-FDTD scheme for 
dispersive material is proposed. Formulations for both Debye 
and Lorentz media are derived in recursive manner. The 
proposed method is verified with results of structures with 
dispersive dielectric materials. Significant reduction of the peak 
memory consumption can be achieved using the proposed 
Laguerre-FDTD scheme. 
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Fig. 4.  Top view of the simulated microstrip patch antenna 

  

 
 
Fig. 5.  Return loss of the simulated patch antenna with (a) Standard 

Laguerre-FDTD (b) proposed memory efficient Laguerre-FDTD 

  

TABLE I 

COMPARISON OF MEMORY CONSUMPTION FOR DIFFERENT SCHEMES 

Test Case* Method Memory Improvement 

1 Standard Laguerre-FDTD 0.92GB - 

 Proposed Laguerre-FDTD 0.48GB 52.2% 

2 Standard Laguerre-FDTD 1.85GB - 
 Proposed Laguerre-FDTD 0.95GB 51.4% 

*
Test case 1: Microstrip line; 2: Patch antenna 


